Galois connecting call-by-value and call-by-name

Dylan McDermott Alan Mycroft

Goal

- ► Call-by-value: $(\lambda x. e) e' \rightsquigarrow_{v}^{*} (\lambda x. e) v \rightsquigarrow_{v} e[x \mapsto v] \rightsquigarrow_{v}^{*} \cdots$
- ► Call-by-name: $(\lambda x. e) e' \rightsquigarrow_n e[x \mapsto e'] \rightsquigarrow_n^* \cdots$

Goal

- ► Call-by-value: $(\lambda x. e) e' \rightsquigarrow_{v}^{*} (\lambda x. e) v \rightsquigarrow_{v} e[x \mapsto v] \rightsquigarrow_{v}^{*} \cdots$
- ► Call-by-name: $(\lambda x. e) e' \rightsquigarrow_n e[x \mapsto e'] \rightsquigarrow_n^* \cdots$

If we replace call-by-value with call-by-name, then:

- No side-effects: nothing changes
- Only recursion: behaviour changes

CBV: $(\lambda x. \text{ false})\Omega \rightsquigarrow_v (\lambda x. \text{ false})\Omega \rightsquigarrow_v \cdots$ CBN: $(\lambda x. \text{ false})\Omega \rightsquigarrow_n$ false

but if CBV terminates with result v, CBN terminates with v

Goal

- ► Call-by-value: $(\lambda x. e) e' \rightsquigarrow_{v}^{*} (\lambda x. e) v \rightsquigarrow_{v} e[x \mapsto v] \rightsquigarrow_{v}^{*} \cdots$
- ► Call-by-name: $(\lambda x. e) e' \rightsquigarrow_n e[x \mapsto e'] \rightsquigarrow_n^* \cdots$

If we replace call-by-value with call-by-name, then:

- No side-effects: nothing changes
- Only recursion: behaviour changes, but if CBV terminates with result v, CBN terminates with v
- Only nondeterminism: behaviour also different, but if CBV can terminate with result v, then CBN can also terminate with result v
- Mutable state: behaviour changes, we can't say much about how

Questions:

- How can we prove these?
- What properties of the side-effects do we need to prove something?

How to relate different semantics of the same language

1. Define another language that captures both semantics via two sound and adequate translations $(\!(-)\!)^v, (\!(-)\!)^n$

$$(\mathsf{CBV}) \qquad (\![e]\!]^{\mathrm{v}} \quad \longleftrightarrow \quad e \quad \longmapsto \quad (\![e]\!]^{\mathrm{n}} \qquad (\mathsf{CBN})$$

5. For programs (closed, ground expressions) *e*

 $(e)^{\mathrm{v}} \leq (e)^{\mathrm{n}}$

How to relate different semantics of the same language

1. Define another language that captures both semantics via two sound and adequate translations $(-)^v$, $(-)^n$

$$(\mathsf{CBV}) \qquad (\!\!(e)\!\!)^{\mathrm{v}} \quad \longleftrightarrow \quad e \quad \longmapsto \quad (\!\!(e)\!\!)^{\mathrm{n}} \qquad (\mathsf{CBN})$$

2. Define maps between the two translations

CBV translation of
$$\tau \xrightarrow{\Phi_{\tau}} CBN$$
 translation of τ

- 3. Show that Φ , Ψ satisfy nice properties
- 4. Relate the two translations of (possibly open) expressions e

 $(e)^{\mathrm{v}} \leq_{\mathrm{ctx}} \Psi_{\tau}((e)^{\mathrm{n}}[\Phi_{\Gamma}])$

5. For programs (closed, ground expressions) *e*

 $(e)^{\mathrm{v}} \leq (e)^{\mathrm{n}}$

How to relate different semantics of the same language

To relate CBV and CBN:

- 1. Call-by-push-value [Levy '99] captures CBV and CBN
- 2. We can define maps Φ_{τ}, Ψ_{τ} using the syntax of CBPV
- 3. When side-effects are (lax) thunkable, these form Galois connections

$$\Phi_\tau \dashv \Psi_\tau$$

(wrt ≼_{ctx})

- 4. (3) implies $(e)^{v} \leq_{ctx} \Psi_{\tau}((e)^{n}[\Phi_{\Gamma}])$
- 5. (4) is $(e)^{v} \leq (e)^{n}$ when e is a program

Example

For recursion and nondeterminism, define

 $M_1 \leq M_2 \quad \Leftrightarrow \quad \forall V. \ M_1 \Downarrow \operatorname{return} V \implies M_2 \Downarrow \operatorname{return} V \quad (\Downarrow \text{ is evaluation in CBPV})$ so $M_1 \leq_{\operatorname{ctx}} M_2$ means

$$\forall V. \ C[M_1] \Downarrow \operatorname{return} V \implies C[M_2] \Downarrow \operatorname{return} V$$

for closed, ground contexts C

Both side-effects are thunkable, so Φ and Ψ form Galois connections, so

 $(e)^{\mathrm{v}} \leq_{\mathrm{ctx}} \Psi_{\tau}((e)^{\mathrm{n}}[\Phi_{\Gamma}])$

Example

For programs e, we have

$$(e)^{\mathrm{v}} \leq (e)^{\mathrm{n}}$$

so

$$e \rightsquigarrow_{v}^{*} v \iff (e)^{v} \Downarrow \operatorname{return} (v)$$

$$\Rightarrow (e)^{n} \Downarrow \operatorname{return} (v)$$

$$\Leftrightarrow e \rightsquigarrow_{n}^{*} v$$

(soundness) ($(|e|)^{v} \leq (|e|)^{n}$) (adequacy)

Call-by-push-value [Levy '99]

Split syntax into values and computations

Values don't reduce, computations do

Call-by-push-value [Levy '99]

Split syntax into values and computations

Values don't reduce, computations do

Evaluation order is explicit

Sequencing of computations:

	$\Gamma \vdash V : A$	$\Gamma \vdash M_1 : \mathbf{F}A$	$\Gamma, x : A \vdash M_2 : \underline{C}$
	$\overline{\Gamma} \vdash \mathbf{return} V : \mathbf{F} \overline{A}$	$\Gamma \vdash M_1$	to $x. M_2 : \underline{C}$
Thunks:	$\Gamma \vdash M:$	С Г⊦	$V : \mathbf{U}C$
	$\Gamma \vdash \mathbf{thunk} M$	<u> </u>	orce $V : \underline{C}$

Call-by-value and call-by-name

Source language types:

 $\tau ::= unit \mid bool \mid \tau \to \tau'$

CBV and CBN translations into CBPV:

 $\tau \mapsto \text{value type } (\![\tau]\!]^{\mathsf{v}} \qquad \tau \mapsto \text{computation type } (\![\tau]\!]^{\mathsf{n}}$ $\textbf{unit} \mapsto \textbf{unit} \qquad \textbf{unit} \mapsto F \textbf{unit}$ $\textbf{bool} \mapsto \textbf{bool} \qquad \textbf{bool} \qquad \textbf{bool} \qquad (\tau \to \tau') \mapsto U((\![\tau]\!]^{\mathsf{v}} \to F(\![\tau']\!]^{\mathsf{v}}) \qquad (\tau \to \tau') \mapsto ((U(\![\tau]\!]^{\mathsf{n}}) \to (\![\tau']\!]^{\mathsf{n}})$ $\Gamma, x: \tau \mapsto (\![\Gamma]\!]^{\mathsf{v}}, x: (\![\tau]\!]^{\mathsf{v}} \qquad \Gamma, x: \tau \mapsto (\![\Gamma]\!]^{\mathsf{n}}, x: U(\![\tau]\!]^{\mathsf{n}}$ $\Gamma \vdash e: \tau \mapsto (\![\Gamma]\!]^{\mathsf{v}} \vdash (\![e]\!]^{\mathsf{v}}: F(\![\tau]\!]^{\mathsf{v}} \qquad \Gamma \vdash e: \tau \mapsto (\![\Gamma]\!]^{\mathsf{n}} \vdash (\![e]\!]^{\mathsf{n}}: (\![\tau]\!]^{\mathsf{n}}$

Call-by-value and call-by-name

Define maps between CBV and CBN:

$$\Gamma \succeq M : \mathbf{F} (|\tau|)^{\mathbf{v}} \quad \mapsto \quad \Gamma \succeq \Phi_{\tau} M : (|\tau|)^{\mathbf{n}}$$

$$\Gamma \succeq N : (|\tau|)^{\mathbf{n}} \quad \mapsto \quad \Gamma \succeq \Psi_{\tau} N : \mathbf{F} (|\tau|)^{\mathbf{v}}$$
(CBN to CBV)

Call-by-value and call-by-name

Define maps between CBV and CBN:

$$\Gamma \succeq M : \mathbf{F} (|\tau|)^{\mathbf{v}} \quad \mapsto \quad \Gamma \succeq \Phi_{\tau} M : (|\tau|)^{\mathbf{n}}$$

$$\Gamma \succeq N : (|\tau|)^{\mathbf{n}} \quad \mapsto \quad \Gamma \succeq \Psi_{\tau} N : \mathbf{F} (|\tau|)^{\mathbf{v}}$$
(CBN to CBV)

Example: for $\tau = unit \rightarrow unit$, we have

 $(|unit \rightarrow unit|)^{v} = U (unit \rightarrow F unit)$ $(|unit \rightarrow unit|)^{n} = U (F unit) \rightarrow F unit$

$$M \xrightarrow{\Phi_{\text{unit}\to\text{unit}}} M \text{ to } f. \lambda x. \text{ force } x \text{ to } z. z` \text{ force } f$$
$$N \xrightarrow{\Psi_{\text{unit}\to\text{unit}}} \text{ return } (\text{thunk } (\lambda x. (\text{thunk return } x)` N))$$

Lemma

If $(\Phi_{\tau}, \Psi_{\tau})$ is a Galois connection (adjunction) for each τ , i.e.

 $M \leq_{\operatorname{ctx}} \Psi_{\tau}(\Phi_{\tau}M) \qquad \Phi_{\tau}(\Psi_{\tau}N) \leq_{\operatorname{ctx}} N$

then

 $(e)^{\mathrm{v}} \leq_{\mathrm{ctx}} \Psi_{\tau}((e)^{\mathrm{n}}[\Phi_{\Gamma}])$

These do not always hold!

$$M \leq_{\mathrm{ctx}} \Psi_{\tau}(\Phi_{\tau}M) \qquad \Phi_{\tau}(\Psi_{\tau}N) \leq_{\mathrm{ctx}} N$$

Don't hold for: exceptions, mutable state

 $raise \not\leq_{ctx} return (...) = \Psi_{unit \to unit} (\Phi_{unit \to unit} raise) \qquad (\diamond \vdash raise : F (U (unit \to F unit)))$

Do hold for: no side-effects, recursion, nondeterminism

This is where the side-effects matter

Definition (Thunkable [Führmann '99])

A computation $\Gamma \vdash M : \mathbf{F}A$ is (lax) *thunkable* if

M to x. return (thunk (return x)) \leq_{ctx} return (thunk M)

- Essentially: we're allowed to suspend the computation M
- ▶ Implies *M* commutes with other computations, is (lax) discardable, (lax) copyable

Definition (Thunkable [Führmann '99])

A computation $\Gamma \vdash M : \mathbf{F}A$ is (lax) *thunkable* if

M to x. return (thunk (return x)) \preccurlyeq_{ctx} return (thunk M)

- Essentially: we're allowed to suspend the computation M
- ▶ Implies *M* commutes with other computations, is (lax) discardable, (lax) copyable

Lemma

If every computation is thunkable, then $(\Phi_{\tau}, \Psi_{\tau})$ is a Galois connection.

How to relate call-by-value to call-by-name

If every computation is thunkable then

$$(e)^{\mathrm{v}} \leq_{\mathrm{ctx}} \Psi_{\tau}((e)^{\mathrm{n}}[\Phi_{\Gamma}])$$

for each e. (And the converse holds for computations of ground type.)

And if e is a program then

$$(e)^{v} \leq (e)^{n}$$

Denotational semantics

Given an order-enriched model of CBPV

- cartesian closed Poset-category
- ► coproduct 1 + 1
- strong Poset-monad T

prove that if

• T is lax idempotent
$$(T\eta_X \sqsubseteq \eta_{TX})$$

then

$$\llbracket \left(\left| e \right| \right)^{\mathrm{v}} \rrbracket \ \sqsubseteq \ \psi_{\tau} \circ \llbracket \left(\left| e \right| \right)^{\mathrm{n}} \rrbracket \circ \phi_{\Gamma}$$

For example:

	[[Γ]]	Т	[[<i>M</i>]]	$[\![M]\!] \sqsubseteq [\![N]\!]$
No side-effects	set	ld	function	equality
Recursion	ω cpo	$(-)_{\perp}$	continuous function	pointwise
Nondeterminism	poset	free join-semilattice	monotone function	pointwise

Denotational semantics

Given an order-enriched model of CBPV

- cartesian closed Poset-category
- coproduct 1 + 1
- strong Poset-monad T

prove that if

• T is lax idempotent
$$(T\eta_X \sqsubseteq \eta_{TX})$$

then

$$\llbracket \left(\left| e \right\rangle^{\mathrm{v}} \rrbracket \right] \sqsubseteq \psi_{\tau} \circ \llbracket \left(\left| e \right\rangle^{\mathrm{n}} \rrbracket \right] \circ \phi_{\Gamma}$$

If the model is adequate:

$$\llbracket M_1 \rrbracket \sqsubseteq \llbracket M_2 \rrbracket \implies M_1 \preccurlyeq_{\mathrm{ctx}} M_2$$

then

$$(e)^{\mathrm{v}} \leq_{\mathrm{ctx}} \Psi_{\tau}((e)^{\mathrm{n}}[\Phi_{\Gamma}])$$

Overview

How to relate two different semantics:

- 1. Translate from source language to intermediate language
- 2. Define maps between two translations
- 3. Relate terms:

 $(e)^{\mathrm{v}} \leq_{\mathrm{ctx}} \Psi_{\tau}((e)^{\mathrm{n}}[\Phi_{\Gamma}])$

- Works for call-by-value and call-by-name
- Also works for other things like comparing direct and continuation-style semantics [Reynolds '74], strict and lazy products, etc.