
Galois connecting call-by-value and call-by-name

Dylan McDermott Alan Mycroft

1

Goal
▶ Call-by-value: (𝜆𝑥 . 𝑒) 𝑒′⇝v

∗ (𝜆𝑥. 𝑒) 𝑣⇝v 𝑒 [𝑥 ↦→ 𝑣]⇝v
∗ · · ·

▶ Call-by-name: (𝜆𝑥. 𝑒) 𝑒′⇝n 𝑒 [𝑥 ↦→ 𝑒′]⇝n
∗ · · ·

If we replace call-by-value with call-by-name, then:
▶ No side-effects: nothing changes
▶ Only recursion: behaviour changes, but if CBV terminates with result 𝑣 , CBN

terminates with 𝑣

▶ Only nondeterminism: behaviour also different, but if CBV can terminate with
result 𝑣 , then CBN can also terminate with result 𝑣

▶ Mutable state: behaviour changes, we can’t say much about how

Questions:
▶ How can we prove these?
▶ What properties of the side-effects do we need to prove something?

2

Goal
▶ Call-by-value: (𝜆𝑥 . 𝑒) 𝑒′⇝v

∗ (𝜆𝑥. 𝑒) 𝑣⇝v 𝑒 [𝑥 ↦→ 𝑣]⇝v
∗ · · ·

▶ Call-by-name: (𝜆𝑥. 𝑒) 𝑒′⇝n 𝑒 [𝑥 ↦→ 𝑒′]⇝n
∗ · · ·

If we replace call-by-value with call-by-name, then:
▶ No side-effects: nothing changes
▶ Only recursion: behaviour changes

CBV: (𝜆𝑥. false)Ω ⇝v (𝜆𝑥 . false)Ω ⇝v · · ·
CBN: (𝜆𝑥 . false)Ω ⇝n false

but if CBV terminates with result 𝑣 , CBN terminates with 𝑣

▶ Only nondeterminism: behaviour also different, but if CBV can terminate with
result 𝑣 , then CBN can also terminate with result 𝑣

▶ Mutable state: behaviour changes, we can’t say much about how

Questions:
▶ How can we prove these?
▶ What properties of the side-effects do we need to prove something?

2

Goal
▶ Call-by-value: (𝜆𝑥 . 𝑒) 𝑒′⇝v

∗ (𝜆𝑥. 𝑒) 𝑣⇝v 𝑒 [𝑥 ↦→ 𝑣]⇝v
∗ · · ·

▶ Call-by-name: (𝜆𝑥. 𝑒) 𝑒′⇝n 𝑒 [𝑥 ↦→ 𝑒′]⇝n
∗ · · ·

If we replace call-by-value with call-by-name, then:
▶ No side-effects: nothing changes
▶ Only recursion: behaviour changes, but if CBV terminates with result 𝑣 , CBN

terminates with 𝑣

▶ Only nondeterminism: behaviour also different, but if CBV can terminate with
result 𝑣 , then CBN can also terminate with result 𝑣

▶ Mutable state: behaviour changes, we can’t say much about how

Questions:
▶ How can we prove these?
▶ What properties of the side-effects do we need to prove something?

2

How to relate different semantics of the same language
1. Define another language that captures both semantics via two sound and

adequate translations L−Mv, L−Mn
(CBV) L𝑒 Mv ←−[𝑒 ↦−→ L𝑒 Mn (CBN)

2. Define maps between the two translations

CBV translation of 𝜏 CBN translation of 𝜏
Φ𝜏

Ψ𝜏

3. Show that Φ, Ψ satisfy nice properties
4. Relate the two translations of (possibly open) expressions 𝑒

L𝑒 Mv ≼ctx Ψ𝜏 (L𝑒 Mn [ΦΓ])

5. For programs (closed, ground expressions) 𝑒

L𝑒 Mv ≼ L𝑒 Mn
3

How to relate different semantics of the same language
1. Define another language that captures both semantics via two sound and

adequate translations L−Mv, L−Mn
(CBV) L𝑒 Mv ←−[𝑒 ↦−→ L𝑒 Mn (CBN)

2. Define maps between the two translations

CBV translation of 𝜏 CBN translation of 𝜏
Φ𝜏

Ψ𝜏

3. Show that Φ, Ψ satisfy nice properties
4. Relate the two translations of (possibly open) expressions 𝑒

L𝑒 Mv ≼ctx Ψ𝜏 (L𝑒 Mn [ΦΓ])

5. For programs (closed, ground expressions) 𝑒

L𝑒 Mv ≼ L𝑒 Mn
3

How to relate different semantics of the same language

To relate CBV and CBN:
1. Call-by-push-value [Levy ’99] captures CBV and CBN
2. We can define maps Φ𝜏 ,Ψ𝜏 using the syntax of CBPV
3. When side-effects are (lax) thunkable, these form Galois connections

Φ𝜏 ⊣ Ψ𝜏

(wrt ≼ctx)
4. (3) implies L𝑒 Mv ≼ctx Ψ𝜏 (L𝑒 Mn [ΦΓ])
5. (4) is L𝑒 Mv ≼ L𝑒 Mn when 𝑒 is a program

4

Example

For recursion and nondeterminism, define

𝑀1 ≼ 𝑀2 ⇔ ∀𝑉 . 𝑀1 ⇓ return𝑉 ⇒ 𝑀2 ⇓ return𝑉 (⇓ is evaluation in CBPV)

so 𝑀1 ≼ctx 𝑀2 means

∀𝑉 . C[𝑀1] ⇓ return𝑉 ⇒ C[𝑀2] ⇓ return𝑉

for closed, ground contexts C

Both side-effects are thunkable, so Φ and Ψ form Galois connections, so

L𝑒 Mv ≼ctx Ψ𝜏 (L𝑒 Mn [ΦΓ])

5

Example

For programs 𝑒, we have L𝑒 Mv ≼ L𝑒 Mn
so

𝑒⇝∗v 𝑣 ⇔ L𝑒 Mv ⇓ return L𝑣 M (soundness)
⇒ L𝑒 Mn ⇓ return L𝑣 M (L𝑒 Mv ≼ L𝑒 Mn)
⇔ 𝑒⇝∗n 𝑣 (adequacy)

6

Call-by-push-value [Levy ’99]

Split syntax into values and computations
▶ Values don’t reduce, computations do

Evaluation order is explicit
▶ Sequencing of computations:

Γ ⊢ 𝑉 : 𝐴

Γ ⊢ return𝑉 : F𝐴

Γ ⊢ 𝑀1 : F𝐴 Γ, 𝑥 : 𝐴 ⊢ 𝑀2 : 𝐶

Γ ⊢ 𝑀1 to 𝑥 . 𝑀2 : 𝐶

▶ Thunks:
Γ ⊢ 𝑀 : 𝐶

Γ ⊢ thunk𝑀 : U𝐶

Γ ⊢ 𝑉 : U𝐶

Γ ⊢ force𝑉 : 𝐶

7

Call-by-push-value [Levy ’99]

Split syntax into values and computations
▶ Values don’t reduce, computations do

Evaluation order is explicit
▶ Sequencing of computations:

Γ ⊢ 𝑉 : 𝐴

Γ ⊢ return𝑉 : F𝐴

Γ ⊢ 𝑀1 : F𝐴 Γ, 𝑥 : 𝐴 ⊢ 𝑀2 : 𝐶

Γ ⊢ 𝑀1 to 𝑥 . 𝑀2 : 𝐶

▶ Thunks:
Γ ⊢ 𝑀 : 𝐶

Γ ⊢ thunk𝑀 : U𝐶

Γ ⊢ 𝑉 : U𝐶

Γ ⊢ force𝑉 : 𝐶

7

Call-by-value and call-by-name

Source language types:
𝜏 F unit | bool | 𝜏 → 𝜏 ′

CBV and CBN translations into CBPV:
𝜏 ↦→ value type L𝜏 Mv 𝜏 ↦→ computation type L𝜏 Mn

unit ↦→ unit unit ↦→ F unit
bool ↦→ bool bool ↦→ F bool

(𝜏 → 𝜏 ′) ↦→ U(L𝜏 Mv → F L𝜏 ′Mv) (𝜏 → 𝜏 ′) ↦→ ((U L𝜏 Mn) → L𝜏 ′Mn)
Γ, 𝑥 : 𝜏 ↦→ LΓMv, 𝑥 : L𝜏 Mv Γ, 𝑥 : 𝜏 ↦→ LΓMn, 𝑥 : U L𝜏 Mn

Γ ⊢ 𝑒 : 𝜏 ↦→ LΓMv ⊢ L𝑒 Mv : F L𝜏 Mv Γ ⊢ 𝑒 : 𝜏 ↦→ LΓMn ⊢ L𝑒 Mn : L𝜏 Mn

8

Call-by-value and call-by-name
Define maps between CBV and CBN:

Γ ⊢ 𝑀 : F L𝜏 Mv ↦→ Γ ⊢ Φ𝜏𝑀 : L𝜏 Mn (CBV to CBN)

Γ ⊢ 𝑁 : L𝜏 Mn ↦→ Γ ⊢ Ψ𝜏𝑁 : F L𝜏 Mv (CBN to CBV)

Example: for 𝜏 = unit→ unit, we have

Lunit→ unitMv = U (unit→ F unit)Lunit→ unitMn = U (F unit) → F unit

𝑀
Φunit→unit↦→ 𝑀 to 𝑓 . 𝜆𝑥 . force𝑥 to 𝑧. 𝑧 ‘ force 𝑓

𝑁
Ψunit→unit↦→ return (thunk (𝜆𝑥. (thunk return𝑥) ‘𝑁))

9

Call-by-value and call-by-name
Define maps between CBV and CBN:

Γ ⊢ 𝑀 : F L𝜏 Mv ↦→ Γ ⊢ Φ𝜏𝑀 : L𝜏 Mn (CBV to CBN)

Γ ⊢ 𝑁 : L𝜏 Mn ↦→ Γ ⊢ Ψ𝜏𝑁 : F L𝜏 Mv (CBN to CBV)

Example: for 𝜏 = unit→ unit, we have

Lunit→ unitMv = U (unit→ F unit)Lunit→ unitMn = U (F unit) → F unit

𝑀
Φunit→unit↦→ 𝑀 to 𝑓 . 𝜆𝑥 . force𝑥 to 𝑧. 𝑧 ‘ force 𝑓

𝑁
Ψunit→unit↦→ return (thunk (𝜆𝑥. (thunk return𝑥) ‘𝑁))

9

Galois connection between CBV and CBN?

Lemma
If (Φ𝜏 ,Ψ𝜏) is a Galois connection (adjunction) for each 𝜏 , i.e.

𝑀 ≼ctx Ψ𝜏 (Φ𝜏𝑀) Φ𝜏 (Ψ𝜏𝑁) ≼ctx 𝑁

then L𝑒 Mv ≼ctx Ψ𝜏 (L𝑒 Mn [ΦΓ])

10

Galois connection between CBV and CBN?

These do not always hold!

𝑀 ≼ctx Ψ𝜏 (Φ𝜏𝑀) Φ𝜏 (Ψ𝜏𝑁) ≼ctx 𝑁

▶ Don’t hold for: exceptions, mutable state

raise ̸≼ctx return (. . .) = Ψunit→unit(Φunit→unit raise) (⋄ ⊢ raise : F (U (unit→ F unit)))

▶ Do hold for: no side-effects, recursion, nondeterminism

This is where the side-effects matter

11

Galois connection between CBV and CBN?

Definition (Thunkable [Führmann ’99])
A computation Γ ⊢ 𝑀 : F𝐴 is (lax) thunkable if

𝑀 to 𝑥 . return (thunk (return𝑥)) ≼ctx return (thunk𝑀)

▶ Essentially: we’re allowed to suspend the computation 𝑀

▶ Implies 𝑀 commutes with other computations, is (lax) discardable, (lax) copyable

Lemma
If every computation is thunkable, then (Φ𝜏 ,Ψ𝜏) is a Galois connection.

12

Galois connection between CBV and CBN?

Definition (Thunkable [Führmann ’99])
A computation Γ ⊢ 𝑀 : F𝐴 is (lax) thunkable if

𝑀 to 𝑥 . return (thunk (return𝑥)) ≼ctx return (thunk𝑀)

▶ Essentially: we’re allowed to suspend the computation 𝑀

▶ Implies 𝑀 commutes with other computations, is (lax) discardable, (lax) copyable

Lemma
If every computation is thunkable, then (Φ𝜏 ,Ψ𝜏) is a Galois connection.

12

How to relate call-by-value to call-by-name

If every computation is thunkable then

L𝑒 Mv ≼ctx Ψ𝜏 (L𝑒 Mn [ΦΓ])

for each 𝑒. (And the converse holds for computations of ground type.)

And if 𝑒 is a program then L𝑒 Mv ≼ L𝑒 Mn

13

Denotational semantics
Given an order-enriched model of CBPV
▶ cartesian closed Poset-category
▶ coproduct 1 + 1
▶ strong Poset-monad T

prove that if
▶ T is lax idempotent (𝑇𝜂𝑋 ⊑ 𝜂𝑇𝑋)

then
⟦L𝑒 Mv⟧ ⊑ 𝜓𝜏 ◦ ⟦L𝑒 Mn⟧ ◦ 𝜙Γ

If the model is adequate:

⟦𝑀1⟧ ⊑ ⟦𝑀2⟧ ⇒ 𝑀1 ≼ctx 𝑀2

then L𝑒 Mv ≼ctx Ψ𝜏 (L𝑒 Mn [ΦΓ])

For example:

⟦Γ⟧ T ⟦𝑀⟧ ⟦𝑀⟧ ⊑ ⟦𝑁⟧
No side-effects set Id function equality

Recursion 𝜔cpo (−)⊥ continuous function pointwise
Nondeterminism poset free join-semilattice monotone function pointwise

14

Denotational semantics
Given an order-enriched model of CBPV
▶ cartesian closed Poset-category
▶ coproduct 1 + 1
▶ strong Poset-monad T

prove that if
▶ T is lax idempotent (𝑇𝜂𝑋 ⊑ 𝜂𝑇𝑋)

then
⟦L𝑒 Mv⟧ ⊑ 𝜓𝜏 ◦ ⟦L𝑒 Mn⟧ ◦ 𝜙Γ

If the model is adequate:

⟦𝑀1⟧ ⊑ ⟦𝑀2⟧ ⇒ 𝑀1 ≼ctx 𝑀2

then L𝑒 Mv ≼ctx Ψ𝜏 (L𝑒 Mn [ΦΓ])

For example:

⟦Γ⟧ T ⟦𝑀⟧ ⟦𝑀⟧ ⊑ ⟦𝑁⟧
No side-effects set Id function equality

Recursion 𝜔cpo (−)⊥ continuous function pointwise
Nondeterminism poset free join-semilattice monotone function pointwise

14

Overview

How to relate two different semantics:
1. Translate from source language to intermediate language
2. Define maps between two translations
3. Relate terms: L𝑒 Mv ≼ctx Ψ𝜏 (L𝑒 Mn [ΦΓ])

▶ Works for call-by-value and call-by-name
▶ Also works for other things like comparing direct and continuation-style semantics

[Reynolds ’74], strict and lazy products, etc.

15

