Sweedler theory of monads

Dylan McDermott ${ }^{1}$ Exequiel Rivas ${ }^{2}$ Tarmo Uustalu ${ }^{1,2}$

${ }^{1}$ Reykjavik University, Iceland
${ }^{2}$ Tallinn University of Technology, Estonia

Interaction laws [Katsumata, Rivas, Uustalu '20]

To run,
an effectful (effect-requesting) program behaving as a computation needs to interact with
a environment
that an effect-providing (coeffectful) machine behaves as
For example:

- a nondeterministic program needs a machine making choices
- a stateful program needs a machine coherently responding to fetch and store commands

Interaction laws [Katsumata, Rivas, Uustalu '20]

A monad-comonad interaction law (on Set) consists of

- A monad T
- A comonad D
(TX: computations, X : results)
(DY: environments, Y: states)
- A family of functions

$$
\psi_{X, Y}: T X \times D Y \rightarrow X \times Y
$$

satisfying some laws.
(More generally: work in a locally presentable symmetric monoidal closed category)

Interaction laws [Katsumata, Rivas, Uustalu '20]

A monad-comonad interaction law (on Set) consists of

- A monad T
(TX: computations, X : results)
- A comonad D
($D Y$: environments, Y : states)
- A monad R ($R(X \times Y)$: residual computations)
- A family of functions

$$
\psi_{X, Y}: T X \times D Y \rightarrow R(X \times Y)
$$

satisfying some laws.

Interaction laws [Katsumata, Rivas, Uustalu '20]

A monad-comonad interaction law (on Set) consists of

- A monad T
- A comonad D
- A monad R
- A family of functions

$$
\psi_{X, Y}: T X \times D Y \rightarrow R(X \times Y)
$$

satisfying some laws.
Example:

$$
\begin{aligned}
& T X=V \Rightarrow(V \times X) \text { (state) } \quad D Y=V \times(V \Rightarrow Y) \text { (costate) } \quad R Z=Z \\
& \psi_{X, Y}: \quad(V \Rightarrow(V \times X)) \times(V \times(V \Rightarrow Y)) \quad \rightarrow \quad X \times Y \\
& (t,(v, f)) \quad \mapsto \quad \text { let }\left(v^{\prime}, x\right)=t v \text { in }\left(x, f v^{\prime}\right)
\end{aligned}
$$

Interaction laws [Katsumata, Rivas, Uustalu '20]

Example:

- $T X=\mu Z \cdot X+Z^{2}$ - inductively generated by

$$
\frac{x \in X}{\operatorname{Lf}(x) \in T X} \quad \frac{\ell \in T X \quad r \in T X}{\operatorname{Br}(\ell, r) \in T X}
$$

- $D Y=v Z . Y \times(2 \times Z)$ - coinductively generated by

$$
\frac{y \in Y \quad d \in D Y}{(y, \operatorname{Left}(d)) \in D Y} \quad \frac{y \in Y \quad d \in D Y}{(y, \operatorname{Right}(d)) \in D Y}
$$

- $R Z=Z$

$$
\begin{aligned}
\psi_{X, Y}: T X \times D Y & \rightarrow R(X \times Y) \\
\left(\operatorname{Lf}(x),\left(y, _\right)\right) & \mapsto(x, y)
\end{aligned}
$$

$$
\begin{aligned}
(\operatorname{Br}(\ell, r),(y, \operatorname{Left}(d))) & \mapsto \psi(\ell, d) \\
(\operatorname{Br}(\ell, r),(y, \operatorname{Right}(d))) & \mapsto \psi(r, d)
\end{aligned}
$$

Interaction laws [Katsumata, Rivas, Uustalu '20]

Example:

- $T X=\mu Z \cdot X+Z^{2}$ - inductively generated by

$$
\frac{x \in X}{\operatorname{Lf}(x) \in T X} \quad \frac{\ell \in T X \quad r \in T X}{\operatorname{Br}(\ell, r) \in T X}
$$

- $D Y=v Z . Y \times(1+2 \times Z)$ - coinductively generated by

$$
\frac{y \in Y}{(y, \text { Stop }) \in D Y} \quad \frac{y \in Y \quad d \in D Y}{(y, \operatorname{Left}(d)) \in D Y} \quad \frac{y \in Y \quad d \in D Y}{(y, \operatorname{Right}(d)) \in D Y}
$$

- $R Z=1+Z$

$$
\begin{aligned}
\psi_{X, Y}: T X \times D Y & \rightarrow R(X \times Y) \\
(\operatorname{Lf}(x),(y,-)) & \mapsto \operatorname{inr}(x, y) \\
(\operatorname{Br}(\ell, r),(y, \operatorname{Stop})) & \mapsto \operatorname{inl\star } \\
(\operatorname{Br}(\ell, r),(y, \operatorname{Left}(d))) & \mapsto \psi(\ell, d) \\
(\operatorname{Br}(\ell, r),(y, \operatorname{Right}(d))) & \mapsto \psi(r, d)
\end{aligned}
$$

This work: Sweedler theory of monads

Given any two of T, D, R, is there a universal choice for the other (co)monad, forming an interaction law?

This work: Sweedler theory of monads

Given any two of T, D, R, is there a universal choice for the other (co)monad, forming an interaction law?

Main theorem: if

- the two given (co)monads are accessible then the universal choice for the third:
- exists
- has a characterization in terms of its (co)algebras
- is accessible

Sweedler power

Given D, R, the Sweedler power is the final interacting monad: a monad $D-\star R$ with bijections

$$
\begin{array}{cl}
T X \times D Y \rightarrow R(X \times Y) & \text { iteraction law } \\
\hline \hline T \rightarrow D-\star R & \text { monad morphism }
\end{array}
$$

Sweedler power

Given D, R, the Sweedler power is the final interacting monad: a monad $D-\star R$ with bijections

$$
\begin{array}{cl}
T X \times D Y \rightarrow R(X \times Y) & \text { iteraction law } \\
\hline \hline T \rightarrow D \rightarrow \star R & \text { monad morphism }
\end{array}
$$

If D, R are accessible functors, then

$$
\begin{array}{cl}
T X \times D Y \rightarrow R(X \times Y) & \text { natural in } X, Y \\
\hline \hline T X \rightarrow(D \rightarrow \star) X & \text { natural in } X
\end{array}
$$

where
$(D \rightarrow R) X=\int_{Y} D Y \Rightarrow R(X \times Y) \quad\binom{Y$-natural families of functions }{$f_{Y}: D Y \rightarrow R(X \times Y)}$
For D, R accessible, the Sweedler power is $D-\star R$

- Example: if $D Y=V \times(V \Rightarrow Y)$ (costate) and $R=\mathrm{Id}$, then $(D-\star R) X \cong V \Rightarrow(V \times X)($ state $)$

Sweedler hom

Given T, R, the Sweedler hom is the final interacting comonad: a comonad $\mathcal{M}(T, R)$ with bijections

$$
\begin{array}{cl}
T X \times D Y \rightarrow R(X \times Y) & \text { iteraction law } \\
\hline \hline D \rightarrow \mathcal{M}(T, R) & \text { comonad morphism }
\end{array}
$$

Sweedler hom

Given T, R, the Sweedler hom is the final interacting comonad: a comonad $\mathcal{M}(T, R)$ with bijections

$$
\begin{array}{cl}
T X \times D Y \rightarrow R(X \times Y) & \text { iteraction law } \\
\hline \hline D \rightarrow \mathcal{M}(T, R) & \text { comonad morphism }
\end{array}
$$

If T is a free monad F^{*} (F accessible), then

$F^{*} X \times D Y \rightarrow R(X \times Y)$	interaction law
$F^{*} \rightarrow D-\star R$	monad morphism
$F \rightarrow D-\star R$	natural transformation
$D \rightarrow F-\star R$	natural transformation
$D \rightarrow(F \rightarrow \star R)^{\dagger}$	comonad morphism

so $\mathcal{M}\left(F^{*}, R\right) \cong(F \rightarrow \star R)^{\dagger}$

Sweedler hom

Given T, R, the Sweedler hom is the final interacting comonad: a comonad $\mathcal{M}(T, R)$ with bijections

$$
T X \times D Y \rightarrow R(X \times Y) \quad \text { iteraction law }
$$

$$
D \rightarrow \mathcal{M}(T, R) \quad \text { comonad morphism }
$$

If T is a free monad $F^{*}(F$ accessible $)$, then $\mathcal{M}\left(F^{*}, R\right) \cong(F-\star R)^{\dagger}$
Example: if $T X=\mu Z . X+Z^{2}$, and $R Z=1+Z$ then

$$
\begin{aligned}
\mathcal{M}(T, R) & \cong\left((-)^{2}-\star R\right)^{\dagger} \\
& \cong(1+(2 \times-))^{\dagger} \\
& \cong v Z . Y \times(1+2 \times Z)
\end{aligned}
$$

So we have interaction laws:
$\frac{T X \times(\mathcal{M}(T, R)) Y \rightarrow R(X \times Y)}{\mathcal{M}(T, R) \rightarrow \mathcal{M}(T, R)} \quad \frac{T X \times(v Z . Y \times(2 \times Z)) \rightarrow R(X \times Y)}{(v Z .(-) \times(2 \times Z)) \rightarrow \mathcal{M}(T, R)}$

Sweedler hom, (co)algebraically

There is a (co)algebraic perspective on interaction laws [Uustalu and Voorneveld '20]:

$$
\psi: T X \times D Y \rightarrow R(X \times Y) \text { interaction law }
$$

$\Psi: \operatorname{Coalg}(D) \rightarrow[\operatorname{Alg}(R), \operatorname{Alg}(T)]^{\text {op }}$ such that

$$
\begin{aligned}
& \operatorname{Coalg}(D) \longrightarrow[\operatorname{Alg}(R), \operatorname{Alg}(T)]^{\text {op }} \\
& \stackrel{u \downarrow}{\text { Set }} \xrightarrow[(Y \mapsto Y \Rightarrow-)^{\text {op }}]{\downarrow}[\text { Set, Set }]^{\text {op }} \xrightarrow[{[U, \text { Set }]^{\text {op }}}]{\longrightarrow} \stackrel{\rightharpoonup}{[\operatorname{Alg}(R), \text { Set }]^{\text {op }}}
\end{aligned}
$$

Sweedler hom, (co)algebraically

- $U: \operatorname{SRun}_{R}(T) \rightarrow$ Set is comonadic, the comonad is $\mathcal{M}(T, R)$
- $\operatorname{SRun}_{R}(T): R$-residual stateful runners of T

Stateful runners

An R-residual stateful runner of T is: \quad [Uustalu and Voorneveld '20]

- a set Y (the carrier)
- with a natural family of functions $\theta_{X}: T X \times Y \rightarrow R(X \times Y)$
- satisfying a unit law and a multiplication law

Stateful runners

An R-residual stateful runner of T is: \quad [Uustalu and Voorneveld '20]

- a set Y (the carrier)
- with a natural family of functions $\theta_{X}: T X \times Y \rightarrow R(X \times Y)$
- satisfying a unit law and a multiplication law

If R, T are accessible, then:

- $U: \operatorname{SRun}_{R}(T) \rightarrow$ Set is comonadic
- the induced comonad is the Sweedler hom $\mathcal{M}(T, R)$

Stateful runners

An R-residual stateful runner of T is: \quad [Uustalu and Voorneveld '20]

- a set Y (the carrier)
- with a natural family of functions $\theta_{X}: T X \times Y \rightarrow R(X \times Y)$
- satisfying a unit law and a multiplication law

Example: if $T X=V \Rightarrow X$ (reader) and $R Z=Z$ (identity), then

- stateful runners $(Y, \theta:(V \Rightarrow X) \times Y \rightarrow X \times Y)$ are equivalently pairs $(Y, Y \rightarrow V)$
- the Sweedler hom $\mathcal{M}(T, R)$ is $V \times(-)$ (coreader comonad)

$$
(t,(v, y)) \mapsto(t v, y):(V \Rightarrow X) \times(V \times Y) \rightarrow X \times Y
$$

Interaction laws and Sweedler theory

If D, R are accessible, then

$$
\begin{array}{cl}
T X \times D Y \rightarrow R(X \times Y) & \text { interaction law } \\
\hline \hline T \rightarrow(D \rightarrow \star R) & \text { monad morphism }
\end{array}
$$

where

$$
(D-\star R) X=\int_{Y} D Y \Rightarrow R(X \times Y)
$$

Duoidal Sweedler theory [López Franco and Vasilakopoulou '20]

Consider a category D equipped with

- a monoidal structure (I, \diamond)
e.g. $\mathbf{D}=[\text { Set, Set }]_{\text {acc }}$
e.g. composition
- a symmetric closed monoidal structure
($J, \star,-\star$)
e.g. Day convolution wrt \otimes
- some structural laws, satisfying equations
(D is a symmetric duoidal category with \star closed)

If T, R are \diamond-monoids, and D is a \diamond-comonoid, a measuring map is a monoid morphism

$$
T \rightarrow D \rightarrow \star R
$$

- e.g. an interaction law

Duoidal Sweedler theory [López Franco and Vasilakopoulou '20]

 If the appropriate adjoints exist, we have functors:$\star: \operatorname{Comon}(\mathrm{D}) \times \operatorname{Comon}(\mathrm{D}) \rightarrow \operatorname{Comon}(\mathrm{D})$
(comonoid tensor)
$C: \operatorname{Comon}(\mathrm{D})^{\mathrm{op}} \times \operatorname{Comon}(\mathrm{D}) \rightarrow$ Comon(D)
\rightarrow © $\operatorname{Comon}(D)^{\mathrm{op}} \times \operatorname{Mon}(\mathrm{D}) \rightarrow \operatorname{Mon}(\mathrm{D})$
$\triangleright: \operatorname{Comon}(\mathrm{D}) \times \operatorname{Mon}(\mathrm{D}) \rightarrow \operatorname{Mon}(\mathrm{D})$
$\mathcal{M}: \operatorname{Mon}(\mathrm{D})^{\mathrm{op}} \times \operatorname{Mon}(\mathrm{D}) \rightarrow \operatorname{Comon}(\mathrm{D})$
(Sweedler hom/univ. measuring comonoid)

$$
\xlongequal[D_{0} \rightarrow C\left(D_{1}, D\right) \quad \text { in Comon(D) }]{D_{0} \star D_{1} \rightarrow D \quad \text { in Comon(D) }}
$$

SO:

- Comon(D) forms a symmetric monoidal closed category
- Mon(D) enriches over Comon(D), and has powers and copowers

Duoidal Sweedler theory [López Franco and Vasilakopoulou '20]

 If the appropriate adjoints exist, we have functors:$\star: \operatorname{Comon}(\mathrm{D}) \times \operatorname{Comon}(\mathrm{D}) \rightarrow \operatorname{Comon}(\mathrm{D})$
$C: \operatorname{Comon}(D)^{\mathrm{op}} \times \operatorname{Comon}(\mathrm{D}) \rightarrow \operatorname{Comon}(\mathrm{D})$
\rightarrow © $\operatorname{Comon}(D)^{\mathrm{op}} \times \operatorname{Mon}(\mathrm{D}) \rightarrow \operatorname{Mon}(\mathrm{D})$
$\triangleright: \operatorname{Comon}(\mathrm{D}) \times \operatorname{Mon}(\mathrm{D}) \rightarrow \operatorname{Mon}(\mathrm{D})$
$\mathcal{M}: \operatorname{Mon}(\mathrm{D})^{\mathrm{op}} \times \operatorname{Mon}(\mathrm{D}) \rightarrow \operatorname{Comon}(\mathrm{D})$
(Sweedler hom/univ. measuring comonoid)

$$
\frac{D_{0} \rightarrow C\left(D_{1}, D\right) \quad \text { in Comon(D) }}{D_{0} \star D_{1} \rightarrow D \quad \text { in Comon(D) }}
$$

so:

- Comon(D) forms a symmetric monoidal closed category
- Mon(D) enriches over Comon(D), and has powers and copowers

These operations exist for $\mathbf{D}=[\text { Set, Set }]_{\text {acc }}$

For accessible (co)monads on a locally presentable symmetric monoidal closed C, the Sweedler operations

$$
\begin{array}{cr}
-\star: \operatorname{Comnd}_{\mathrm{acc}}(\mathrm{C})^{\mathrm{op}} \times \operatorname{Mnd}_{\mathrm{acc}}(\mathrm{C}) \rightarrow \operatorname{Mnd}_{\mathrm{acc}}(\mathrm{C}) & \text { (Sweedler power) } \\
\triangleright: \operatorname{Comnd}_{\mathrm{acc}}(\mathrm{C}) \times \operatorname{Mnd}_{\mathrm{acc}}(\mathrm{C}) \rightarrow \operatorname{Mnd}_{\mathrm{acc}}(\mathrm{C}) & \text { (Sweedler copower) } \\
\mathcal{M}: \operatorname{Mnd}_{\mathrm{acc}}(\mathrm{C})^{\mathrm{op}} \times \operatorname{Mnd}_{\mathrm{acc}}(\mathrm{C}) \rightarrow \operatorname{Comnd}_{\mathrm{acc}}(\mathrm{C}) & \text { (Sweedler hom) }
\end{array}
$$

exist, provide universal interaction laws

$$
T X \otimes D Y \rightarrow R(X \otimes Y)
$$

and we can characterize their (co)algebras

- There is also a generalization to enriched (co)monads

