Galois connecting call-by-value and call-by-name

Dylan McDermott Alan Mycroft

Goal

> Call-by-value: (Ax.e) e’ ~s," (Ax.e) v~ e[x > v] v

> Call-by-name: (Ax.e) e’ ~ e[x — €'] wo

*

Goal
> Call-by-value: (Ax.e) e’ w,* (Ax.e) v~ e[x > v] w»

> Call-by-name: (Ax.e) e’ ~» e[x > e'] o -

*...
v

If we replace call-by-value with call-by-name, then:
> No side-effects: nothing changes
> Only recursion: behaviour changes

CBV: (Ax.false)Q2 ~», (Ax.false)Q ~», ---

CBN: (Ax. false)QQ ~» false
but if CBV terminates with result o, CBN terminates with v

Goal

> Call-by-value: (Ax.e) e’ ~»,* (Ax.e) v w>, e[x > 0] o - -

v

*

> Call-by-name: (Ax.e) e’ ~ e[x — €'] wo

If we replace call-by-value with call-by-name, then:
> No side-effects: nothing changes

> Only recursion: behaviour changes, but if CBV terminates with result v, CBN
terminates with v

» Only nondeterminism: behaviour also different, but if CBV can terminate with
result v, then CBN can also terminate with result v

> Mutable state: behaviour changes, we can't say much about how

Questions:
» How can we prove these?

> What properties of the side-effects do we need to prove something?

How to relate different semantics of the same language

1. Define another language that captures both semantics via two sound and
adequate translations (—))", (—)"

(CBV) le)Y «— e +— (e)” (CBN)

5. For programs (closed, ground expressions) e

How to relate different semantics of the same language

1.

Define another language that captures both semantics via two sound and
adequate translations (—))", (—)"

(CBV) le)Y «— e +— (e)” (CBN)

Define maps between the two translations
D

CBYV translation of ¢ —>é CBN translation of 7
¥,

Show that @, ¥ satisfy nice properties
Relate the two translations of (possibly open) expressions e

(]el)v <etx \PT((]eDn[q)F])
For programs (closed, ground expressions) e

(e)” < (e®

How to relate different semantics of the same language

To relate CBV and CBN:
1. Call-by-push-value [Levy '99] captures CBV and CBN
2. We can define maps @.,¥; using the syntax of CBPV

3. When side-effects are (lax) thunkable, these form Galois connections
O, 4 ¥,

(wrt <ctx)
. (3) implies (e)V <cx Y- ((e)™[Pr])
. (4) is (e)Y < (e)™ when e is a program

(G2 RN

Example

For recursion and nondeterminism, define
M <M, < VV.M |returnV = M, | returnV (| is evaluation in CBPV)
so M; <¢x My means
VV. C[M] | returnV = C[M;] || returnV
for closed, ground contexts C

Both side-effects are thunkable, so ® and ¥ form Galois connections, so

(]e[)v <ctx ‘IIT((]eDn[CDF])

Example

For programs e, we have

SO

ew,o < (e)¥ | return (o) (soundness)
= ()™ | return (o) ((e)v < (e)™)

S ew) v (adequacy)

Call-by-push-value [Levy "99]

Split syntax into values and computations

> Values don't reduce, computations do

Call-by-push-value [Levy "99]

Split syntax into values and computations

> Values don't reduce, computations do

Evaluation order is explicit

> Sequencing of computations:

r-v:A 't M;:FA Ix:AeM,:C
I'treturnV : FA F'eM;tox.M,:C
» Thunks:
F'eM:C rev:ucC

I'+thunkM : UC I'tforceV:C

Call-by-value and call-

Source language types:

by-name

T == unit | bool | 7 — 7’

CBV and CBN translations into CBPV:

T >
unit —
bool

(r—>17)

b
=
=
!

value type (7"
unit

bool

U((7)" = F(')")

unit
bool
(r—>17')

1111

I

computation type (z))"
F unit

F bool

(U ()™) = (=)™

Call-by-value and call-by-name
Define maps between CBV and CBN:

TEM:F(z)¥ +— TedM: ()" (CBV to CBN)
TEN: (f)* +— TE¥N:F(r) (CBN to CBV)

Call-by-value and call-by-name
Define maps between CBV and CBN:

TEM:F(z)¥ +— TedM: ()" (CBV to CBN)
TEN: (f)* +— TE¥N:F(r) (CBN to CBV)

Example: for r = unit — unit, we have
(unit — unit)" = U (unit — F unit)
(unit — unit)" = U (F unit) — F unit

q)unit—n.mit

M — M to f. Ax.forcex to z.z ‘force f

Wunit—unit
i

return (thunk (Ax. (thunk return x) ‘ N))

Galois connection between CBV and CBN?

Lemma
If (®.,¥;) is a Galois connection (adjunction) for each 7, i.e.

M <ctx \Pr(q)rM) (DT(\PTN) <ctx N

then
(]eDV <ctx \Ij‘r((]e[)n[q)l"])

10

Galois connection between CBV and CBN?

These do not always hold!

M <ctx ‘PT(CI)TM) (DT(\IJTN) <ctx N

> Don't hold for: exceptions, mutable state
raise 7<ctx return (..) = \Ijunit—mnit(q)unit—mnit raise)

» Do hold for: no side-effects, recursion, nondeterminism

This is where the side-effects matter

(¢ k raise : F (U (unit — Funit)))

11

Galois connection between CBV and CBN?

Definition (Thunkable [Fihrmann '99])
A computation T+ M : FA is (lax) thunkable if

M to x.return (thunk (returnx)) <. return (thunk M)

> Essentially: we're allowed to suspend the computation M

» Implies M commutes with other computations, is (lax) discardable, (lax) copyable

12

Galois connection between CBV and CBN?

Definition (Thunkable [Fihrmann '99])
A computation T+ M : FA is (lax) thunkable if

M to x.return (thunk (returnx)) <. return (thunk M)

> Essentially: we're allowed to suspend the computation M

» Implies M commutes with other computations, is (lax) discardable, (lax) copyable

Lemma
If every computation is thunkable, then (®.,¥;) is a Galois connection.

12

How to relate call-by-value to call-by-name

If every computation is thunkable then

(]e[)v <ctx \I’T((IEDH[(DF])

for each e. (And the converse holds for computations of ground type.)

And if e is a program then
(e)" < (e)™

13

Denotational semantics
Given an order-enriched model of CBPV

> cartesian closed Poset-category

> coproduct 1+1

> strong Poset-monad T

prove that if

> T is lax idempotent (Tnx C nrx)

then

For example:

[(e)"] £ o lled®] o ¢r

Ir] T [M] [M] € [N]
No side-effects set Id function equality
Recursion wcpo (=), continuous function pointwise
Nondeterminism poset free join-semilattice = monotone function pointwise

14

Denotational semantics
Given an order-enriched model of CBPV
> cartesian closed Poset-category
> coproduct 1+1
> strong Poset-monad T
prove that if
> T is lax idempotent (Tnx C nrx)
then

[(e)"] £ o lled®] o ¢r

If the model is adequate:
[[Ml]] C [Mz]] = M1 <ctx Mg

then
(e)" <ax ¥r((e)”[@r])

14

Overview

How to relate two different semantics:
1. Translate from source language to intermediate language
2. Define maps between two translations

3. Relate terms:
(]el)v <ectx lI}T((]e[)n[q:'l“])

> Works for call-by-value and call-by-name

> Also works for other things like comparing direct and continuation-style semantics
[Reynolds '74], strict and lazy products, etc.

15

