Canonical gradings of monads

Flavien Breuvart ${ }^{1}$ Dylan McDermott ${ }^{2}$ Tarmo Uustalu ${ }^{2,3}$
${ }^{1}$ LIPN, Université Sorbonne Paris Nord, France
${ }^{2}$ Reykjavik University, Iceland
${ }^{3}$ Tallinn University of Technology, Estonia

Example

The writer monad Wr for lists over a set C has:

$$
\begin{array}{rll}
\text { object mapping } & \mathrm{Wr}: \text { Set } \rightarrow \text { Set } & \mathrm{Wr} X=\text { List } C \times X \\
\text { unit functions } & \eta_{X}: X \rightarrow \mathrm{Wr} X & \eta_{X} x=([], x)
\end{array}
$$

multiplication functions $\mu_{X}: \mathrm{Wr}(\mathrm{Wr} X) \rightarrow \mathrm{Wr} X \quad \mu_{X}\left(s_{1},\left(s_{2}, x\right)\right)=\left(s_{1}+s_{2}, x\right)$

Example

The writer monad Wr for lists over a set C has:

$$
\begin{array}{rll}
\text { object mapping } & \mathrm{Wr}: \text { Set } \rightarrow \text { Set } & \text { Wr } X=\operatorname{List} C \times X \\
\text { unit functions } & \eta_{X}: X \rightarrow \mathrm{Wr} X & \eta_{X} x=([], x)
\end{array}
$$

multiplication functions $\quad \mu_{X}: \mathrm{Wr}(\mathrm{Wr} X) \rightarrow \mathrm{Wr} X \quad \mu_{X}\left(s_{1},\left(s_{2}, x\right)\right)=\left(s_{1}+s_{2}, x\right)$

We can grade this by

- natural numbers $e \in \mathbb{N}$, to get a graded monad WrL :
$\operatorname{WrL} e X=\operatorname{List}_{\leq e} C \times X \quad \eta: X \rightarrow \operatorname{WrL} 0 X \quad \mu: \operatorname{WrL} e_{1}\left(\operatorname{WrL} e_{2} X\right) \rightarrow \operatorname{WrL}\left(e_{1}+e_{2}\right) X$
- subsets $e \subseteq C$, to get a graded monad WrS:

WrS $e X=$ List $e \times X \quad \eta: X \rightarrow \operatorname{WrS} \emptyset X \quad \mu: \operatorname{WrS} e_{1}\left(\operatorname{WrS} e_{2} X\right) \rightarrow \operatorname{WrS}\left(e_{1} \cup e_{2}\right) X$

Example

The writer monad Wr for lists over a set C has:

$$
\begin{array}{rll}
\text { object mapping } & \mathrm{Wr}: \text { Set } \rightarrow \text { Set } & \mathrm{Wr} X=\text { List } C \times X \\
\text { unit functions } & \eta_{X}: X \rightarrow \mathrm{Wr} X & \eta_{X} x=([], x)
\end{array}
$$

multiplication functions $\mu_{X}: \mathrm{Wr}(\mathrm{Wr} X) \rightarrow \mathrm{Wr} X \quad \mu_{X}\left(s_{1},\left(s_{2}, x\right)\right)=\left(s_{1}+s_{2}, x\right)$

We can grade this by

- subsets $\Sigma \subseteq$ List C, to get a graded monad WrC :
$\operatorname{WrC} \Sigma X=\Sigma \times X \quad \eta: X \rightarrow \operatorname{WrCJ} X \quad \mu: \operatorname{WrC} \Sigma_{1}\left(\operatorname{WrC} \Sigma_{2} X\right) \rightarrow \operatorname{WrC}\left(\Sigma_{1} \boxminus \Sigma_{2}\right) X$ where

$$
\mathrm{J}=\{[]\} \quad \Sigma_{1} \boxminus \Sigma_{2}=\left\{s_{1}+s_{2} \mid s_{1} \in \Sigma_{1}, s_{2} \in \Sigma_{2}\right\}
$$

Example

WrC is the canonical grading of Wr:

- WrL is

$$
\mathbb{N} \xrightarrow{F} \mathcal{P}(\text { List } C) \xrightarrow{\text { WrC }}[\text { Set, Set }]
$$

where

$$
F e=\text { List }_{\leq e} C \subseteq \text { List } C
$$

- WrS is

$$
\mathcal{P} C \xrightarrow{F} \mathcal{P}(\text { List } C) \xrightarrow{\mathrm{WrC}}[\text { Set, Set }]
$$

where

$$
F e=\text { Liste } \subseteq \text { List } C
$$

This work

More generally: given

- a (skew) monoidal category D (e.g. [Set, Set])
- a class \mathcal{M} of D -morphisms (e.g. componentwise injective natural transformations)
- a monoid T in D (e.g. any monad on Set)
satisfying some reasonable conditions, we have
- a notion of \mathcal{M}-grading of T
- T has a canonical \mathcal{M}-grading
- every other \mathcal{M}-grading factors through the canonical one

Grading objects

Given

- a category D
- a class of D-morphisms \mathcal{M}
- an object $T \in \mathbf{D}$
an \mathcal{M}-grading ($\mathrm{G}, \mathrm{G}, \mathrm{g}$) of T is:
- a category G of grades
- with a functor $G: \mathbf{G} \rightarrow \mathbf{D}$
- and a natural transformation

$$
g_{e}: G e \mapsto T
$$

whose components are in \mathcal{M}

Example: writer monad

$$
D=[\text { Set, Set }]
$$

$\mathcal{M}=$ componentwise injective nat. transformations

$$
T=\operatorname{List} C \times(-)
$$

$$
\begin{aligned}
\mathrm{G} & =(\mathbb{N}, \leq) \\
G e & =\mathrm{List}_{\leq e} C \times(-) \\
g_{e, X} & =\lambda(s, x) .(s, x)
\end{aligned}
$$

Canonical gradings of objects

The canonical \mathcal{M}-grading of $T \in \mathbf{D}$ has:

- category of grades \mathcal{M} / T : a grade is a pair (S, s), where $s: S \mapsto T$ is in \mathcal{M}
- functor $T_{\mathcal{M}}:(S, s) \mapsto S: \mathcal{M} / T \rightarrow \mathbf{D}$
- natural transformation $g_{(S, s)}=s: G(S, s) \mapsto T$

Universal property:
for every other grading (G, G, g) of T, there is an essentially unique functor $F: \mathrm{G} \rightarrow \mathcal{M} / T$ with isomorphisms $G e \cong \hat{T}(F e)$ for all e, commuting with the natural transformations

In other words: \mathcal{M} / T is pseudoterminal in a 2 -category of \mathcal{M}-gradings of T

Some examples

When $\mathrm{D}=[$ Set, Set], $\mathcal{M}=$ componentwise injective nat. transformations, canonical grades are subfunctors $S \hookrightarrow T$

- For $T=\mathrm{Id}$:

$$
\mathcal{M} / T \simeq\{\perp \leq T\} \quad T_{\mathcal{M}} \perp=\emptyset \quad T_{\mathcal{M}} \top=\mathrm{Id}
$$

- For $T=\operatorname{List} C \times(-)$:

$$
\mathcal{M} / T \simeq(\mathcal{P}(\operatorname{List} C), \subseteq) \quad T_{\mathcal{M}}(\Sigma \subseteq \operatorname{List} C)=\Sigma \times(-)
$$

Some examples

If $T=V \Rightarrow(-)$ (for a set V), subfunctors $S \hookrightarrow T$ are equivalently upwards-closed sets

$$
\Sigma \subseteq \text { Equiv }_{V}
$$

of equivalence relations of V, via

$$
\Sigma=\left\{R \in \operatorname{Equiv}_{V} \mid[-]_{R} \in S(V / R)\right\}
$$

and these give a canonical grading

$$
T_{\mathcal{M}} \Sigma X=\left\{f: V \rightarrow X \mid \exists R \in \Sigma . \forall v, v^{\prime} . v R v^{\prime} \Rightarrow f v=f v^{\prime}\right\}
$$

Graded monads [Smirnov '08, Melliès '12, Katsumata '14]

- A monad on C is a monoid in ([C, C], Id, o)
- A (\mathbf{G}, I, \odot)-graded monad on \mathbf{C} is a lax monoidal functor

$$
\mathrm{T}=(T, \eta, \mu):(\mathrm{G}, I, \odot) \rightarrow([\mathrm{C}, \mathrm{C}], \mathrm{Id}, \circ)
$$

Explicitly:

$$
T: \mathrm{G} \rightarrow[\mathrm{C}, \mathrm{C}] \quad \eta_{X}: X \rightarrow T X I \quad \mu_{e_{1}, e_{2}, X}: T e_{1}\left(T e_{2} X\right) \rightarrow T\left(e_{1} \odot e_{2}\right) X
$$

Example:
WrL $e X=\operatorname{List}_{\leq e} C \times X \quad \eta: X \rightarrow \operatorname{WrL} 0 X \quad \mu: \operatorname{WrL} e_{1}\left(\operatorname{WrL} e_{2} X\right) \rightarrow \operatorname{WrL}\left(e_{1}+e_{2}\right) X$

Grading monoids

Given

- a monoidal category ($\mathrm{D}, \mathrm{I}, \otimes$)
- a class of D-morphisms \mathcal{M}
- a monoid T in D
an \mathcal{M}-grading ($\mathrm{G}, \mathrm{G}, \mathrm{g}$) of T is:
- a monoidal category G of grades
- with a lax monoidal functor $G: \mathrm{G} \rightarrow \mathrm{D}$
- and a monoidal nat. trans.

$$
g_{e}: G e \mapsto T
$$

whose components are in \mathcal{M}

Example: writer monad
$(\mathrm{D}, \mathrm{I}, \otimes)=([$ Set, Set $]$, Id, o $)$
$\mathcal{M}=$ componentwise injective nat. trans.

$$
\mathrm{T}=\operatorname{List} C \times(-) \text { (a writer monad) }
$$

$\mathrm{G}=(\mathbb{N}, \leq)$, with addition

$$
\begin{aligned}
G e & =\operatorname{List}_{\leq e} C \times(-)(\text { a graded writer monad }) \\
g_{e, X} & =\lambda(s, x) .(s, x)
\end{aligned}
$$

Canonical gradings of monoids

 If- T is a monoid in ($\mathrm{D}, \mathrm{I}, \otimes$)
then D / T forms a monoidal category:

$$
\begin{gathered}
\mathrm{J}=(I, \eta) \\
\mathrm{I} \xrightarrow{\eta} T \begin{array}{c}
(S, s) \boxtimes\left(S^{\prime}, s^{\prime}\right)=\left(S \otimes S^{\prime},\left(s \otimes s^{\prime}\right) \circ \mu_{T}\right) \\
S \otimes S^{\prime} \xrightarrow{s \otimes s^{\prime}} T \otimes T \xrightarrow{\mu} T
\end{array} \\
(S, s) \mapsto S: \mathbf{D} / T \xrightarrow{ }
\end{gathered}
$$

and
forms a monoidal functor

Canonical gradings of monoids

 If- T is a monoid in ($\mathrm{D}, \mathrm{I}, \otimes$)
- \mathcal{M} forms a factorization system $(\mathcal{E}, \mathcal{M})$
- \mathcal{E} is closed under \otimes on both sides

$$
\mathcal{M} / T
$$

D/T

then \mathcal{M} / T forms a monoidal category:

$$
\mathrm{J}=L(I, \eta)
$$

$$
(S, s) \boxtimes\left(S^{\prime}, s^{\prime}\right)=L\left(S \otimes S^{\prime},\left(s \otimes s^{\prime}\right) \circ \mu_{T}\right)
$$

and

$$
(S, s) \mapsto S: \mathcal{M} / T \rightarrow \mathbf{D}
$$

forms a lax monoidal functor

Canonical gradings of monoids

The canonical \mathcal{M}-grading of a monoid T in $(\mathrm{D}, \mathrm{I}, \otimes)$ has:

- monoidal category of grades \mathcal{M} / T
- lax monoidal functor $T_{\mathcal{M}}:(S, s) \mapsto S: \mathcal{M} / T \rightarrow \mathbf{D}$
- monoidal natural transformation $g_{(S, s)}=s: G(S, s) \mapsto T$

Universal property:
for every other grading (G, G, g) of the monoid T , there is an essentially unique lax monoidal $F: \mathrm{G} \rightarrow \mathcal{M} / T$ with isomorphisms $G e \cong \hat{T}(F e)$ for all e, commuting with the natural transformations

In other words: \mathcal{M} / T is pseudoterminal in a 2-category of \mathcal{M}-gradings of T

Example: writer

Take

- $\mathrm{D}=[$ Set, Set $]$, with endofunctor composition
- $(\mathcal{E}, \mathcal{M})=$ (componentwise surjective, componentwise injective)
- T is a writer monad

Then:

$$
T=\operatorname{List} C \times(-)
$$

- Subfunctors $S \hookrightarrow \mathrm{Wr}$ are equivalently subsets $\Sigma \subseteq \operatorname{List} C$ via

$$
\Sigma=\{s \in \operatorname{List} C \mid(s, \star) \in S 1\} \quad S X=\{(s, x) \in \operatorname{List} C \times X \mid s \in \Sigma\}
$$

So the canonical grading is \mathcal{P} (List C) with

$$
\begin{gathered}
\mathrm{T}_{\mathcal{M}}:(\mathcal{P}(\text { List } C), \subseteq) \rightarrow[\text { Set, Set }] \quad \mathrm{T}_{\mathcal{M}} \Sigma=\Sigma \times(-) \\
\mathrm{J}=\{[]\} \quad \Sigma_{1} \boxminus \Sigma_{2}=\left\{s_{1}+s_{2} \mid s_{1} \in \Sigma_{1}, s_{2} \in \Sigma_{2}\right\}
\end{gathered}
$$

Grading by sets of shapes

For $\mathbf{D}=[$ Set, Set $]$, there is also a factorization system
$\mathcal{E}=$ natural transformations α such that α_{1} is surjective
$\mathcal{M}=$ cartesian natural transformations α such that α_{1} is injective
satisfying

$$
\mathcal{M} / T \simeq(\mathcal{P}(T 1), \subseteq)
$$

Summary

Given a suitable class \mathcal{M} of morphisms, every monoid T has a canonical \mathcal{M}-grading $\mathrm{T}_{\mathcal{M}}: \mathcal{M} / \mathrm{T} \rightarrow \mathrm{D}$

In particular, we can canonically grade monads (and algebraic operations for them)

