Canonical gradings of monads

Flavien Breuvart¹ Dylan McDermott² Tarmo Uustalu^{2,3}

¹ LIPN, Université Sorbonne Paris Nord, France
 ² Reykjavik University, Iceland
 ³ Tallinn University of Technology, Estonia

The writer monad Wr for lists over a set C has:		
object mapping	$Wr: Set \rightarrow Set$	$\operatorname{Wr} X = \operatorname{List} C \times X$
unit functions	$\eta_X: X \to \operatorname{Wr} X$	$\eta_X x = ([], x)$
multiplication functions	$\mu_X: \operatorname{Wr}(\operatorname{Wr} X) \to \operatorname{Wr} X$	$\mu_X(s_1, (s_2, x)) = (s_1 + s_2, x)$

The writer monad Wr for lists over a set C has: object mapping Wr : Set \rightarrow Set Wr X = List C \times X unit functions $\eta_X : X \rightarrow Wr X$ $\eta_X x = ([], x)$ multiplication functions $\mu_X : Wr (Wr X) \rightarrow Wr X$ $\mu_X(s_1, (s_2, x)) = (s_1 + s_2, x)$

We can grade this by

▶ natural numbers $e \in \mathbb{N}$, to get a graded monad WrL:

 $\operatorname{WrL} e X = \operatorname{List}_{\leq e} C \times X \qquad \eta : X \to \operatorname{WrL} 0 X \qquad \mu : \operatorname{WrL} e_1 \left(\operatorname{WrL} e_2 X \right) \to \operatorname{WrL} (e_1 + e_2) X$

• subsets $e \subseteq C$, to get a graded monad WrS:

 $\operatorname{WrS} e X = \operatorname{List} e \times X \qquad \eta : X \to \operatorname{WrS} \emptyset X \qquad \mu : \operatorname{WrS} e_1 \left(\operatorname{WrS} e_2 X \right) \to \operatorname{WrS} (e_1 \cup e_2) X$

The writer monad Wr for lists over a set C has: object mapping Wr : Set \rightarrow Set Wr X = List C \times X unit functions $\eta_X : X \rightarrow Wr X$ $\eta_X x = ([], x)$ multiplication functions $\mu_X : Wr (Wr X) \rightarrow Wr X$ $\mu_X(s_1, (s_2, x)) = (s_1 + s_2, x)$

We can grade this by

• subsets $\Sigma \subseteq \text{List } C$, to get a graded monad WrC:

$$\begin{split} \operatorname{WrC} \Sigma X &= \Sigma \times X \qquad \eta : X \to \operatorname{WrC} \operatorname{J} X \qquad \mu : \operatorname{WrC} \Sigma_1 \left(\operatorname{WrC} \Sigma_2 X \right) \to \operatorname{WrC} (\Sigma_1 \boxdot \Sigma_2) X \\ \end{split}$$
 where

$$\mathsf{J} = \{[]\} \qquad \Sigma_1 \boxdot \Sigma_2 = \{s_1 + s_2 \mid s_1 \in \Sigma_1, s_2 \in \Sigma_2\}$$

WrC is the canonical grading of Wr:

WrL is

$$\mathbb{N} \xrightarrow{F} \mathcal{P}(\operatorname{List} C) \xrightarrow{\operatorname{WrC}} [\operatorname{Set}, \operatorname{Set}]$$

where

 $Fe = \text{List}_{\leq e}C \subseteq \text{List}C$

WrS is

$$\mathcal{P}C \xrightarrow{F} \mathcal{P}(\operatorname{List} C) \xrightarrow{\operatorname{WrC}} [\operatorname{Set}, \operatorname{Set}]$$

where

$$Fe = Liste \subseteq ListC$$

This work

More generally: given

- ► a (skew) monoidal category D (e.g. [Set, Set])
- ▶ a class \mathcal{M} of D-morphisms (e.g. componentwise injective natural transformations)
- ► a monoid T in D (e.g. any monad on Set)

satisfying some reasonable conditions, we have

- \blacktriangleright a notion of $\mathcal M\text{-}\mathsf{grading}$ of T
- ▶ T has a canonical M-grading
- \blacktriangleright every other $\mathcal M\text{-}\mathsf{grading}$ factors through the canonical one

Grading objects

Given

- a category D
- $\blacktriangleright\,$ a class of D-morphisms ${\cal M}$
- ▶ an object $T \in \mathbf{D}$
- an \mathcal{M} -grading (\mathbf{G}, G, g) of T is:
 - ► a category G of grades
 - with a functor $G : \mathbf{G} \to \mathbf{D}$
 - and a natural transformation

 $g_e: Ge \rightarrow T$

whose components are in $\ensuremath{\mathcal{M}}$

Example: writer monad D = [Set, Set] $\mathcal{M} = \text{componentwise injective nat. transformations}$ $T = \text{List } C \times (-)$

$$G = (\mathbb{N}, \leq)$$

$$Ge = \text{List}_{\leq e}C \times (-)$$

$$g_{e,X} = \lambda(s, x). (s, x)$$

Canonical gradings of objects

The canonical \mathcal{M} -grading of $T \in \mathbf{D}$ has:

- category of grades \mathcal{M}/T : a grade is a pair (S, s), where $s : S \rightarrow T$ is in \mathcal{M}
- functor $T_{\mathcal{M}} : (S, s) \mapsto S : \mathcal{M}/T \to \mathbf{D}$
- ▶ natural transformation $g_{(S,s)} = s : G(S,s) \rightarrow T$

Universal property:

for every other grading (\mathbf{G}, G, g) of T, there is an essentially unique functor $F : \mathbf{G} \to \mathcal{M}/T$ with isomorphisms $Ge \cong \hat{T}(Fe)$ for all e, commuting with the natural transformations

In other words: \mathcal{M}/T is pseudoterminal in a 2-category of \mathcal{M} -gradings of T

Some examples

When D = [Set, Set], $\mathcal{M} = \text{componentwise injective nat. transformations, canonical grades are subfunctors <math>S \hookrightarrow T$

For T = Id:
M/T ≃ {⊥ ≤ T} T_M⊥ = Ø T_MT = Id
For T = ListC × (−):

 $\mathcal{M}/T \simeq (\mathcal{P}(\text{List}C), \subseteq) \qquad T_{\mathcal{M}}(\Sigma \subseteq \text{List}C) = \Sigma \times (-)$

Some examples

If $T = V \Rightarrow (-)$ (for a set V), subfunctors $S \hookrightarrow T$ are equivalently <u>upwards-closed</u> sets $\Sigma \subseteq \text{Equiv}_V$ $R \in \Sigma \Rightarrow R' \in \Sigma \text{ whenever } R \subseteq R'$

of equivalence relations of V, via

$$\Sigma = \{R \in \operatorname{Equiv}_V \mid [-]_R \in S(V/R)\}$$

and these give a canonical grading

$$T_{\mathcal{M}} \Sigma X = \{ f : V \to X \mid \exists R \in \Sigma. \forall v, v'. v \, R \, v' \Rightarrow fv = fv' \}$$

Graded monads [Smirnov '08, Melliès '12, Katsumata '14]

A monad on C is a monoid in $([C, C], Id, \circ)$

▶ A (G, I, \odot) -graded monad on C is a lax monoidal functor

$$\mathsf{T} = (T, \eta, \mu) : (\mathsf{G}, I, \odot) \to ([\mathsf{C}, \mathsf{C}], \mathrm{Id}, \circ)$$

Explicitly:

 $T: \mathbf{G} \to [\mathbf{C}, \mathbf{C}] \qquad \eta_X: X \to TXI \qquad \mu_{e_1, e_2, X}: Te_1(Te_2X) \to T(e_1 \odot e_2)X$ Example:

 $\operatorname{WrL} e X = \operatorname{List}_{\leq e} C \times X \qquad \eta : X \to \operatorname{WrL} 0 X \qquad \mu : \operatorname{WrL} e_1 \left(\operatorname{WrL} e_2 X \right) \to \operatorname{WrL} (e_1 + e_2) X$

Grading monoids

Given

- \blacktriangleright a monoidal category (D, I, \otimes)
- $\blacktriangleright\,$ a class of D-morphisms ${\cal M}$
- ▶ a monoid T in D
- an \mathcal{M} -grading (G, G, g) of T is:
 - \blacktriangleright a monoidal category G of grades
 - with a lax monoidal functor $G: \mathbf{G} \to \mathbf{D}$
 - and a monoidal nat. trans.

 $g_e: Ge \rightarrow T$

whose components are in $\boldsymbol{\mathcal{M}}$

Example: writer monad $(\mathbf{D}, \mathbf{I}, \otimes) = ([\mathbf{Set}, \mathbf{Set}], \mathbf{Id}, \circ)$ $\mathcal{M} = \text{componentwise injective nat. trans.}$ $\mathsf{T} = \text{List } C \times (-) \text{ (a writer monad)}$

 $G = (\mathbb{N}, \leq)$, with addition

 $Ge = \text{List}_{\leq e}C \times (-) \text{ (a graded writer monad)}$ $g_{e,X} = \lambda(s,x). \ (s,x)$

Canonical gradings of monoids If

▶ T is a monoid in (D, I, \otimes)

then D/T forms a monoidal category:

$$J = (I, \eta) \qquad (S, s) \boxdot (S', s') = (S \otimes S', (s \otimes s') \circ \mu_T)$$
$$\xrightarrow{\eta} T \qquad S \otimes S' \xrightarrow{s \otimes s'} T \otimes T \xrightarrow{\mu} T$$

and

$$(S,s) \mapsto S : \mathbf{D}/T \to \mathbf{D}$$

forms a monoidal functor

Canonical gradings of monoids If

- \blacktriangleright T is a monoid in (D, I, \otimes)
- \mathcal{M} forms a factorization system (\mathcal{E}, \mathcal{M})
- \mathcal{E} is closed under \otimes on both sides

then \mathcal{M}/T forms a monoidal category:

$$J = L(I, \eta) \qquad (S, s) \boxdot (S', s') = L(S \otimes S', (s \otimes s') \circ \mu_T)$$

$$I \xrightarrow{\eta} T \qquad S \otimes S' \xrightarrow{s \otimes s'} T \otimes T \xrightarrow{\mu} T$$

$$S \boxdot S' \xrightarrow{s \otimes s'} S \boxdot S'$$

and

 $(S,s)\mapsto S:\mathcal{M}/T\to \mathbf{D}$

forms a lax monoidal functor

Canonical gradings of monoids

The canonical \mathcal{M} -grading of a monoid T in (D, I, \otimes) has:

- monoidal category of grades \mathcal{M}/T
- ▶ lax monoidal functor $T_{\mathcal{M}} : (S, s) \mapsto S : \mathcal{M}/T \to \mathbf{D}$
- ▶ monoidal natural transformation $g_{(S,s)} = s : G(S,s) \rightarrow T$

Universal property:

for every other grading (G, G, g) of the monoid T, there is an essentially unique lax monoidal $F: G \rightarrow \mathcal{M}/T$ with isomorphisms $Ge \cong \hat{T}(Fe)$ for all e, commuting with the natural transformations

In other words: \mathcal{M}/T is pseudoterminal in a 2-category of $\mathcal{M}\text{-}\mathsf{gradings}$ of T

Example: writer

Take

- ▶ D = [Set, Set], with endofunctor composition
- $(\mathcal{E}, \mathcal{M}) = ($ componentwise surjective, componentwise injective)
- ► T is a writer monad

$$T = \text{List}C \times (-)$$

Then:

Subfunctors $S \hookrightarrow Wr$ are equivalently subsets $\Sigma \subseteq \text{List}C$ via

$$\Sigma = \{ s \in \text{List}C \mid (s, \star) \in S1 \} \qquad SX = \{ (s, x) \in \text{List}C \times X \mid s \in \Sigma \}$$

So the canonical grading is $\mathcal{P}(\text{List}C)$ with

$$\mathsf{T}_{\mathcal{M}} : (\mathcal{P}(\text{List}C), \subseteq) \to [\text{Set}, \text{Set}] \qquad \mathsf{T}_{\mathcal{M}}\Sigma = \Sigma \times (-) \\ \mathsf{J} = \{[]\} \qquad \Sigma_1 \boxdot \Sigma_2 = \{s_1 + s_2 \mid s_1 \in \Sigma_1, s_2 \in \Sigma_2\}$$

Grading by sets of shapes

For D = [Set, Set], there is also a factorization system

 \mathcal{E} = natural transformations α such that α_1 is surjective

 \mathcal{M} = cartesian natural transformations α such that α_1 is injective

satisfying

 $\mathcal{M}/T \simeq (\mathcal{P}(T1), \subseteq)$

Summary

Given a suitable class $\mathcal M$ of morphisms, every monoid T has a canonical $\mathcal M\text{-grading}$ $T_{\mathcal M}:\mathcal M/T\to D$

In particular, we can canonically grade monads (and algebraic operations for them)