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Interaction laws [Katsumata, Rivas, Uustalu ’20]

To run,

an effectful (effect-requesting) program behaving as
a computation

needs to interact with

a environment
that an effect-providing (coeffectful) machine behaves as

For example:
▶ a nondeterministic program needs a machine making choices
▶ a stateful program needs a machine coherently responding to

fetch and store commands
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Interaction laws [Katsumata, Rivas, Uustalu ’20]

A monad–comonad interaction law (on Set) consists of
▶ A monad 𝑇 (𝑇𝑋 : computations, 𝑋 : results)
▶ A comonad 𝐷 (𝐷𝑌 : environments, 𝑌 : states)

▶ A monad 𝑅

▶ A family of functions

𝜓𝑋,𝑌 : 𝑇𝑋 × 𝐷𝑌 → 𝑋 × 𝑌

satisfying some laws.

(More generally: work in a locally presentable symmetric monoidal closed
category)

Example:

𝑇𝑋 = 𝑉 ⇒ (𝑉×𝑋 ) (state) 𝐷𝑌 = 𝑉 × (𝑉⇒𝑌 ) (costate) 𝑅𝑍 = 𝑍

𝜓𝑋,𝑌 : (𝑉 ⇒ (𝑉 × 𝑋 )) × (𝑉 × (𝑉 ⇒ 𝑌 )) → 𝑋 × 𝑌

(𝑡, (𝑣, 𝑓 )) ↦→ let (𝑣 ′, 𝑥) = 𝑡 𝑣 in (𝑥, 𝑓 𝑣 ′)
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Interaction laws [Katsumata, Rivas, Uustalu ’20]

Example:
▶ 𝑇𝑋 = 𝜇𝑍 .𝑋 + 𝑍 2 – inductively generated by

𝑥 ∈ 𝑋

Lf(𝑥) ∈ 𝑇𝑋

ℓ ∈ 𝑇𝑋 𝑟 ∈ 𝑇𝑋

Br(ℓ, 𝑟 ) ∈ 𝑇𝑋

▶ 𝐷𝑌 = 𝜈𝑍 .𝑌 × (2 × 𝑍 ) – coinductively generated by

𝑦 ∈ 𝑌

(𝑦, Stop) ∈ 𝐷𝑌

𝑦 ∈ 𝑌 𝑑 ∈ 𝐷𝑌

(𝑦, Left(𝑑)) ∈ 𝐷𝑌

𝑦 ∈ 𝑌 𝑑 ∈ 𝐷𝑌

(𝑦, Right(𝑑)) ∈ 𝐷𝑌

▶ 𝑅𝑍 = 𝑍

𝜓𝑋,𝑌 : 𝑇𝑋 × 𝐷𝑌 → 𝑅(𝑋 × 𝑌 )
(Lf(𝑥), (𝑦,_)) ↦→ (𝑥,𝑦)

(Br(ℓ, 𝑟 ), (𝑦, Left(𝑑))) ↦→ 𝜓 (ℓ, 𝑑)
(Br(ℓ, 𝑟 ), (𝑦, Right(𝑑))) ↦→ 𝜓 (𝑟, 𝑑)
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This work: Sweedler theory of monads

Given any two of 𝑇, 𝐷, 𝑅, is there a universal choice for the other
(co)monad, forming an interaction law?

Main theorem: if
▶ the two given (co)monads are accessible

then the universal choice for the third:
▶ exists
▶ has a characterization in terms of its (co)algebras
▶ is accessible
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Sweedler power
Given 𝐷, 𝑅, the Sweedler power is the final interacting monad: a
monad 𝐷 −★𝑅 with bijections

𝑇𝑋 × 𝐷𝑌 → 𝑅(𝑋 × 𝑌 ) iteraction law

𝑇 → 𝐷 −★𝑅 monad morphism

𝑇𝑋 × 𝐷𝑌 𝑇

(𝐷 −★𝑅)𝑋 × 𝐷𝑌 𝑅(𝑋 × 𝑌 ) 𝐷 −★𝑅

𝜓𝑋,𝑌
𝜓 ♯
𝑋 ×𝐷𝑌 𝜓 ♯

If 𝐷, 𝑅 are accessible functors, then

𝑇𝑋 × 𝐷𝑌 → 𝑅(𝑋 × 𝑌 ) natural in 𝑋,𝑌

𝑇𝑋 → (𝐷 −★𝑅)𝑋 natural in 𝑋
where
(𝐷 −★𝑅)𝑋 =

∫
𝑌
𝐷𝑌 ⇒ 𝑅(𝑋 × 𝑌 ) (𝑌 -natural families of functions

𝑓𝑌 : 𝐷𝑌 → 𝑅(𝑋 × 𝑌 ) )

For 𝐷, 𝑅 accessible, the Sweedler power is 𝐷 −★𝑅

▶ Example: if 𝐷𝑌 = 𝑉 × (𝑉 ⇒ 𝑌 ) (costate) and 𝑅 = Id, then
(𝐷 −★𝑅)𝑋 � 𝑉 ⇒ (𝑉 × 𝑋 ) (state)
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Sweedler hom
Given 𝑇 , 𝑅, the Sweedler hom is the final interacting comonad: a
comonad M(𝑇, 𝑅) with bijections

𝑇𝑋 × 𝐷𝑌 → 𝑅(𝑋 × 𝑌 ) iteraction law

𝐷 → M(𝑇, 𝑅) comonad morphism

If 𝑇 is a free monad 𝐹 ∗ (𝐹 accessible), then
𝐹 ∗𝑋 × 𝐷𝑌 → 𝑅(𝑋 × 𝑌 ) interaction law

𝐹 ∗ → 𝐷 −★𝑅 monad morphism

𝐹 → 𝐷 −★𝑅 natural transformation
𝐷 → 𝐹 −★𝑅 natural transformation

𝐷 → (𝐹 −★𝑅)† comonad morphism
so M(𝐹 ∗, 𝑅) � (𝐹 −★𝑅)†

Example: if 𝑇𝑋 = 𝜇𝑍 .𝑋 + 𝑍 2, and 𝑅𝑍 = 1 + 𝑍 then
M(𝑇, 𝑅) � ((−)2 −★𝑅)†

� (1 + (2 × −))†

� 𝜈𝑍 . 𝑌 × (1 + 2 × 𝑍 )
So we have interaction laws:
𝑇𝑋 × (M(𝑇, 𝑅))𝑌 → 𝑅(𝑋 × 𝑌 )

M(𝑇, 𝑅) → M(𝑇, 𝑅)
𝑇𝑋 × (𝜈𝑍 . 𝑌 × (2 × 𝑍 )) → 𝑅(𝑋 × 𝑌 )

(𝜈𝑍 . (−) × (2 × 𝑍 )) → M(𝑇, 𝑅)
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Sweedler hom, (co)algebraically
There is a (co)algebraic perspective on interaction laws
[Uustalu and Voorneveld ’20]:

𝜓 : 𝑇𝑋 × 𝐷𝑌 → 𝑅(𝑋 × 𝑌 ) interaction law

Ψ : Coalg(𝐷) → [Alg(𝑅),Alg(𝑇 )]op such that
Coalg(𝐷) [Alg(𝑅),Alg(𝑇 )]op

Set [Set, Set]op [Alg(𝑅), Set]op

Ψ

𝑈 [Alg(𝑅),𝑈 ]op

(𝑌 ↦→𝑌⇒−)op [𝑈 ,Set]op

Ψ :
𝑌

𝐷𝑌

𝑦 ↦→
𝑅𝑍

𝑍

𝑧 ↦→
𝑇 (𝑌 ⇒ 𝑍 )

𝑌 ⇒ 𝑍

...
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Sweedler hom, (co)algebraically

SRun𝑅 (𝑇 ) [Alg(𝑅),Alg(𝑇 )]op

Set [Set, Set]op [Alg(𝑅), Set]
𝑈 [Alg(𝑅),𝑈 ]op

(𝑌 ↦→𝑌⇒−)op [𝑈 ,Set]op

▶ 𝑈 : SRun𝑅 (𝑇 ) → Set is comonadic, the comonad is M(𝑇, 𝑅)
▶ SRun𝑅 (𝑇 ): 𝑅-residual stateful runners of 𝑇
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Stateful runners

An 𝑅-residual stateful runner of 𝑇 is: [Uustalu and Voorneveld ’20]
▶ a set 𝑌 (the carrier)
▶ with a natural family of functions 𝜃𝑋 : 𝑇𝑋 × 𝑌 → 𝑅(𝑋 × 𝑌 )
▶ satisfying a unit law and a multiplication law

𝑋 × 𝑌 𝑋 × 𝑌

𝑇𝑋 × 𝑌 𝑅(𝑋 × 𝑌 )

𝜂𝑋 ×𝑌 𝜂𝑋×𝑌

𝜃𝑋

𝑇𝑇𝑋 × 𝑌 𝑅(𝑇𝑋 × 𝑌 ) 𝑅𝑅(𝑋 × 𝑌 )

𝑇𝑋 × 𝑌 𝑅(𝑋 × 𝑌 )

𝜃𝑇𝑋

𝜇𝑋 ×𝑌

𝑅𝜃𝑋

𝜇𝑋×𝑌

𝜃𝑋×𝑌

If 𝑅,𝑇 are accessible, then:
▶ 𝑈 : SRun𝑅 (𝑇 ) → Set is comonadic
▶ the induced comonad is the Sweedler hom M(𝑇, 𝑅)
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Stateful runners

An 𝑅-residual stateful runner of 𝑇 is: [Uustalu and Voorneveld ’20]
▶ a set 𝑌 (the carrier)
▶ with a natural family of functions 𝜃𝑋 : 𝑇𝑋 × 𝑌 → 𝑅(𝑋 × 𝑌 )
▶ satisfying a unit law and a multiplication law

Example: if 𝑇𝑋 = 𝑉 ⇒ 𝑋 (reader) and 𝑅𝑍 = 𝑍 (identity), then
▶ stateful runners (𝑌, 𝜃 : (𝑉 ⇒ 𝑋 ) ×𝑌 → 𝑋 ×𝑌 ) are equivalently

pairs (𝑌,𝑌 → 𝑉 )
▶ the Sweedler hom M(𝑇, 𝑅) is 𝑉 × (−) (coreader comonad)

(𝑡, (𝑣,𝑦)) ↦→ (𝑡 𝑣,𝑦) : (𝑉 ⇒ 𝑋 ) × (𝑉 × 𝑌 ) → 𝑋 × 𝑌
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Interaction laws and Sweedler theory

If 𝐷, 𝑅 are accessible, then

𝑇𝑋 × 𝐷𝑌 → 𝑅(𝑋 × 𝑌 ) interaction law

𝑇 → (𝐷 −★𝑅) monad morphism

where
(𝐷 −★𝑅)𝑋 =

∫
𝑌
𝐷𝑌 ⇒ 𝑅(𝑋 × 𝑌 )
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Duoidal Sweedler theory [López Franco and Vasilakopoulou ’20]

Consider a category D equipped with e.g. D = [Set, Set]acc
▶ a monoidal structure (𝐼 ,⋄) e.g. composition
▶ a symmetric closed monoidal structure

(𝐽 ,★,−★) e.g. Day convolution wrt ⊗
▶ some structural laws, satisfying equations

(D is a symmetric duoidal category with ★ closed)

If 𝑇, 𝑅 are ⋄-monoids, and 𝐷 is a ⋄-comonoid, a measuring map is a
monoid morphism

𝑇 → 𝐷 −★𝑅

▶ e.g. an interaction law
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Duoidal Sweedler theory [López Franco and Vasilakopoulou ’20]
If the appropriate adjoints exist, we have functors:
★ : Comon(D) × Comon(D) → Comon(D) (comonoid tensor)
C : Comon(D)op × Comon(D) → Comon(D) (comonoid int. hom)

−★ : Comon(D)op ×Mon(D) → Mon(D) (Sweedler power)
▷ : Comon(D) ×Mon(D) → Mon(D) (Sweedler copower)

M : Mon(D)op ×Mon(D) → Comon(D)
(Sweedler hom/univ. measuring comonoid)

𝐷0 → C(𝐷1, 𝐷) in Comon(D)

𝐷0 ★𝐷1 → 𝐷 in Comon(D)

𝐷 → M(𝑇, 𝑅) in Comon(D)

𝐷 ▷𝑇 → 𝑅 in Mon(D)

𝑇 → 𝐷 −★𝑅 measuring
so:
▶ Comon(D) forms a symmetric monoidal closed category
▶ Mon(D) enriches over Comon(D), and has powers and copowers

These operations exist for D = [Set, Set]acc
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Duoidal Sweedler theory [López Franco and Vasilakopoulou ’20]
If the appropriate adjoints exist, we have functors:
★ : Comon(D) × Comon(D) → Comon(D) (comonoid tensor)
C : Comon(D)op × Comon(D) → Comon(D) (comonoid int. hom)
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▶ Mon(D) enriches over Comon(D), and has powers and copowers

These operations exist for D = [Set, Set]acc
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For accessible (co)monads on a locally presentable symmetric
monoidal closed C, the Sweedler operations

−★ : Comndacc (C)op ×Mndacc (C) → Mndacc (C) (Sweedler power)
▷ : Comndacc (C) ×Mndacc (C) → Mndacc (C) (Sweedler copower)

M : Mndacc (C)op ×Mndacc (C) → Comndacc (C) (Sweedler hom)

exist, provide universal interaction laws

𝑇𝑋 ⊗ 𝐷𝑌 → 𝑅(𝑋 ⊗ 𝑌 )

and we can characterize their (co)algebras

▶ There is also a generalization to enriched (co)monads
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