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Abstract. Monad-comonad interaction laws are a mathematical con-
cept for describing communication protocols between effectful compu-
tations and coeffectful environments in the paradigm where notions of
effectful computation are modelled by monads and notions of coeffect-
ful environment by comonads. We show that monad-comonad interac-
tion laws are an instance of measuring maps from Sweedler theory for
duoidal categories whereby the final interacting comonad for a monad
and a residual monad arises as the Sweedler hom and the initial residual
monad for a monad and an interacting comonad as the Sweedler copower.
We then combine this with a (co)algebraic characterization of monad-
comonad interaction laws to derive descriptions of the Sweedler hom and
the Sweedler copower in terms of their coalgebras resp. algebras.

Keywords: (co)monads · (co)algebras · interaction laws · runners ·
duoidal categories · Sweedler operations

1 Introduction

The monad-comonad interaction laws of Katsumata et al. [16] are a mathemat-
ical concept for formalizing ways in which effectful programs (e.g., programs
reading from and writing to a store, programs making nondeterministic choices)
can be run. The idea is that effectful programs issue requests to the outside
world; they can thus run on machines that can service such requests. Programs
denote computations, machines implement environments. Notions of computa-
tion are modelled by monads in the manner first explained by Moggi [23], while
notions of environment can be modelled by comonads. Interaction laws model
protocols of cooperation between computations and environments. Ideally, inter-
action should result in a return value and a final state. But it may be that some
effects cannot be serviced, in which case interaction yields a residual computa-
tion of a return value and a final state; another monad is then needed to model
the suitable notion of residual computation. A monad-comonad interaction law
is therefore given by a monad T , a comonad D and a monad R on a symmetric
monoidal category with a family of maps TX ⊗DY → R(X ⊗ Y ) natural in X
and Y and agreeing with the (co)units and (co)multiplications. If R = Id, we
have a non-residual interaction law.

It is natural to ask for useful methods for recognizing and constructing
monad-comonad interaction laws. Specifically, it would be useful to find: a final
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monad for a given interacting comonad and residual monad; a final interacting
comonad for a given monad and residual monad; or an initial residual monad
for a given monad and interacting comonad.

In this paper, we show how to find these universal (co)monads, elaborating on
some ideas and results from prior work on interaction [16,33]. We emphasize that
the most important structural foundation for interaction laws is the duoidal [10,2]
interrelationship of the composition and Day convolution monoidal structures in
endofunctor categories. It is so significant that some central statements about
interaction laws can be made on the level of monoids and comonoids in general
symmetric closed duoidal categories, completely suppressing any specifics about
monads and comonads. In fact, it turns out that monad-comonad interaction
laws are an instance of measuring maps from the Sweedler theory for duoidal
categories as developed by López Franco and Vasilakopoulou [20]. The universal
(co)monads are instances of the operations studied in this theory. In particular,
the final interacting comonad is an instance of the Sweedler hom and the initial
residual monad is an instance of the Sweedler copower.

To obtain results about monad-comonad interaction specifically, we combine
this general perspective with the characterization of monad-comonad interac-
tion laws by Uustalu and Voorneveld [33] as functors between the categories of
(co)algebras of the (co)monads involved. This allows us to describe the Sweedler
hom and the Sweedler power via their categories of (co)algebras in terms of what
we call stateful and continuation-based runners.

We also discuss an enriched version of monad-comonad interaction laws, of
which strong monad-comonad interaction laws are a special case. In this case,
both kinds of runners of an enriched monad on a self-enriched category can be
viewed as its algebras in another enriched category.

The paper is organized as follows. First, in Sect. 2, we review the basics
of monad-comonad interaction laws. In Sect. 3, we show that monad-comonad
interaction laws, the universal interacting comonad and the universal residual
monad are an instance of measuring maps, the Sweedler hom and the Sweedler
copower in symmetric closed duoidal categories. We then review the (co)algebraic
perspective on monad-comonad interaction laws in Sect. 4, and apply it to derive
(co)algebraic characterizations of the Sweedler hom and the Sweedler copower
in Sect. 5. In Sect. 6, we comment on enriched monad-comonad interaction laws.
We review some background category theory literature and related semantics
work in Sect. 7. New material is primarily in Sects. 5, 6; some statements in
Sect. 4 are also new.

We assume from the reader familiarity with the use of (strong) monads in
mathematical semantics to model notions of effectful computation, and familiar-
ity with the basics of the categorical machinery we need (monads and comonads,
symmetric monoidal closed categories, accessibility [21,1], enrichment [17]).

2 Monad-Comonad Interaction Laws

We begin by reviewing the basics of monad-comonad interaction laws [16].



Sweedler Theory of Monads 3

Consider a symmetric monoidal closed category (C, I,⊗,⊸), e.g., a Cartesian
monoidal closed category, e.g., Set.

A (residual) functor-functor interaction law is given by endofunctors F , G,
H on C together with a family of maps

ϕX,Y : FX ⊗GY → H(X ⊗ Y )

natural in X, Y . We speak of a non-residual interaction law when H = Id.
A map between (residual) functor-functor interaction laws (F,G,H, ϕ) and
(F ′, G′, H ′, ϕ′) is given by natural transformations f : F → F ′, g : G′ → G
and h : H → H ′ satisfying the equation

FX ⊗ GY
ψX,Y // H(X ⊗ Y )

hX⊗Y
��

FX ⊗ G′Y

FX⊗gY 33

fX⊗G′Y
++
F ′X ⊗ G′Y

ψ′
X,Y // H′(X ⊗ Y )

Functor-functor interaction laws form a category that has a monoidal structure
based on endofunctor composition.

A (residual) monad-comonad interaction law is given by a monad T , a
comonad D and a monad R on C with a family of maps

ψX,Y : TX ⊗DY → R(X ⊗ Y )

natural in X, Y , that additionally satisfies the equations

X ⊗ Y X ⊗ Y

ηRX,Y

��
X ⊗ DY

id⊗εY 55

ηX⊗id ))
TX ⊗ DY

ψX,Y// R(X ⊗ Y )

TTX ⊗ DDY
ψTX,DY// R(TX ⊗ DY )

RψX,Y// RR(X ⊗ Y )

µRX,Y

��
TTX ⊗ DY

id⊗δY 44

µX⊗id **
TX ⊗ DY

ψX,Y // R(X ⊗ Y )

(Every such interaction law gives a functor-functor interaction law
(UT,UD,UR,ψ), where U sends (co)monads to their underlying functors.)
When R = Id, we speak of a non-residual interaction law. A map between (resid-
ual) monad-comonad interaction laws (T,D,R, ψ) and (T ′, D′, R′, ψ′) is given by
a monad map T → T ′, a comonad map D′ → D and a monad map R→ R′ that
make a map between the underlying functor-functor interaction laws. Monad-
comonad interaction laws form a category isomorphic to the category of monoid
objects in the category of functor-functor interaction laws.

Example 1. Let C = Set (or any SMCC). Take TX = S ⇒ (S ×X) (the state
monad) and DX = S0× (S0 ⇒ X) (the costate monad). There is a non-residual
monad-comonad interaction law of T , D when S = S0 and more generally when
S, S0 come with a lens structure get : S0 → S, put : S0 × S → S0; in fact, these
laws are in bijection with lenses.

Let C = Set (or any extensive category that also has the relevant initial
algebras and final coalgebras). Take FX = 1 + X2 and T the free monad on
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F , so TX ∼= µX ′.X + 1 + X ′2 (leaf-labelled nullary-binary trees). The only
comonad D that can interact with T non-residually is DY ∼= 0. If we take
RZ = 1 + Z, we have an R-residual interaction law of T and D for example for
DY ∼= νY ′.Y × (2× Y ′) (node-labelled bitstreams), i.e., the cofree comonad for
GY = 2× Y .

See [16,33] for further examples and their intuitive meaning for semantics.

Some equivalent formulations of interaction laws will be useful. Due to the
bijections

FX ⊗GY → H(X ⊗ Y ) nat. in X, Y

C(X ⊗ Y,Z) → C(FX ⊗GY,HZ) nat. in X, Y , Z

C(X,Y ⊸ Z) → C(FX,GY ⊸ HZ) nat. in X, Y , Z

F (Y ⊸ Z) → GY ⊸ HZ nat. in Y , Z

an H-residual functor-functor interaction law of F , G is the same as a family of
maps

ϕY,Z : F (Y ⊸ Z) → GY ⊸ HZ

natural in Y , Z. Under this view, the equation required of a functor-functor
interaction law map (f, g, h) between (F,G,H, ϕ) and (F ′, G′, H ′, ϕ′) becomes

F (Y ⊸ Z)

fY⊸Z ��

ϕY,Z // GY ⊸ HZ

gY ⊸hZ��
F ′(Y ⊸ Z)

ϕ′Y,Z// G′Y ⊸ H′Z

An R-residual monad-comonad interaction law of T ,D is the same as a family
of maps

ψY,Z : T (Y ⊸ Z) → DY ⊸ RZ

natural in Y , Z satisfying

Y ⊸ Z

ηY⊸Z
��

Y ⊸ Z

εY ⊸ηRZ��
T (Y ⊸ Z)

ψY,Z// DY ⊸ RZ

TT (Y ⊸ Z)

µY⊸Z
��

TψY,Z// T (DY ⊸ RZ)
ψDY,RZ// DDY ⊸ RRZ

δY ⊸µRZ��
T (Y ⊸ Z)

ψY,Z // DY ⊸ RZ

Suppose F,G,H : C → C are such that the coends and ends

(F ⋆ G)Z =
∫X,Y C(X ⊗ Y,Z) • (FX ⊗GY ) =

∫ Y
F (Y ⊸ Z)⊗GY

(G−⋆ H)X =
∫
Y,Z

C(X,Y ⊸ Z) ⋔ (GY ⊸ HZ) =
∫
Y
GY ⊸ H(X ⊗ Y )

exist. (F ⋆ G is called the Day convolution.) Then, because of the bijections∫X,Y C(X ⊗ Y,Z) • (FX ⊗GY ) → HZ nat. in Z

C(X ⊗ Y,Z) → C(FX ⊗GY,HZ) nat. in X, Y , Z

C(X,Y ⊸ Z) → C(FX,GY ⊸ HZ) nat. in X, Y , Z

FX →
∫
Y,Z

C(X,Y ⊸ Z) ⋔ (GY ⊸ HZ) nat. in X
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an H-residual functor-functor interaction law of F,G turns out to be the same
as a natural transformation F ⋆ G → H or F → G −⋆ H. An R-residual
monad-comonad interaction law of T , D is the same as a natural transformation
UT ⋆ UD → UR satisfying certain equations and also—by way of a particularly
concise characterization—the same as a monad map T → D−⋆R where D−⋆R
is a certain canonical monad with UD −⋆ UR as the underlying functor.

Now, if C is locally presentable and F,G,H are accessible, then F ⋆ G and
G−⋆H are guaranteed to exist and be accessible. Writing [C,C]a for the category
of accessible endofunctors on C, we obtain functors ⋆ : [C,C]a× [C,C]a → [C,C]a
and −⋆ : [C,C]opa × [C,C]a → [C,C]a. Together with J ∈ [C,C]a defined by JZ =
C(I, Z) • I, the functor ⋆ equips [C,C]a with a symmetric monoidal structure.
We also get that − ⋆ G ⊢ G −⋆ −, i.e., this structure is closed.3 The functor
−⋆ : [C,C]opa × [C,C]a → [C,C]a is lax monoidal wrt. the composition monoidal
structure on [C,C]a. That UD −⋆ UR carries a monad structure if D is an
accessible comonad and R is an accessible monad is a consequence of this.

These observations suggest the possibility of abstraction by switching to a
more general setting. Instead of considering [C,C]a, we can consider an arbi-
trary category D equipped with a monoidal structure and a symmetric monoidal
structure that suitably agree. The appropriate notion of agreement is duoidal-
ity [10,2]. We will next consider this abstraction and see that monad-comonad
interaction laws are the measuring maps of an instance of López Franco and
Vasilakopoulou’s Sweedler theory for duoidal categories [20].

3 Sweedler Theory for Duoidal Categories

We review the Sweedler theory for duoidal categories [20] and show that monads
provide an instance.

Assume a symmetric duoidal category (D, I, ⋄, J, ⋆), i.e., a symmetric
monoidal category in MonCAToplax, that is also closed in the sense that − ⋆G
has a right adjoint G−⋆− in CAT. Explicitly, this means that we have a cate-
gory D equipped with a monoidal structure (I, ⋄), a symmetric monoidal closed
structure (J, ⋆,−⋆) and structural laws

J → I J → J ⋄ J
I ⋆ I → I (F ⋄G) ⋆ (H ⋄K) → (F ⋆ H) ⋄ (G ⋆K)

satisfying appropriate equations witnessing oplax monoidality of J : 1 → D and
⋆ : D × D → D as functors between monoidal categories for the (I, ⋄) monoidal
structure on D.
3 If C is locally κ-presentable with the κ-presentable objects closed under I and ⊗,
then the κ-accessible endofunctors on C form a monoidal category with ⋆ as tensor.
Garner and López Franco [13, Sect. 8.1] show that this monoidal category is closed,
but their closed structure is different from ours. Our G−⋆ H has the property that
natural transformations F → G−⋆H are H-residual functor-functor interaction laws
of F,G even if F is not accessible; this is not the case for Garner and López Franco’s.
This is why we do not restrict to fixed κ, and instead use all of [C,C]a.
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The internal hom object F −⋆ I is called the dual of F . Stretching this ter-
minology, the object F −⋆ H can be called the dual of F wrt. H.

We write Mon(D) (respectively Comon(D)) for the categories of monoids
(resp. comonoids) in D wrt. the (I, ⋄) monoidal structure.

The composition monoidal and Day convolution symmetric monoidal closed
structures (Id, ·) and (J, ⋆,−⋆) on [C,C]a yield an example of such a symmetric
duoidal category D. The categories Mon([C,C]a) and Comon([C,C]a) are those
of accessible monads and comonads.

The object J has a comonoid structure J → I, J → J ⋄ J , and the functor
−⋆ : Dop × D → D is lax monoidal wrt. the (I, ⋄) monoidal structure. The
operations

⋆ : D× D → D
−⋆ : Dop × D → D

lift to

⋆ : Comon(D)×Comon(D) → Comon(D) tensor of comonoids
−⋆ : (Comon(D))op ×Mon(D) → Mon(D) power of a monoid

in the sense that

Comon(D) × Comon(D)
⋆ //

U×U
��

Comon(D)

U

��
D × D

⋆ // D

(Comon(D))op × Mon(D)
−⋆ //

Uop×U
��

Mon(D)

U

��
Dop × D

−⋆ // D

via

ε = D0 ⋆ D1
ε0⋆ε1 // I ⋆ I // I

δ = D0 ⋆ D1
δ0⋆δ1 // (D0 ⋄D0) ⋆ (D1 ⋄D1) // (D0 ⋆ D1) ⋄ (D0 ⋆ D1)

η = I // I −⋆ I
ε−⋆ηR // D −⋆ R

µ = (D −⋆ R) ⋄ (D −⋆ R) // (D ⋄D)−⋆ (R ⋄R)
δ−⋆µR // D −⋆ R

Comonoid maps D0 ⋆ D1 → D are the same as maps ψ : UD0 ⋆ UD1 → UD
satisfying

D0 ⋆ D1

ψ //
ε0⋆ε1

��

D

ε

��
I ⋆ I // I

D0 ⋆ D1

ψ //

δ0⋆δ1 ��

D

δ

��
(D0 ⋄ D0) ⋆ (D1 ⋄ D1)

// (D0 ⋆ D1) ⋄ (D0 ⋆ D1)
ψ⋄ψ // D ⋄ D

(omitting the Us in the equations). Such maps ψ could be called D-residual
comonoid-comonoid interaction laws of D0, D1.

Monoid maps T → D −⋆ R are in bijection with maps ψ : UT ⋆ UD → UR
that satisfy

I ⋆ I // I

ηR

��
I ⋆ D

I⋆ε 55

η⋆D ))
T ⋆ D

ψ // R

(T ⋄ T ) ⋆ (D ⋄ D) // (T ⋆ D) ⋄ (T ⋆ D)
ψ⋄ψ// R ⋄ R

µR

��
(T ⋄ T ) ⋆ D

(T⋄T )⋆δ 44

µ⋆D **
T ⋆ D

ψ // R
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(again omitting the Us in the equations), which are known as measuring maps
from T to R by D and which we can also call R-residual monoid-comonoid
interaction laws of T , R.

The three Sweedler operations

C : (Comon(D))op ×Comon(D) → Comon(D) internal hom of comonoids
▷ : Comon(D)×Mon(D) → Mon(D) Sweedler copower of a monoid

M : (Mon(D))op ×Mon(D) → Comon(D) Sweedler hom of monoids
(univ. measuring comonoid)

are everywhere defined by the following adjunctions if the adjoints exist.

Comon(D)
−⋆D1 �� ⊣

Comon(D)

C(D1,−)

\\ Mon(D)
D▷−

�� ⊣

Mon(D)

D−⋆−
\\ Comon(D)

−▷T
�� ⊣

Mon(D)

M(T,−)

\\

They are defined for specific pairs of (co)monoids if the universal objects specified
by the following bijections exist.

D0 ⋆ D1 → D

D0 → C(D1, D)

UT ⋆ UD → UR meas.

T → D −⋆ R
D ▷ T → R

D → M(T,R)

The comonoid M(T, I) is called the Sweedler dual of the monoid T .
By definition, the comonoid C(D1, D) is the final comonoid interacting with

the comonoid D1 D-residually. The Sweedler hom M(T,R) is the final R-
residually interacting comonoid for the monoid T . The Sweedler copower D▷T
is the initial residual monoid for monoid-comonoid interactions of T and D.

If the Sweedler operations are everywhere defined, for which it suffices that
D is locally presentable [20, Thm. 20], then the category (Comon(D), J, ⋆, C) is
symmetric monoidal closed and the category (Mon(D),▷,−⋆,M) is copowered,
powered and enriched over (Comon(D), J, ⋆, C). However, local presentability
of C is not enough for local presentability (or even accessibility) of [C,C]a (for
example, [Set,Set]a is not accessible). In Sect. 5, we return to the question of
everywhere-definedness of the Sweedler operations for [C,C]a.

The Sweedler theory perspective allows us to establish some facts about
interaction laws of free monads very easily. For example, we can straightforwardly
derive a characterization of measuring maps from the free monoid F ∗ on F
(assuming it exists).

Proposition 1. Measuring maps U(F ∗)⋆UD → UR are in bijection with maps
F ⋆ UD → UR.

Proof. This is witnessed by the following chain of bijections.

F ⋆ UD → UR

F → UD −⋆ UR

F → U(D −⋆ R)

F ∗ → D −⋆ R
U(F ∗) ⋆ UD → UR meas. ⊓⊔
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Similarly, we can calculate closed-form expressions for the Sweedler hom from
a free monoid and the Sweedler copower of a free monoid. Here G† denotes the
cofree comonoid on G (if it exists).

Proposition 2. (i) M(F ∗, R) ∼= (F −⋆ UR)†. (ii) D ▷ F ∗ ∼= (F ⋆ UD)∗.

Proof. (i) As witnessed by the chain of bijections on the left below, comonoid
maps D → M(F ∗, R) and comonoid maps D → (F −⋆ UR)† are in bijection
naturally in D. (ii) The chain of bijections on the right below composes to a
bijection natural in R between monoid maps D ▷ F ∗ → R and monoid maps
(F ⋆ UD)∗ → R.

D → (F −⋆ UR)†

UD → F −⋆ UR

F → UD −⋆ UR

F → U(D −⋆ R)

F ∗ → D −⋆ R
D → M(F ∗, R)

(F ⋆ UD)∗ → R

F ⋆ UD → UR

F → UD −⋆ UR

F → U(D −⋆ R)

F ∗ → D −⋆ R
D ▷ F ∗ → R ⊓⊔

Example 2. Let C = Set. (i) Take F = 0, then F ∗ ∼= Id. We can calculate
F −⋆ UR ∼= 1, therefore M(F ∗, R) ∼= Id, for any monad R.

Next take FX = X2, then F ∗X ∼= µX ′. X + X ′2 (these are leaf-labelled
binary trees). We can calculate (F −⋆ UR)Y ∼= R (2× Y ), hence M(F ∗, R)Y ∼=
νY ′. Y × R (2 × Y ′) (node-labelled streams of bits for R = Id, node-labelled
nonempty colists of bits for RZ = 1 + Z).

Finally, take FX = 1 + X2, then F ∗X ∼= µX ′. X + 1 + X ′2 (leaf-labelled
nullary-binary trees). We calculate (F −⋆ UR)Y ∼= R 0 × R (2 × Y ), hence
M(F ∗, R)Y ∼= νY ′. Y × R 0 × R (2 × Y ′). For R = Id and any R such
that R 0 ∼= 0, this means that M(F ∗, R) ∼= 0. For RZ = 1 + Z, we get
M(F ∗, R)Y ∼= νY ′. Y × (1 + 2× Y ′) (node-labelled nonempty colists of bits).

(ii) Take F = 0, then F ⋆ ∼= Id. We can calculate (F ⋆ UD) ∼= 0, hence
D ▷ F ∗ ∼= Id, for any comonad D.

Take FX = X2, then F ∗X ∼= µX ′. X +X ′2. We can calculate (F ⋆UD)Z ∼=
D (Z2), therefore (D ▷ F ∗)Z ∼= µZ ′. Z +D (Z ′2).

Take FX = 1 + X2, then F ∗X ∼= µX ′. X + 1 + X ′2. We can calculate
(F ⋆ UD)Z ∼= D 1 +D (Z2), therefore (D ▷ F ∗)Z ∼= µZ ′. Z +D 1 +D (Z ′2).

These examples generalize to any wellpointed, locally presentable C with
exponentials, when R and D are strong.

In exactly the same way as above, comonoid maps D0 ⋆ D1 → G† are in
bijection with maps UD0 ⋆ UD1 → G, and C(D1, G

†) ∼= (UD1 −⋆ G)†.
In the rest of this paper, we ignore comonad-comonad interaction laws and

the internal hom of comonads since they are not our main focus. But develop-
ments similar to those for monad-comonad interaction laws and the Sweedler
hom of monads and the Sweedler copower of a monad in Sects. 4, 5) below can
be carried out for them as well.
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4 Monad-comonad Interaction Laws (Co)algebraically

We now return to monad-comonad interaction laws specifically and explain the
(co)algebraic perspective developed in [33]. (Props. 4 and 6 did not appear in
[33].) First, monad-comonad interaction laws admit the following useful charac-
terization in terms of (co)algebras of the (co)monads involved.

Proposition 3. R-residual monad-comonad interaction laws ψ of T , D are in
bijection with functors Ψ : (Coalg(D))op×Alg(R) → Alg(T ) that internal-hom
carriers, i.e., satisfy

(Coalg(D))op ×Alg(R)
Ψ //

Uop×U
��

Alg(T )

U
��

Cop × C ⊸ // C

Proof (sketch). Given an interaction law ψ, the functor Ψ is defined by

Ψ((Y, χ), (Z, ζ)) = (Y ⊸ Z, T (Y ⊸ Z)
ψ // DY ⊸ RZ

χ⊸ζ // Y ⊸ Z )

Conversely, given a functor Ψ , the corresponding interaction law ψ is defined by

ψ = T (Y ⊸ Z)
T (εY⊸ηRZ ) // T (DY ⊸ RZ)

ξ // DY ⊸ RZ

where (DY ⊸ RZ, ξ) = Ψ((DY, δY ), (RZ, µ
R
Z)). ⊓⊔

We remark that such functors Ψ are completely determined by their action on
(co)free (co)algebras. To be precise, there is a bijection between these functors
and functors Ψ ′ : (CoKl(D))op ×Kl(R) → Alg(T ) that satisfy

(CoKl(D))op ×Kl(R)
Ψ ′
//

Kop×K
��

Alg(T )

U
��

Cop × C ⊸ // C

where K : CoKl(D) → C is the left adjoint of the coKleisli adjunction of D and
K : Kl(R) → C is the right adjoint of the Kleisli adjunction of R.

The following reformulations of Prop. 1 enable a smooth derivation of further
characterizations of monad-comonad interaction laws in terms of what we call
runners, introduced next.

Corollary 1. R-residual interaction laws of T , D are in bijection with functors
Ψ : Coalg(D) → [Alg(R),Alg(T )]op satisfying

Coalg(D)

U
��

Ψ // [Alg(R),Alg(T )]op

[Alg(R),U ]op

��
C

(Y 7→Y⊸−)op // [C,C]op
[U,C]op // [Alg(R),C]op
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and also with functors Ψ : Alg(R) → [Coalg(D)op,Alg(T )] satisfying

Alg(R)

U
��

Ψ // [(Coalg(D))op,Alg(T )]

[(Coalg(D))op,U ]
��

C
(Z 7→−⊸Z) // [Cop,C]

[Uop,C] // [(Coalg(D))op,C]

Stateful Runners

Say that an R-residual stateful runner of T is an object Y ∈ C together with a
family of maps

θX : TX ⊗ Y → R(X ⊗ Y )

natural in X satisfying

X ⊗ Y

ηX⊗Y
��

X ⊗ Y

ηRX⊗Y��
TX ⊗ Y

θX // R(X ⊗ Y )

TTX ⊗ Y

µX⊗Y
��

θTX // R(TX ⊗ Y )
RθX // RR(X ⊗ Y )

µRX⊗Y��
TX ⊗ Y

θX // R(X ⊗ Y )

Maps (Y, θ) → (Y ′, θ′) between stateful runners are maps f : Y → Y ′ satisfying
R(X ⊗ f) ◦ θX = θ′X ◦ (TX ⊗ f). Stateful runners form a category SRunR(T ).

R-residual stateful runners of T with carrier Y are in bijection with monad
maps T → StRY where StRY is the R-transformed state monad for state object Y
defined by StRYX = Y ⊸ R(X ⊗ Y ).

They are also in bijection with functors Θ : Alg(R) → Alg(T ) that internal-
hom Y with the carrier, i.e., satisfy

Alg(R)
Θ //

U ��

Alg(T )

U��
C

Y⊸− // C

Proof (sketch). Given a stateful runner θ, the functor Θ is defined by

Θ(Z, ζ) = T (Y ⊸ Z)
θY⊸Z // Y ⊸ R((Y ⊸ Z)⊗ Y )

Y⊸Rev// Y ⊸ RZ
Y⊸ζ // Y ⊸ Z

Conversely, given a functor Θ, the stateful runner θ is

θX = TX
T coev // T (Y ⊸ X ⊗ Y )

T (Y⊸ηRX⊗Y )
// T (Y ⊸ R(X ⊗ Y ))

ξ // Y ⊸ R(X ⊗ Y )

where (Y ⊸ R(X ⊗ Y ), ξ) = Θ(R(X ⊗ Y ), µR
X⊗Y ). ⊓⊔

This observation is strengthened by the following proposition that also talks
about stateful runner maps.

Proposition 4. The following is pullback square:

SRunR(T )

U ��

// [Alg(R),Alg(T )]op

[Alg(R),U ]op
��

C
(Y 7→Y⊸−)op // [C,C]op

[U,C]op // [Alg(R),C]op
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Combining Prop. 4 with Cor. 1, we obtain a characterization of monad-
comonad interaction laws in terms of stateful runners.

Proposition 5. R-residual monad-comonad interaction laws T , D are in a bi-
jection with functors Ψ : Coalg(D) → SRunR(T ) preserving carriers, i.e.,
satisfying

Coalg(D)

U ''

Ψ // SRunR(T )

UvvC

Continuation-Based Runners

A D-fuelled continuation-based runner of T is an object Z ∈ C together with a
family of maps

θX : D(X ⊸ Z) → TX ⊸ Z

natural in X satisfying

D(X ⊸ Z)

εX⊸Z
��

θX // TX ⊸ Z

ηX⊸Z

��
X ⊸ Z X ⊸ Z

D(X ⊸ Z)

δX⊸Z ��

θX // TX ⊸ Z

µX⊸Z

��
DD(X ⊸ Z)

DθX // D(TX ⊸ Z)
θTX // TTX ⊸ Z

These runners form a category CRunD(T ).
D-fuelled continuation-based runners of T with carrier Z are in bijection with

monad maps T → CntDZ , where CntDZ is the D-transformed continuation monad
for answer object Z defined by CntDZX = D(X ⊸ Z) ⊸ Z.

Continuation-based runners are also in bijection with functors Θ :
(Coalg(D))op → Alg(T ) that internal-hom the carrier with Z, i.e., that sat-
isfy

(Coalg(D))op
Θ //

Uop

��

Alg(T )

U��
Cop −⊸Z // C

Moreover:

Proposition 6. The following is a pullback square:

CRunD(T )

U
��

// [(Coalg(D))op,Alg(T )]

[(Coalg(D))op,U ]
��

C
Z 7→−⊸Z // [Cop,C]

[Uop,C] // [(Coalg(D))op,C]

Combining this proposition with Cor. 1, we obtain:

Proposition 7. R-residual monad-comonad interaction laws of T , D are in
bijection with functors Ψ : Alg(R) → CRunD(T ) that preserve carriers, i.e.,
that satisfy

Alg(R)

U ''

Ψ // CRunD(T )

UuuC
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5 Combining Sweedler Theory and the (Co)algebraic
Perspective

We now combine our (co)algebraic observations with Sweedler theory.

Sweedler Hom

By definition, the Sweedler hom between monads T ,R, if it exists, is the comonad
M(T,R) together with an monad-comonad interaction law υ such that, for any
other comonad D and monad-comonad interaction law ψ, there exists a unique
comonad map g : D → M(T,R) satisfying

TX ⊗DY
TX⊗gY

//

ψX,Y

++
TX ⊗M(T,R)Y

υX,Y
// R(X ⊗ Y )

Comonad maps D → D′ are in bijection with functors Coalg(D) →
Coalg(D′) that preserve carriers. Therefore, by Prop. 5, the Sweedler hom,
if it exists, is the comonad M(T,R) together with a carrier-preserving functor
Υ : Coalg(M(T,R)) → SRunR(T ) such that, for any other comonad D and
carrier-preserving functor Ψ : Coalg(D) → SRunR(T ), there exists a unique
carrier-preserving functor Γ : Coalg(D) → Coalg(M(T,R)) such that

Coalg(D)
Γ
//

Ψ

++

U ..

Coalg(M(T,R))
Υ

//

U ((

SRunR(T )

UwwC

It follows that, if (SRunR(T ), U) is strictly comonadic, then M(T,R) exists
and (Coalg(M(T,R)), U) ∼= (SRunR(T ), U). (Should (SRunR(T ), U) fail to
be strictly comonadic, then M(T,R) may still exist, but with different algebras.)
Easy calculations show that U strictly creates equalizers of U -split pairs. Hence,
by the dual of Beck’s monadicity theorem, U is strictly comonadic if it is a left
adjoint. Under our assumptions on C, T and R from Sect. 2, all is well.

Theorem 1. If C is locally presentable and T and R are accessible mon-
ads on C, then SRunR(T ) is locally presentable and the forgetful functor
U : SRunR(T ) → C is a left adjoint. Hence the Sweedler hom M(T,R) ex-
ists, is accessible, and satisfies (Coalg(M(T,R)), U) ∼= (SRunR(T ), U).

Proof (sketch). We first show that SRunR(T ) is locally presentable. The func-
tor U : SRunR(T ) → C strictly creates colimits by easy calculations, and hence
SRunR(T ) is cocomplete. For local presentability, it therefore remains to show
that SRunR(T ) is accessible, which we do by appealing to the fact that ac-
cessible categories are closed under inserters and equifiers. The category of F -
coalgebras, for any accessible endofunctor F on C, is an inserter of accessible
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functors, and is therefore accessible by [1, Thm. 2.72]. For each Y , families
of maps θX : TX ⊗ Y → R(X ⊗ Y ) natural in X are in bijection with maps
χ : Y → (T −⋆ R)Y , so that R-residual stateful runners of T are equivalently
coalgebras (Y, χ) of the functor T −⋆ R, satisfying two equations. One equation
is an equality between two maps Y → (Id−⋆ R)Y , the other between two maps
Y → ((T · T ) −⋆ R)Y . It follows that SRunR(T ) is isomorphic to a full sub-
category of the category coalg(T −⋆ R) of (T −⋆ R)-coalgebras, and that this
full subcategory is the joint equifier of two natural transformations of accessible
functors coalg(T −⋆R) → coalg(Id−⋆R) and of two natural transformations of
accessible functors coalg(T −⋆ R) → coalg((T · T )−⋆ R). Accessible categories
are closed under equifiers of natural transformations of accessible functors [1,
Lemma 2.76], so SRunR(T ) is accessible and hence locally presentable.

As a colimit-preserving functor between locally presentable categories, U is a
left adjoint by Freyd’s special adjoint functor theorem, thus strictly comonadic.
The induced comonad is the Sweedler hom M(T,R). Accessibility of M(T,R)
follows from accessibility of the adjoints (the right adjoint by [1, Prop. 2.23]). ⊓⊔

Example 3. Let C = Set. Take TX = XS (the reader monad for state object S).
R-residual stateful runners of T are objects Y with families of maps XS × Y →
R(X×Y ) natural in X or, equivalently, maps Y → R(S×Y ) constrained by two
equations. For R = Id or R = 1+−, these are in bijection with maps Y → S. The
comonad with such structured objects Y as coalgebras, which is the Sweedler
hom of T and R, is DY = S × Y (the coreader monad for S). For a general
accessible monad R, the Sweedler hom can be described as a subcomonad of the
cofree comonad DY = νY ′. Y ×R(S × Y ′).

Take TX = X+ = µX ′.X × (1 + X ′) (the nonempty list monad with con-
catenation as multiplication, free semigroup monad). R-residual stateful runners
of T are objects Y with families of maps X+ × Y → R(X × Y ) natural in X
satisfying two equations or, equivalently, maps (X ×X)× Y → R(X × Y ) con-
strained by one equation or, equivalently, maps Y → R(Y + Y ) coassociative
wrt. the coproduct monoidal structure of Kl(R), i.e., making Y into a cosemi-
group. For R = Id, the corresponding comonad is the cofree cosemigroup (wrt.
the coproduct monoidal structure on Set) comonad. Its underlying functor is
DY ∼= Y × (Y + Y ).

These examples generalize to any wellpointed, locally presentable C with
exponentials, when R is a strong monad.

Sweedler Copower

The Sweedler copower of a monad T by a comonad D, if it exists, is by definition
the monad D ▷ T together with a monad-comonad interaction law υ such that,
for any other monad R and monad-comonad interaction law ψ, there exists a
unique monad map g : D ▷ T → R satisfying

TX ⊗DY
υX,Y

//

ψX,Y

**
(D ▷ T )(X ⊗ Y )

gX⊗Y
// R(X ⊗ Y )
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Monad maps R′ → R are in bijection with functors Alg(R) → Alg(R′) that
preserve carriers. Therefore, by Prop. 7, the Sweedler copower, if it exists, is
the monad D▷ T together with a carrier-preserving functor Υ : Alg(D▷ T ) →
CRunD(T ) such that, for any other monad R and carrier-preserving functor
Ψ : Alg(R) → CRunD(T ), there exists a unique carrier-preserving functor
Γ : Alg(R) → Alg(D ▷ T ) such that

Alg(R)
Γ
//

Ψ

**

U ..

Alg(D ▷ T )
Υ

//

U ''

CRunD(T )

UwwC

Consequently, if (CRunD(T ), U) is strictly monadic, then D ▷ T exists and
(Alg(D▷T ), U) ∼= (CRunD(T ), U). This is the case as soon as U is a right ad-
joint by Beck’s strict monadicity theorem, because U is easily verified to strictly
create U -split coequalizers.

Theorem 2. If C is locally presentable and T and D are accessible, then
CRunD(T ) is locally presentable and the forgetful functor U : CRunD(T ) → C
is a right adjoint. Hence the Sweedler copower D ▷ T exists, is accessible, and
satisfies (Alg(D ▷ T ), U) ∼= (CRunD(T ), U).

Proof (sketch). The proof is similar to that of Thm. 1. The functor U strictly cre-
ates limits, so CRunD(T ) is complete. The category CRunD(T ) is isomorphic
to a full subcategory of the category of algebras of the functor D ⋆ T , form-
ing a joint equifier. Categories of algebras of accessible endofunctors on C are
inserters of accessible functors, and hence form accessible categories. It follows
that CRunD(T ) is also accessible, and hence locally presentable. The functor
U strictly creates κ-filtered colimits, where κ is such that Id ⋆ T , D ⋆ T , and
(D ·D) ⋆ T are κ-accessible; in particular, U is accessible. Since U also strictly
creates limits, it is therefore a right adjoint by [1, Theorem 1.66]. The induced
monad is the Sweedler copower D▷T , which is accessible because both adjoints
are. ⊓⊔

Example 4. Let C = Set. Take TX = M ×X where (M,u, ∗) is a monoid (the
writer monad) andDY = S×Y (the coreader comonad).D-fuelled continuation-
based runners of T are objects Z with families of maps S×ZX → ZM×X natural
in X or, equivalently, maps (S ×M) × Z → Z, subject to two equations. The
monad with such structured objects Z as algebras, which is the Sweedler copower
of T and D, is the writer monad for the free monoid on S ×M quotiented by
(s, a) ∗ (s, b) = (s, a ∗ b) and u = (s, u).

6 Enriched Interaction Laws

In Sects. 2, 4, 5 above, we worked with (a full subcategory of) the category [C,C]
of endofunctors on a SMCC C and natural transformations between them, and
abstracted it to a duoidal category D in Sect. 3.
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An alternative is to proceed from an SMCC (V, I,⊗,⊸) (copowered over
itself by ⊗ and enriched and powered by ⊸) and another category C that is at
least copowered or enriched over V, or possibly both or even powered too. In
this setting, a V-enriched functor-functor interaction law is given by V-enriched
endofunctors F on V and G and H on C together with either a family of maps
ϕX,Y : FX •GY → H(X • Y ) in C that are V-natural in X ∈ V and Y ∈ C or,
equivalently, a family of maps ϕY,Z : F (C(Y,Z)) → C(GY,HZ) in V that are
V-natural in Y, Z ∈ C.

Two cases are of special interest.

– V = Set: Then the requirements that the category C, the functors F , G,
H and the natural transformation ϕ be V-enriched are automatically met,
but differently from the main setting of this paper, F is an endofunctor on
a generally different category than G and H.

– V = C: Then the requirements that the functors F , G, H and the natural
transformation ϕ be V-enriched become real restrictions, but F , G,H remain
endofunctors all on the same category.

The only case where the enriched setting agrees with the main one of this
paper of Sects. 2–5, i.e., the concept of interaction law where there are no non-
vacuous enrichment requirements and the endofunctors involved are all on the
same category, is the intersection of the above two: V = C = Set.

A more general situation in which the two settings do not differ too much is
when V = C and C is monoidally wellpointed. Then all functors with codomain
C are uniquely C-enriched (but may fail to admit an enrichment) and all natural
transformations between C-enriched functors with codomain C are C-enriched.

In the case V = C, which is probably the most interesting case for mathe-
matical semantics applications, the duoidal abstraction of Sect. 3 still applies.
We can take D to be (a suitable full subcategory of) C-[C,C], where C-[C,C] is
the ordinary category of C-functors C → C (strong endofunctors).

In the case of a general V, the simple duoidal abstraction ceases to apply. We
need to switch to an action ⋆ : W× D → D (in MonCAToplax) of a symmetric
duoidal category (W, IW, ⋄W, JW, ⋆W) on a monoidal category (D, I, ⋄) together
with a functor −⋆ : Dop×D → W such that −⋆G ⊢ G−⋆− (in CAT). Crucially,
the action ⋆ comes with structural laws

IW ⋆ I → I (F ⋄W G) ⋆ (H ⋄K) → (F ⋆ H) ⋄ (G ⋆K)

witnessing oplaxity of ⋆. Similarly to the simple duoidal situation, we get that
⋆ and −⋆ lift to functors ⋆ : Comon(W) × Comon(D) → Comon(D) and
−⋆ : (Comon(D))op × Mon(D) → Mon(W) and can then define measuring
maps and Sweedler-like operations and ask if they are everywhere defined.

The instantiation is given by (suitable full subcategories of) W = V-[V,V],
D = V-[C,C] and

(F ⋆ G)Z =
∫X,Y C(X • Y,Z) • (FX •GY ) =

∫ Y
F (C(Y,Z)) •GY

(G−⋆ H)X =
∫
Y,Z

(X ⊸ C(Y,Z)) ⊸ C(GY,HZ) =
∫
Y
C(GY,H(X • Y ))

where the integral signs now stand for V-enriched coends and ends.
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Runners as Generalized Algebras

Enriched monad-comonad interaction laws can be characterized as enriched func-
tors between categories of (co)algebras analogously to Props. 3, 5, 7. But one
pleasant feature of the enriched setting is that enriched versions of both state-
ful and continuation-based runners of T can be described as algebras of T in a
generalized sense.

Suppose we are given an SMCC V (copowered over itself by ⊗ and enriched
and powered by ⊸) and a V-enriched monad T on V. For a category K that is
enriched and powered over V, we say that an algebra of T in K as an object Y of
K together with family of maps χX : X ⋔ Y → TX ⋔ Y in K that is V-enriched
natural in X ∈ V and satisfies the equations

X ⋔ Y
χX // TX ⋔ Y

ηX⋔Y

��
X ⋔ Y

X ⋔ Y

χX
��

χX // TX ⋔ Y

µX⋔Y

��
TX ⋔ Y

χTX // TTX ⋔ Y

If V has enough limits, then these form a V-category Alg(T,K), and there is a
forgetful V-functor U : Alg(T,K) → C. (The limits are required to carve out
the object of algebra maps (Y, χ) → (Y ′, χ′) from the hom-object K(Y, Y ′).)

An algebra like this is equivalently an object Y ∈ K together with a V-
enriched monad map T → KntY where KntYX = K(X ⋔ Y, Y ). If V = K, an
algebra of T in this sense is the same as an algebra in the standard sense. In this
case, we have KntYX = (X ⊸ Y ) ⊸ Y .

Enriched runners of T turn out to be algebras of T in this generalized sense.
Given a category C enriched and copowered over V and a V-enriched monad R
on C, an V-enriched R-residual stateful runner of T is an object Y ∈ C together
with a family of maps θX : TX • Y → R(X • Y ) in C V-natural in X ∈ V and
satisfying two equations. Enriched stateful runners of T are in bijection with
algebras of T in (Kl(R))op.

Proof (sketch). The statement is wellformed since, as soon as C is V-enriched
and copowered by a functor • : V ⊗ C → C, we have that Kl(R) is V-enriched
and copowered by a functor V⊗Kl(R) → Kl(R) that agrees with • on objects.
Therefore (Kl(R))op is V-enriched and powered by the opposite of that functor.
We have the following chain of bijections:

TX • Y → R(X • Y ) in C V-nat. in X

TX • Y → X • Y in Kl(R) V-nat. in X

X ⋔ Y → TX ⋔ Y in (Kl(R))op V-nat. in X ⊓⊔

The statement about the category of enriched stateful runners is:

Proposition 8. If Alg(T, (Kl(R))op) exists as a V-category, then so does
V-SRunR(T ), and the following is a pullback square (in V-CAT).

V-SRunR(T )

U ��

// (Alg(T, (Kl(R))op)op

Uop

��
C J // Kl(R)
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In the special case when V = C and R = IdC, we get (Coalg(MC(T, Id), U) ∼=
((Alg(T,Cop))op, Uop) (“coalgebras” of the C-monad T ).

By the same token, given a V-enriched and powered category C and a V-
enriched comonad D on C, we can define what an V-enriched D-fuelled contin-
uation based runner of T is: an object Z ∈ C together with a family of maps
θX : D(X ⋔ Z) → TX ⋔ Z in C that is V-natural in X ∈ V and satisfies
two equations. Enriched continuation-based runners of T are in bijection with
algebras of T in the coKleisli category of D. Moreover:

Proposition 9. If Alg(T,CoKl(D)) exists as a V-category, then so does
V-CRunD(T ), and the following is a pullback square:

V-CRunD(T )

U ��

// Alg(T,CoKl(D))

U��
C J // CoKl(D)

7 Related Work

In semantics work, the use of monads as notions of computation was pioneered
by Moggi [23], but the first to study comonads (or algebraic theories comod-
elled) as notions of environment (not under that name) were Shkaravska and
Power [29]. This work was developed further by Plotkin and Power [24] and
then Møgelberg and Staton [22] (who considered the enriched setting). Stateful
runners appeared in Uustalu’s paper [32], who noticed that nonresidual stateful
runners of a set monad induced by an algebraic theory are in bijection with
coalgebras of the comonad induced by the same theory (comodels). The concept
of monad-comonad interaction law was distilled by Katsumata et al. [16], who
also noticed that the universal interacting comonad of a monad is an instance
of the Sweedler hom from Sweedler theory for duoidal categories; they calcu-
lated the dual and Sweedler dual for a number of cases. Uustalu and Voorneveld
[33] noticed the bijection between monad-comonad interaction laws and suit-
able functors between categories of (co)algebras and that, in addition to stateful
runners, monad-comonad interaction laws relate to continuation-based runners.
Garner [12,11] further developed this thread. In particular, he gave a formula
for the Sweedler duals of polynomial monads, and demonstrated properties of
the dual/Sweedler dual (costructure/cosemantics) adjunction for accessible Set-
(co)monads, such as its idempotency. He also pointed out that, when T and
R are accessible Set-monads, the coalgebras of the Sweedler hom M(T,R) are
algebras of T in (Kl(R))op with, as maps between them, maps in Set that
J : Set → Kl(R) sends to algebra maps.

Independently, and earlier than in the semantics community, monad-comonad
interaction laws were discovered among functional programmers by Kmett [19]
and Freeman [8].

There is a disconnected and more mature thread of work in universal alge-
bra started by Freyd [9] (or even Kan [15]), and continued by Tall and Wraith
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[31,34] and Bergman and Hausknecht [5], studying functors from coalgebras of
a covariety to algebras (like those of our Prop. 3) in the case V = Set, R = IdC
of our enriched setting. (There are also textbook expositions, by Popescu and
Popescu [26, Ch. 3] and Bergman [4, Ch. 10].) Strangely, this thread seems to
have never been picked up in semantics work. It was not cited in the work by
Power and coauthors [29,24], and the later authors (except Garner) have been
unaware of it.

Sweedler’s original work [30] was for (co)algebras over a field. Anel and Joyal
[3] studied the Sweedler theory in great detail for dg-(co)algebras [3]. It was
abstracted for (co)monoids in symmetric monoidal closed categories by Porst
and Street [28] and Hyland et al. [14] (the internal hom of comonoids is older
and goes back to Porst [27]) and then generalized for duoidal categories by López
Franco and Vasilakopoulou [20]. A typical example duoidal structure on a functor
category is given by the Day convolution and pointwise tensor. Garner and López
Franco [13] considered the example of composition and the Day convolution of
endofunctors (κ-accessible for a fixed κ).

We do not know the earliest reference to generalized algebras of a monad,
in particular, coalgebras of a monad. The latter were considered by Poinsot and
Porst [25] (and models of algebraic theories elsewhere than Set are standard).

8 Conclusion and Future Work

We have studied universal (co)monads for monad-comonad interactions. We have
shown that an elegant setting for such a study on a more general level is pro-
vided by Sweedler theory for general duoidal categories as developed by López
Franco and Vasilakopoulou [20]. But for results about monad-comonad inter-
action specifically it is fruitful to combine it with the (co)algebraic perspective
on monad-comonad interaction laws [33]. This makes it possible to characterize
the universal (co)monads defined by Sweedler operations via their categories of
(co)algebras in terms of different flavors of runners.

We have witnessed that there is the choice of whether to work with ordinary
monad-comonad interaction laws or with the enriched version. It remains to
be seen which option yields a richer or more useful theory. An issue with the
enriched option is that we know little about accessibility for enriched categories,
although some studies exist (e.g., [18,6,7]).

We refrained from discussing it in this paper altogether, but of course one can
specifically study interaction laws of monads and comonads specified by algebraic
theories. We intend to do this in a sequel paper. We also plan to explain properly
the significance for semantics of the constructions of this paper by describing in
detail how they work on semantics-motivated examples and what this means.
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