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Strong monads are important for several applications, in particular, in the denotational semantics
of effectful languages, where strength is needed to sequence computations that have free variables.
Strength is non-trivial: it can be difficult to determine whether a monad has any strength at all, and
monads can be strong in multiple ways. We therefore review some of the most important known facts
about strength and prove some new ones. In particular, we present a number of equivalent charac-
terizations of strong functor and strong monad, and give some conditions that guarantee existence or
uniqueness of strengths. We look at strength from three different perspectives: actions of a monoidal
category V, enrichment over V, and powering over V. We are primarily motivated by semantics of
effects, but the results are also useful in other contexts.

1 Introduction

Following Moggi [23], effectful computations are often modelled using strong monads. Strength also
appears in other applications; for example, strength is crucial for the notion of commutative monad [12]
used in the construction of tensor products on categories of algebras [21, 13], and in measure theory [16];
strong functors are also important in the study of abstract syntax [5]. It can be difficult in these contexts
to determine whether a given functor or monad admits a strength, and various facts have been proved
about strength to help with this. Some appear in published work (often as a small lemma in a paper not
primarily about strength) [24, 28, 20], while others are folklore. These have some overlap, and levels of
generality vary.

We collect together a number of important results about strength. There are two groups of results in
particular that we focus on. One is the equivalence of various definitions of strong functor and strong
monad. These are useful in particular for reasoning about strong functors and monads, and are also useful
for constructing strengths for ordinary functors and monads. The other is results concerning existence
and uniqueness of strengths for functors and monads. Several of these results are known, but a good
number are, to the best of our knowledge, new.

The difference between monads and strong monads is best seen by looking at the Kleisli extension
operator. If T is the underlying endofunctor of a monad, then every morphism f : X → TY induces a
morphism f † : T X → TY , as on the left below. In the Cartesian case, if T forms a strong monad, then
the Kleisli extension has the more general form on the right.

f : X → TY
f † : T X → TY

f : Γ×X → TY
f † : Γ×T X → TY

Our main interest is the semantics of effects (though the results we give here can be applied more widely).
Strength in this case enables interpretation of terms with free variables. Consider the following typing
rule:

Γ ⊢ t : A Γ,x : A ⊢ t ′ : B
Γ ⊢ let x = t in t ′ : B
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In a monadic model of a call-by-value language, the terms t and t ′ would be interpreted as morphisms
JtK : JΓK→ T JAK and Jt ′K : JΓK×JAK→ T JBK, where T X is the object of (possibly effectful) computations
that return values in X . Using the strong Kleisli extension of Jt ′K we can interpret the let as

Jlet x = t in t ′K : JΓK
⟨idJΓK,JtK⟩
−−−−−→ JΓK×T JAK

Jt ′K†

−−→ T JBK

The Kleisli extension of an ordinary monad suffices when Γ is empty (because then JΓK = 1), but we
need the strong version in general.

Instead of assuming products, we work in the more general setting of an action of a monoidal cat-
egory on another category. Strengths with respect to an action appear for example in [2, 4, 22, 9, 30].
Working with actions instead of a Cartesian, symmetric monoidal or general monoidal structure does not
add much complexity, but is useful for some of the results we give. We also approach strength from two
other perspectives. The enriched perspective is well-known for categories enriched over themselves and
goes back to Kock [15]; by generalizing to actions, we remove the self-enrichment restriction. The third
perspective, which we call powering, is less well-known, but was also first considered by Kock [14]. The
same three-perspective approach can be found in the nLab article on strong monads [29], but for the most
part still only for the self-enriched case.

We discuss actions, strong functors, and strong monads in Sections 2 to 4, looking especially at
uniqueness and existence of strengths for functors. Our novel contributions are sufficient criteria for
unique existence (based on our notion of functional completeness), and for non-unique existence (based
on our notion of weak functional completeness). We also provide a number of examples. We consider
enrichment in Section 5 and powering in Section 6. In Appendix A, we discuss biactions, bistrong
functors and commutative monads.

2 Monoidal categories and actions

We begin by recalling the notions of monoidal category and action, and give our primary examples of
these.

Definition 2.1. A monoidal category (V, I,⊗) consists of a category V, an object I ∈ V called the unit,
and a functor ⊗ : V×V → V called the tensor, equipped with three natural isomorphisms

λΓ : I ⊗Γ → Γ ρΓ : Γ → Γ⊗ I αΓ1,Γ2,Γ3 : (Γ1 ⊗Γ2)⊗Γ3 → Γ1 ⊗ (Γ2 ⊗Γ3)

satisfying the following coherence conditions:

Γ⊗∆ Γ⊗∆

(Γ⊗ I)⊗∆ Γ⊗ (I ⊗∆)

ρΓ⊗∆

αΓ,I,∆

Γ⊗λ∆

(Γ1 ⊗Γ2)⊗ (Γ3 ⊗Γ4)

((Γ1 ⊗Γ2)⊗Γ3)⊗Γ4 Γ1 ⊗ (Γ2 ⊗ (Γ3 ⊗Γ4))

(Γ1 ⊗ (Γ2 ⊗Γ3))⊗Γ4 Γ1 ⊗ ((Γ2 ⊗Γ3)⊗Γ4)

αΓ1 ,Γ2 ,Γ3⊗Γ4αΓ1⊗Γ2 ,Γ3 ,Γ4

αΓ1,Γ2 ,Γ3⊗Γ4

αΓ1 ,Γ2⊗Γ3 ,Γ4

Γ1⊗αΓ2 ,Γ3 ,Γ4

Example 2.2. Every category V with finite products forms a Cartesian monoidal category (V,1,×), in
which the unit is the terminal object 1, and the tensor of X and Y is the binary product X ×Y .
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Example 2.3. Let Set⋆ be the category of pointed sets and point-preserving functions. Objects of Set⋆
are sets X with a distinguished element ⋆ ∈ X ; morphisms are functions f : X → Y such that f⋆ = ⋆.
We consider two monoidal structures on Set⋆. The first is the Cartesian monoidal structure, which is
inherited from Set (the product X ×Y is the product of sets, with distinguished element (⋆,⋆)). The
second is the smash product X ⊗Y = {(x,y) ∈ X ×Y | x = ⋆ ⇔ y = ⋆}, which has the two-element
pointed set {⋆,1} as the unit. On morphisms, ⊗ is given by ( f ⊗ g)(x,y) = (⋆,⋆) if f x = ⋆ or gy = ⋆,
and by ( f ⊗g)(x,y) = ( f x,gy) otherwise.
Example 2.4. Let M= (M,1, ·) be a (set-theoretic) monoid. The category ActM of right M-actions has
as objects sets X equipped with a function (∗) : X×M →X such that x∗1= x and x∗(m ·m′)= (x∗m)∗m′

for all x ∈ X and m,m′ ∈ M. Morphisms f : X → Y in ActM are functions that preserve the action, i.e.
f (x ∗m) = ( f x) ∗m for all x ∈ X and m ∈ M. The category ActM is Cartesian monoidal; the terminal
object 1 is the one-element set equipped with the unique ∗, and the product X ×Y is the product of sets
with (x,y)∗m = (x∗m,y∗m).

When M is natural numbers with addition, ActM is isomorphic to the category of sets X equipped
with an endofunction e : X → X ; morphisms f : X →Y are functions such that f ◦e = e◦ f . The action on
an object X is x∗n = en x. This is isomorphic to the category [N,Set] where N is the one-object category
with natural numbers as morphisms and addition as composition.
Definition 2.5. A (left) action1 of a monoidal category (V, I,⊗) on a category C is a functor ▷ : V×C →
C equipped with two natural isomorphisms

λX : I ▷X → X αΓ′,Γ,X : (Γ′⊗Γ)▷X → Γ
′ ▷ (Γ▷X)

satisfying the following coherence conditions:

(I ⊗Γ)▷X I ▷ (Γ▷X)

Γ▷X Γ▷X

(Γ⊗ I)▷X Γ▷ (I ▷X)

λΓ▷X

Γ▷λX

αΓ,I,X

ρΓ▷X

λΓ▷X

αI,Γ,X
(Γ1 ⊗Γ2)▷ (Γ3 ▷X)

((Γ1 ⊗Γ2)⊗Γ3)▷X Γ1 ▷ (Γ2 ▷ (Γ3 ▷X))

(Γ1 ⊗ (Γ2 ⊗Γ3))▷X Γ1 ▷ ((Γ2 ⊗Γ3)▷X)

αΓ1 ,Γ2 ,Γ3▷XαΓ1⊗Γ2 ,Γ3 ,X

αΓ1 ,Γ2 ,Γ3▷X

αΓ1 ,Γ2⊗Γ3 ,X

Γ1▷αΓ2 ,Γ3 ,X

A left action of V on C is the same as a monoidal functor from V to [C,C], where we equip [C,C]
with the composition monoidal structure.
Example 2.6. The tensor of any monoidal category V (in particular, the examples above) forms an action
of V on itself, with X ▷Y = X ⊗Y .
Example 2.7. Consider V = Set with the Cartesian monoidal structure. A category C has copowers over
Set when for all sets Γ and objects X ∈ C, the coproduct Γ•X =

∐
γ∈Γ

X ∈ V exists. The object Γ•X is
the copower of Γ and X ; its universal property is that morphisms f : Γ •X → Y are in natural bijection
with tuples ( fγ : X → Y )γ∈Γ of morphisms, by taking fγ = f ◦ inγ . If C has copowers over Set, then they
form an action Γ ▷X = Γ •X of (Set,1,×) on C. For C = Set, the copower X •Y is just the Cartesian
product X ×Y .

In the relationship between strength and enrichment explained below in Section 5, the action ▷ forms
the copowers (or tensors) of the enriched category in a more general sense of ‘copower’. Any locally
small category C is uniquely Set-enriched. Its copowers, if they exist, are given by small coproducts as
described above.

1A category C with a left action of a monoidal category V is also called a (left) V-actegory.
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3 Strong functors

Throughout this section, we suppose a monoidal category V, whose objects Γ we view as contexts (be-
cause of their role in the introduction as interpretations of typing contexts). We then consider strong func-
tors F : C→D, where C and D are categories equipped with actions ▷C : V×C→C and ▷D : V×D→D.
We have no need to assume that V is a symmetric monoidal category (but this is the case for all of our
examples). A C-morphism Γ▷C X → Y can be thought of as a morphism from X to Y in context Γ, and
similarly for D.

There are several equivalent definitions of strong functor. The following is not the standard one, but
matches closely the intuition that the context Γ should be preserved, enabling the interpretation of terms
with free variables.

Definition 3.1. A (left) strong functor F : C → D consists of an object FX ∈ D for each object X ∈ C
and a D-morphism F(Γ) f : Γ▷D FX → FY for each C-morphism f : Γ▷C X →Y , such that F(Γ) is natural
in Γ ∈ V, and

F(I)λX = λFX for X ∈ C
F(Γ′⊗Γ)(g◦ (Γ′ ▷C f )◦αΓ′,Γ,X) = F(Γ′)g◦ (Γ′ ▷D F(Γ) f )◦αΓ′,Γ,FX for f : Γ▷C X → Y , g : Γ′ ▷C Y → Z

If F,G : C → D are strong functors, then a strong natural transformation τ : F ⇒ G consists of a mor-
phism τX : FX → GX for each X ∈ C, such that τY ◦F(Γ) f = G(Γ) f ◦ (Γ▷D τX) for each f : Γ▷C X → Y .

Every strong functor F has an underlying ordinary functor F : C → D, given on objects by FX = FX
and on morphisms f : X →Y by F f =F(I)( f ◦λX)◦λ

−1
FX : FX →FY . Every strong natural transformation

α : F ⇒ G is a natural transformation α : F ⇒ G. There is an identity strong functor Id and each pair of
strong functors F : C → D and G : D → E has a composition G ·F : C → E. These are given on objects
X and morphisms f : Γ▷C X → Y by

IdX = X Id(Γ) f = f (G ·F)X = G(FX) (G ·F)(Γ) f = G(Γ)(F(Γ) f )

Example 3.2. Let ▷C and ▷D both be the action of Set on itself given by the Cartesian monoidal structure.
The strong functor List : Set → Set maps each set X to the set of lists over X ; on functions f : Γ×X →Y
it is given by List(Γ) f (γ, [x1, . . . ,xn]) = [ f (γ,x1), . . . , f (γ,xn)]. The ordinary functor List : Set → Set is
then just the usual list functor, given on functions by List f [x1, . . . ,xn] = [ f x1, . . . , f xn].

An alternative definition is that a strong functor is an ordinary functor equipped with a strength. This
is the more common definition, and we make some use of it below.

Definition 3.3. A (left) strength for an ordinary functor F : C → D is a family of D-morphisms strΓ,X :
Γ▷D FX → F(Γ▷C X), natural in Γ ∈ V and X ∈ C and such that

I ▷D FX

F(I ▷C X) FX

strI,X

FλX

λFX

(Γ′⊗Γ)▷D FX Γ′ ▷D (Γ▷D FX) Γ′ ▷D F(Γ▷C X)

F((Γ′⊗Γ)▷C X) F(Γ′ ▷C (Γ▷C X))

α
Γ′,Γ,FX Γ′▷DstrΓ,X

str
Γ′,Γ▷CXstr

Γ′⊗Γ,X

Fα
Γ′,Γ,X

We show the equivalence between these two definitions of strong functor and the corresponding fact
for strong natural transformations.
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Proposition 3.4. If F : C→D is an ordinary functor, then there is a bijection between (1) strong functors
F̂ such that F̂ = F, and (2) strengths str for F. If F,G : C → D are functors equipped with the equivalent
data of this bijection, then a natural transformation τ : F ⇒ G is a strong natural transformation τ : F̂ ⇒
Ĝ exactly when the following commutes:

Γ▷D FX Γ▷D GX

F(Γ▷C X) G(Γ▷C X)

Γ▷DτX

strΓ,X strΓ,X

τΓ▷CX

Proof. By the Yoneda lemma, families of functions F̂(Γ) : C(Γ▷C X ,Y )→D(Γ▷D FX ,FY ) natural in Y ∈
C are in bijection with morphisms strΓ,X : Γ▷D FX →F(Γ▷C X). If F̂ is a strong functor with F̂ =F , then
F̂(Γ) is natural in Y . Moreover, such a natural family forms a strong functor F̂ with F̂ = F exactly when
strΓ,X = F̂(Γ) idΓ▷CX is a strength for F . The fact about natural transformations follows immediately from
the fact that given a strength str, the corresponding strong functor is given by F̂(Γ) f = F f ◦ strΓ,X .

3.1 Uniqueness and existence of strengths

It is well-known that every endofunctor F on Set has a unique strength with respect to the Cartesian
monoidal structure. Various other results about uniqueness of strengths have been proved (e.g. [23, 28,
20]). Uniqueness results are useful for determining whether a given functor admits a strength at all when
for some reason there is only one candidate to check. Conversely, existence results make it easier to
construct strengths for functors. We supply uniqueness and existence results for strengths in this section.

We first define a notion of functional completeness for an action, which guarantees both uniqueness
and existence of strengths.2 We call the elements γ ∈ V(I,Γ) the points of Γ. For each morphism
f : Γ ▷D X → Y in D, we have a function L f M : V(I,Γ) → D(X ,Y ), applying f to points, by defining
L f Mγ = f ◦ (γ ▷D X)◦λ

−1
X .

Definition 3.5. We say that ▷D is functionally complete if, for every function ζ : V(I,Γ) → D(X ,Y ),
there is a unique D-morphism f : Γ▷D X → Y such that L f M = ζ .

Writing ΦΓζ for the unique f from the definition, we get a family of functions Φ that are the inverses
of the functions L−M. This family Φ is natural in Γ, X and Y . Moreover, it satisfies

ΦIζ = ζ idI ◦λX for ζ : V(I, I)→ D(X ,Y )
ΦΓ′⊗Γζ = ΦΓ′(λγ ′.ΦΓ(λγ. ζ ((γ ′⊗ γ)◦ρI)))◦αΓ′,Γ,X for ζ : V(I,Γ′⊗Γ)→ D(X ,Y )

The key consequence is the following (which is a corollary of Propositions 3.10 and 3.13 below):

Proposition 3.6. If ▷D is functionally complete, then every functor F : C → D has a unique strength, and
every natural transformation τ : F ⇒ G of functors C → D is strong.

Example 3.7. The category Set with the Cartesian product is functionally complete; this is why endo-
functors on Set have unique strengths. More generally, if D has copowers over Set, then the action • of

2This notion is similar in spirit to functional completeness in categorical logic [17, 25], but not the same. In categorical
logic, V would be functionally complete if, for any V[Γ]-morphism z : X →Y , there were a unique V-morphism f : Γ⊗X →Y
such that J f ◦(γ ⊗X)◦λ

−1
X = z. Here by V[Γ] we mean the monoidal category obtained by freely extending V with a morphism

γ : I → Γ—an “indeterminate” point of Γ—and by J we mean the inclusion of V in V[Γ]. (For a Cartesian monoidal V, one
would extend to a Cartesian monoidal category V[Γ] instead of just a monoidal category.) We are looking for a more distinctive
name for our notion.
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(Set,1,×) on D is functionally complete. In this case, points γ ∈ Set(1,Γ) are just elements of the set
Γ. Functional completeness thus says equivalently that, for every function ζ : Γ → D(X ,Y ), there is a
unique f : Γ•X → Y such that f ◦ inγ = ζ γ for all γ ∈ Γ. This is exactly the universal property of Γ•X .

Example 3.8. In contrast, the Cartesian product of pointed sets is not functionally complete as an action
of (Set⋆,1,×) on itself: every Γ has only one point, so the morphisms f : Γ×X → Y fail to be unique.
The Cartesian product of posets also fails to be functionally complete as an action of (Poset,1,×) on
itself: the morphisms f : Γ×X →Y in this case are necessarily given by f (γ,x) = ζ (γ)(x), so are unique
if they exist, but this f may fail to be monotone.

There are few examples of functionally complete actions. We break down the notion of functional
completeness into well-pointedness, which guarantees uniqueness of strength, and the existence of a
weak functional completeness structure, which guarantees existence of a canonical strength for each
functor. Both of these have more examples.

Definition 3.9. The action ▷D is said to be well-pointed (or have enough points) when L−M is injective,
i.e. when L f M = LgM implies f = g for all f ,g : Γ▷D X → Y .

If the action is a monoidal category acting on itself, well-pointedness in our sense is equivalent to
Abramsky and Heunen’s (monoidal) well-pointedness [1]. According to their definition, a monoidal
category V is well-pointed if two morphisms f ,g : X ⊗X ′ → Y are equal whenever f ◦ (ξ ⊗ ξ ′) ◦ρI =
g ◦ (ξ ⊗ ξ ′) ◦ρI for all ξ : I → X , ξ ′ : I → X ′. For a Cartesian monoidal category acting on itself, our
notion of well-pointedness agrees with the usual notion defined with respect to a terminal object (two
morphisms f ,g : X → Y are equal if f ◦ξ = g◦ξ for all ξ : 1 → X). A similar simplification is possible
when each −▷D X has a right adjoint (i.e. there is a corresponding enrichment in the sense of Section 5,
for example when ▷D is the action of a monoidal closed category on itself). When these right adjoints
exist, if two V-morphisms f ,g : Γ → ∆ are equal whenever f ◦ γ = g ◦ γ for all γ : I → Γ, then ▷D is
well-pointed.

Functional completeness is a strictly stronger property than well-pointedness; the latter implies that
strengths are unique if they exist, but does not guarantee existence.

Proposition 3.10. Suppose that ▷D is well-pointed. A functor F : C → D has a strength exactly when,
for every Γ,X, there is a morphism strΓ,X : Γ▷D FX → F(Γ▷C X) such that

LstrΓ,XMγ = F(LidΓ▷CXMγ) for γ ∈ V(I,Γ) (1)

When the (necessarily unique) morphisms strΓ,X exist, str is the only strength for F. Moreover, if G,H :
C → D are strong functors, then every natural transformation τ : G ⇒ H is strong.

Proof. If a family of morphisms str is a strength, then

LstrΓ,XMγ = F(γ ▷C X)◦ strI,X ◦λ
−1
FX = F(γ ▷C X)◦Fλ

−1
X = F(LidΓ▷CXMγ)

using naturality in Γ and the strength axiom for λ . Well-pointedness therefore implies uniqueness.
To show that every family of morphisms str satisfying the condition is a strength, it suffices by well-
pointedness to consider the image of each axiom under L−M and then calculate. A similar proof shows
that every τ is strong.

Example 3.11. The smash product ⊗ of pointed sets is a well-pointed action of (Set⋆, I,⊗) on Set⋆. In
this case, the unit I is the two-element pointed set {⋆,1}; since morphisms I → Γ send ⋆ to ⋆, points of
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Γ are in bijection with elements of Γ, and so, for any ζ , there is at most one f with L f M = ζ . In contrast,
the Cartesian product of pointed sets is not well-pointed, because every Γ has only one point.

The Cartesian product of posets is a well-pointed action of (Poset,1,×) on itself, again because
points of Γ are in bijection with elements of Γ. If F is an endofunctor on Poset, then any strength for
F would necessarily be given by strΓ,X(γ, t) = F(λx.(γ,x))t; this forms a strength for F exactly when it
is monotone. This property enables us to show that some functors have no strength. For example, the
functor |−| : Poset → Poset that sends (X ,≤) to the discrete poset (X ,=) has no strength because strΓ,X

is not a monotone function Γ×|X | → |Γ×X |.
For existence of strengths, we introduce the following.

Definition 3.12. A weak functional completeness structure Φ for ▷D is an assignment of a D-morphism
ΦΓζ : Γ▷X → Y satisfying LΦΓζ M = ζ to each function ζ : V(I,Γ)→ D(X ,Y ). We require this assign-
ment to be natural in Γ, X , Y , and to satisfy

ΦΓ′⊗Γζ = ΦΓ′(λγ
′.ΦΓ(λγ. ζ ((γ ′⊗ γ)◦ρI)))◦αΓ′,Γ,X for ζ : V(I,Γ′⊗Γ)→ D(X ,Y )

If ▷D is well-pointed, then there can be at most one weak functional completeness structure Φ for
▷D, because morphisms f such that L f M = ζ are unique if they exist; such a Φ exists exactly when ▷D
is functionally complete. If ▷D is not well-pointed, then in general there can be several weak functional
completeness structures for ▷D.
Proposition 3.13. Let Φ be a weak functional completeness structure for the action ▷D. For every functor
F : C → D, there is a strong functor F̂ such that F̂ = F; this is defined on morphisms f : Γ ▷C X → Y
by F̂(Γ) f = ΦΓ(λγ.F(L f Mγ)). Moreover, every natural transformation α : F ⇒ G is a strong natural
transformation F̂ ⇒ Ĝ, for F̂ and Ĝ thus constructed.

Weak functional completeness does not necessarily deliver the canonical strengths for the identity
functor and the composition of functors with strength.
Example 3.14. We construct a weak functional completeness structure for (Set⋆,1,×) acting on itself.
Every Γ has exactly one point ⋆, so to give a function ζ : Set⋆(1,Γ) → Set⋆(X ,Y ) is just to choose a
morphism ζ (⋆) : X → Y of pointed sets. We can therefore define the morphism ΦΓζ : Γ×X → Y by
ΦΓζ (γ,x) = ζ (⋆)(x). This is in fact the only possible Φ in this case, even though the action fails to
be well-pointed. By Proposition 3.13, every endofunctor F on pointed sets forms a strong functor with
F̂(Γ) f (γ, t) = F(λx. f (⋆,x)) t; this corresponds to the strength strΓ,X(γ, t) = F(λx.(⋆,x)) t. There may in
general be other strengths for F . For example, the identity functor on Set⋆ also has the canonical strength
idΓ×X : Γ×X → Γ×X .
Example 3.15. We give an example of an action that has multiple weak functional completeness struc-
tures. Fix a set E, and let D be the Kleisli category of the monad −+E on Set: objects are sets, and
morphisms f ∈ D(X ,Y ) are functions f : X → Y +E; the identities are the left coprojections inl, and the
composition of f : X → Y +E with g : Y → Z +E is [g, inr]◦ f : X → Z +E. This category is coCarte-
sian, as is the Kleisli category of any monad on any coCartesian category. It therefore forms a monoidal
category (D,0,+), which acts on itself. Every Γ has exactly one point [] because 0 is initial, so a function
ζ : D(0,Γ) → D(X ,Y ) just chooses a single function ζ ([]) : X → Y +E. For each e ∈ E, we therefore
have a morphism Φe

Γ
ζ = [inr ◦ e ◦ ⟨⟩,ζ ([])] ∈ D(Γ+X ,Y ), and Φe is a weak functional completeness

structure. Hence in general, there is more than one Φ.
We note that, if D has copowers over Set, then well-pointedness of D amounts to the canonical

morphisms V(I,Γ) •X → Γ ▷X being epimorphisms, while weak functional completeness amounts to
the monoidal natural transformation V(I,−) • (=) → (−) ▷ (=) being a split monomorphism (in the
category of lax monoidal functors V → [D,D]). Functional completeness is equivalent to the latter being
an isomorphism.
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4 Strong monads

We now turn to strong monads. There is a richer collection of equivalent definitions of strong monad
than there is of strong functor. Because of our focus on semantics, the primary definition we use asks
for a strong Kleisli extension operator (−)†, as in the introduction. Again we work in the action-based
setting, so we suppose a monoidal category V that acts on a category C. We drop the subscript on the
action, writing ▷ instead of ▷C.

Definition 4.1. A strong monad T= (T,η ,(−)†) consists of an object T X ∈ C and morphism ηX : X →
T X for each X ∈ C, and a morphism f † : Γ▷T X → TY for each f : Γ▷X → TY , such that (−)† is natural
in Γ ∈ V and

(ηX ◦λX)
† = λT X for X ∈ C

f † ◦ (Γ▷ηX) = f for f : Γ▷X → TY
g† ◦ (Γ′ ▷ f †)◦αΓ′,Γ,T X = (g† ◦ (Γ′ ▷ f )◦αΓ′,Γ,X)

† for f : Γ▷X → TY , g : Γ′ ▷Y → T Z

If S and T are strong monads, then a strong monad morphism τ : S → T consists of a morphism τX :
SX → T X for each X ∈ C, such that τX ◦ηX = ηX for each X ∈ C and τY ◦ f † = (τY ◦ f )† ◦ (Γ▷ τX) for
each f : X → SY .

The morphisms η are collectively called the unit of T, and (−)† is the Kleisli extension. If T =
(T,η ,(−)†) is a strong monad, then the assignment on objects T extends to a strong functor with T (Γ) f =
(ηY ◦ f )† : Γ▷T X → TY for f : Γ▷X →Y . The unit η is then a strong natural transformation η : Id ⇒ T ,
as is the multiplication µ : T ·T ⇒ T , given by µX = λ

†
T X ◦λ

−1
T T X . Every strong monad morphism τ : S→T

is a strong natural transformation τ : S ⇒ T .

Example 4.2. Consider Set with the Cartesian monoidal structure, acting on itself. The strong monad
List on Set maps each set X to the set ListX of lists over X . The unit η is given by the singleton lists ηX x=
[x]. The Kleisli extension f † : Γ×ListX → ListY of f : Γ×X → ListY is defined by f †(γ, [x1, . . . ,xn]) =
f (γ,x1)++ · · ·++ f (γ,xn) where ++ is concatenation of lists. The strong functor List is the strong functor
defined in Example 3.2 (and the ordinary functor List is then the usual list endofunctor on Set).

If T= (T,η ,(−)†) is a strong monad on C, then the underlying functor T forms an ordinary monad
T = (T ,η ,µ) on C (where the multiplication µ is defined as above). Every strong monad morphism
τ : S→ T is a monad morphism τ : S→ T.

We now give several equivalent characterizations of strong monads. In addition to the definition
above, strong monads can be defined in terms of strong functors, in terms of strengths, and also by lifting
the action of V to the Kleisli category.

Proposition 4.3. For each monad T= (T,η ,µ) on C there are bijections between

1. strong monads T̂ such that T̂= T;

2. strong functors T̂ such that T̂ = T and such that η and µ are strong natural transformations
Id ⇒ T̂ and T̂ · T̂ ⇒ T̂ ;

3. strengths str for the functor T , such that the following diagrams commute:

Γ▷X Γ▷T X

T (Γ▷X)

Γ▷ηX

ηΓ▷X
strΓ,X

Γ▷T T X T (Γ▷T X) T (T (Γ▷X))

Γ▷T X T (Γ▷X)

strΓ,T X

Γ▷µX

T strΓ,X

µΓ▷X

strΓ,X
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4. liftings of ▷ to the Kleisli category of T, i.e. actions ▷T of V on KlT such that the following diagram
commutes (up to equality, where KT is the Kleisli inclusion):

V×C C

V×KlT KlT

▷

V×KT KT

▷T

If S,T are monads on C equipped with the equivalent data from this bijection, then the following condi-
tions on monad morphisms τ : S→ T are equivalent: (1) τ is a strong monad morphism Ŝ→ T̂; (2) τ is
a strong natural transformation Ŝ → T̂ ; (3) τ makes the diagram on the left below commute; (4) τ makes
the diagram on the right below commute.

Γ▷SX Γ▷T X

S(Γ▷X) T (Γ▷X)

Γ▷τX

strΓ,X strΓ,X

τΓ▷X

V×KlS KlS

V×KlT KlT

▷S

V×Klτ Klτ

▷T

Proof. For the bijection between (1) and (2), strong monads induce strong functors as above. If T̂
is a strong functor with T̂ = T , then the unit of T̂ is η and the Kleisli extension is given by f † =
µY ◦ T̂ (Γ) f for f : Γ ▷X → TY . The bijection between (2) and (3) is a special case of Proposition 3.4,
in particular, the two diagrams in (3) correspond to η and µ being strong. To go from (3) to (4), define
the action ▷T on objects by Γ ▷T X = Γ ▷X , on V-morphisms by σ ▷T X = σ ▷X , and on morphisms
f ∈ KlT(X ,Y ) = C(X ,TY ) by Γ▷T f = strΓ,Y ◦ (Γ▷ f ) ∈ KlT(Γ▷X ,Γ▷Y ). To go from (4) to (3), use
idT X ∈KlT(T X ,X) to define strΓ,X = Γ▷T idT X ∈KlT(Γ▷T X ,Γ▷X). The equivalence of the conditions
on monad morphisms follows from the definition of each bijection.

The fourth characterization of strong monad is important because of its connection with the semantics
of call-by-value languages in Freyd categories [27]. Indeed, one possible definition of Freyd category
explicitly requires such an action ▷T [18]. The Kleisli inclusion KT forms a strong functor with ▷T
as the action of V on KlT, as does its right adjoint. If τ : S → T is a strong monad morphism, then
Klτ : KlS→ KlT also forms a strong functor.

We again emphasize that strength is additional structure a monad can be equipped with, not merely
a property. Some monads admit multiple strengths and some admit no strength at all.

Example 4.4. Suppose a monoid M= (M,1, ·) in Set, and consider the product of right M-actions as an
action of the Cartesian monoidal category ActM on itself. Equipping M with the discrete action m∗m′ =
m makes M into a monoid in ActM. The M-writer monad WrM on ActM is the functor WrM = −×M
equipped with unit ηX x = (x,1) and multiplication µX((x,m′),m) = (x,m ·m′). If M is commutative, then
WrM forms a strong monad in at least two ways. As for every writer monad on a monoidal category, the
inverse of the associator is a strength strΓ,X(γ,(x,m)) = ((γ,x),m); the bijections above induce a strong
monad in which the Kleisli extension of f : Γ×X → WrMY is given by f †(γ,(x,m)) = (y,m ·m′) where
(y,m′) = f (γ,x). Using commutativity, there is also a second strength str′

Γ,X(γ,(x,m)) = ((γ ∗m,x),m);
this induces a strong monad with Kleisli extension f †(γ,(x,m)) = (y,m ·m′) where (y,m′) = f (γ ∗m,x).

This example can also be adjusted for the product of sets as an action of (ActM,1,×) on Set. In this
case, commutativity of M is not needed.



10 What Makes a Strong Monad?

4.1 Free monads on strong endofunctors

It is frequently useful to be able to construct the free monad T on an endofunctor F . In general, a
strength for F will not induce a strength for T; we give a sufficient condition for this to be the case below.
First we note that, for many applications (even without strength), T being free (as in free object) is not
enough. One often wants the monad T to be algebraically free [10], meaning there is an isomorphism
AlgT ∼= algF that commutes with the forgetful functors. (We write AlgT for the Eilenberg-Moore
category of the monad T, and algF for the category of algebras of the functor F .) Algebraic freeness,
thus defined, is not a universal property, but it still identifies a monad up to a unique isomorphism.
Algebraically free implies free; the converse holds if C is complete [10, Proposition 22.4].

In general, even the algebraically free monad will not be strong when F has a strength. To obtain a
strength for the monad, we need to refine the notion of free algebra. Several versions of the following
notion have appeared in the literature before (for example [2, 26, 6]).
Definition 4.5. If F is a strong endofunctor on C, an F-algebra (A,a) equipped with a morphism f :
X → A is called the strongly free F-algebra on X ∈ C if, for all Γ ∈ V, (B,b) ∈ algF and g : Γ▷X → B,
there is a unique morphism h : Γ▷A → B such that the following diagram commutes.

Γ▷X Γ▷A Γ▷FA

B FB

Γ▷ f

g
h F(Γ)h

Γ▷a

b

If (A, f ,a) is the strongly free F-algebra on X , then it is also the free F-algebra on X .
Proposition 4.6. Suppose a strong functor F. If the strongly free F-algebra (T X ,ηX ,σX) exists for
each object X, then T forms a strong monad T in which the unit is η and the Kleisli extension g† of
g : Γ▷X → TY is the unique morphism h : Γ▷T X → TY such that

Γ▷X Γ▷T X Γ▷F(T X)

TY F(TY )

Γ▷ηX

g h F(Γ)h

Γ▷σX

σY

The monad T is algebraically free on F.
It is well-known that, in the presence of right adjoints to Γ▷− (in particular, when V is right closed, in

the case of V acting on itself), ordinary free algebras suffice to construct a strength (see for example [4,
Theorem 5]); we explain this result in the context of powering in Section 6.1. Free algebras are also
strongly free when they can be constructed as colimits that are preserved by Γ ▷− : C → C for each Γ.
(See e.g. Kelly [10] for the construction of free algebras as colimits.)

4.2 Uniqueness and existence of strengths for monads

The situation for uniqueness of strengths carries over immediately from functors (Section 3.1) to monads.

Proposition 4.7. Suppose that T = (T,η ,µ) is a monad on C and that the action ▷ is well-pointed. If
the functor T forms a strong functor T̂ with T = T̂ (necessarily uniquely), then T forms a strong monad
T̂ with T̂ = T (again uniquely); moreover, every monad morphism between strong monads is a strong
monad morphism. In particular, if ▷ is functionally complete, then every monad T on C forms a strong
monad in exactly one way.
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Existence of strengths for monads is more problematic. The strengths assigned to the functor T by a
weak functional completeness structure Φ will not in general make T into a strong monad. For example,
consider the Cartesian monoidal category Set⋆ acting on itself. This has a single weak functional com-
pleteness structure Φ that assigns to the identity functor on Set⋆ the strength strΓ,X(γ,x) = (∗,x). The unit
of the identity monad is not a strong natural transformation with respect to this strength (its domain is the
identity functor with the canonical strength!), so Φ does not make the identity monad into a strong monad.
In fact, if the strength assigned to the identity endofunctor on C by a weak functional completeness struc-
ture Φ for an arbitrary action of V on C makes the identity monad into a strong monad, then it follows
that the action is functionally complete. To see this, note that strong naturality of η implies the identity
monad forms a strong monad in only one way: the underlying strong functor has Id(Γ) f = f . If Φ makes
the identity monad into a strong monad, we therefore have f = Id(Γ) f = ΦΓ(λγ. Id(L f Mγ)) = ΦΓL f M, so
L−M is a bijection, which implies functional completeness.

5 Enrichment

So far, we have considered strength only from the perspective of actions of the monoidal category V. A
well-known result of Kock [15] is that, in a certain situation, strong functors are the same as enriched
functors. More precisely, Kock shows that if V is a monoidal category that is (left) closed in the sense
that each −⊗X : V → V has a right adjoint X ⊸− : V → V, then strengths Γ⊗FX → F(Γ⊗X) for an
endofunctor F : V → V are in bijection with suitable natural transformations X ⊸ Y → FX ⊸ FY . The
latter make F into an enriched functor V → V (in the sense of enriched category theory [11]), where V
enriches over itself using the closed structure.

It is less well-known that this connection between enrichment and strength holds more generally.
If C and D are any categories that enrich over V, and suitable adjoints exist, then enriched functors
C → D are the same as strong functors C → D. There are similar bijections for natural transformations,
and for monads. Strength and enrichment are therefore just two perspectives on the same structure. In
particular, facts from enriched category theory can be transferred along these bijections to become facts
about strength.

We give the precise connection between strength and enrichment in this section, again working with
an general monoidal category V. Again, for what we are interested in, we do not need symmetry.

Definition 5.1. An enrichment of a category C over a monoidal category (V, I,⊗) is a functor _: Cop ×
C → V equipped with natural transformations

jX : I → X _ X MX ,Y,Z : (Y _ Z)⊗ (X _ Y )→ X _ Z

such that the functions ȷ̂X ,Y : C(X ,Y )→ V(I,X _ Y ) given by ȷ̂X ,Y f = (X _ f )◦ jX are bijections and
such that the following coherence conditions are satisfied:

I ⊗ (X _ Y ) (Y _ Y )⊗ (X _ Y )

X _ Y X _ Y

(X _ Y )⊗ I (X _ Y )⊗ (X _ X)

MX ,X ,Y

(X_Y )⊗ jX

ρX_Y

λX_Y

jY⊗(X_Y )

MX ,Y,Y

((Y _ Z)⊗ (X _ Y ))⊗ (W _ X) (X _ Z)⊗ (W _ X)

(Y _ Z)⊗ ((X _ Y )⊗ (W _ X)) W _ Z

(Y _ Z)⊗ (W _ Y )

αY_Z,X_Y,W_X

(Y_Z)⊗MW,X ,Y MW,Y,Z

MX ,Y,Z⊗(W_X)

MW,X ,Z
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The objects X _ Y are the hom-objects of the enrichment; the natural transformation j gives the
identities and M is composition. Since we do not assume that V is symmetric, the order of composition
is very important. The bijection condition in the definition means that the enriched category has C as the
underlying ordinary category.

Example 5.2. Recall from Example 2.7 that every monoidal category V acts on itself with Γ▷X = Γ⊗X .
If each −⊗X has a right adjoint X ⊸−, then ⊸ forms an enrichment of V over itself. (This fact is an
instance of Proposition 5.4 below.) This includes for example the category of actions ActM of any set-
theoretic monoid M, with the Cartesian monoidal structure (because ActM has exponentials). Another
example is the smash product ⊗ of pointed sets, for which X ⊸ Y is Set⋆(X ,Y ), with distinguished
element λx.⋆.

For V = Set with the Cartesian monoidal structure, every (locally small) C has a unique enrichment.
The object X _ Y ∈ Set is the hom-set C(X ,Y ); the structural laws jX : 1 → C(X ,X) and MX ,Y,Z :
C(Y,Z)×C(X ,Y ) → C(X ,Z) are the identities and composition. If C has copowers over Set (which
form an action of Set on C as in Example 2.7), then −•X ⊣ C(X ,−).

Definition 5.3. If C and D are enriched categories, then an enriched functor F : C → D consists of
an object FX ∈ D for each object X ∈ C and a morphism fmapX ,Y : X _C Y → FX _D FY for each
X ,Y ∈ C, such that the following diagrams commute:

I X _C X

FX _D FX

jX

jFX
fmapX ,X

(Y _C Z)⊗ (X _C Y ) X _C Z

(FY _D FZ)⊗ (FX _D FY ) FX _D FZ

MX ,Y,Z

fmapY,Z⊗fmapX ,Y fmapX ,Z

MFX ,FY,FZ

If F,G : C → D are enriched functors, an enriched natural transformation τ : F ⇒ G consists of a D-
morphism τx : FX → GX for each X ∈ C, such that the following diagram commutes:

X _C Y FX _D FY

GX _D GY FX _D GY

fmapX ,Y

fmapX ,Y FX_τY

τX _GY

In the case of V = Set with the Cartesian monoidal structure, enriched functors and natural trans-
formations are just the same as ordinary functors and natural transformations. This is a counterpart to
the fact that ordinary functors and natural transformations are uniquely strong with respect to • (if D has
copowers).

The connection between enrichment and strength is the following.

Proposition 5.4. Suppose, for each X ∈ C, a functor −▷X : V → C with a right adjoint X _− : C → V.
Also suppose that −⊗Γ has a right adjoint Γ ⊸ − : V → V for each Γ ∈ V.3 Then there is a bijection
between (1) the additional data required for ▷ to form an action of V on C and (2) the additional data
required for _ to form an enrichment of C over V such that the morphisms (Γ▷X)_Y →Γ⊸ (X _Y ),
obtained from M by transposition, are isomorphisms. If both C and D are equipped with an action and an
enrichment related by this bijection, then strong functors C → D are in bijection with enriched functors
C → D. Moreover, if F,G are strong, then natural transformations τ : F ⇒ G are strong if and only if
they are enriched.
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This proposition is not new. A proof is given for the more general case of enrichment in a bi-
category by Gordon and Power [7]. Janelidze and Kelly [8] also give a proof of the first part of this
proposition for enrichment in a monoidal category; they describe the construction of the enrichment as
“often-rediscovered folklore”. We sketch the proof here.

Proof. It is a standard fact about adjunctions that making ▷ into a bifunctor is equivalent to making _
into a bifunctor. By transposition, morphisms λX : I ▷X → X are in bijection with morphisms jX : I →
X _ X , and λX is an isomorphism exactly when ȷ̂X ,Y : C(X ,Y )→ V(I,X _ Y ) is a bijection for all Y .
Families of morphisms αΓ′,Γ,X : (Γ′⊗Γ)▷X → Γ′▷(Γ▷X) natural in Γ,Γ′ are in bijection with families of
morphisms MX ,Y,Z : (Y _ Z)⊗(X _Y )→ X _ Z natural in Y,Z by the Yoneda lemma and transposition,
and αΓ,Γ′,X is invertible for all Γ,Γ′ exactly when the morphisms (Γ▷X) _ Y → Γ ⊸ (X _ Y ) induced
by M are invertible for all Γ,Y . Each of the coherence laws of an action corresponds to one of the laws
of an enrichment.

Each strong functor F : C → D comes with functions C(Γ ▷C X ,Y ) → D(Γ ▷D FX ,FY ) natural in
Γ. By transposition, natural transformations of this type are in bijection with Γ-natural transformations
V(Γ,X _C Y )→ V(Γ,FX _D FY ), hence, by the Yoneda lemma, with morphisms X _C Y → FX _D
FY . The axioms of enriched and strong functors transfer along this bijection, as do strong and enriched
naturality.

Remark 5.5. There is a more conceptual (and more technical) proof, which we outline. Wood [31] shows
that the 2-category of categories enriched over V embeds fully faithfully into that of what he calls large
V-categories.4 Modulo size issues, these are categories enriched over [Vop,Set] with the convolution
monoidal structure. There is a similar embedding of categories equipped with actions of V in large V-
categories. By characterizing the images of these embeddings, it is possible to transfer data between the
action perspective and enrichment perspective under the assumptions of Proposition 5.4. This also works
for the powered categories of Section 6. Large V-categories then provide a perspective on strength that
strictly subsumes all of the three perspectives we consider here. The locally indexed categories used by
Levy [18] and Egger et al. [3] for strength with respect to Cartesian products are similar (but not quite
identical) to large V-categories; the [Vop,Set] perspective is used by Melliès [22].

One of the advantages of considering enrichment is that the concept of enriched monad (correspond-
ing to strong monad) admits a particularly lightweight definition.

Definition 5.6. If C is an enriched category, then an enriched monad on C consists of an object T X ∈ C
and morphism ηX : X → T X for each X ∈ C, and a morphism bindX ,Y : X _ TY → T X _ TY for each
X ,Y ∈ C, such that the following diagrams commute:

X_TY

T X_TY X_TY

bindX ,Y

ηX _TY

I X_X

X_T X

T X_T X

jT X

jX

X_ηX

bindX ,X

(Y_T Z)⊗ (X_TY ) (TY_T Z)⊗ (X_TY )

X_T Z

(TY_T Z)⊗ (T X_TY ) T X_T Z

bindY,Z⊗(X_TY )

bindY,Z⊗bindX ,Y

MX ,TY,T Z

bindX ,Z

MT X ,TY,T Z

3We do not claim that it is necessary for ⊸ to exist in order to connect strength and enrichment, but the statement of this
proposition is complicated without ⊸.

4Following Levy [19], we prefer to call them locally V-graded categories.
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An enriched monad morphism τ : S → T consists of a morphism τX : SX → T X for each X ∈ C, such
that τX ◦ηX = ηX , and such that the following diagram commutes:

X _ SY SX _ SY

SX _ TY

X _ TY T X _ TY

bindX ,Y

X_τY

SX_τY

bindX ,Y

τX _TY

Remark 5.7. In Haskell (and similar languages), the Monad type class asks for a polymorphic function
(>>=) :: m a -> (a -> m b) -> m b. This corresponds to the natural transformation bind above
(with arguments reversed). Instances of Monad are actually enriched monads (and by the following
proposition, strong monads), not ordinary monads, which is why there is no need to provide a strength
in Haskell. The same goes for the Functor type class: fmap :: (a -> b) -> (f a -> f b) is
enriched functoriality, not ordinary functoriality.

Proposition 5.8. Assume the setting of Proposition 5.4, with an action of V on C that has a corre-
sponding enrichment. There is a bijection between strong monads on C and enriched monads on C, and
this bijection preserves the underlying ordinary monads. If T,S are strong and τ : T → S is a monad
morphism, then τ is strong if and only if it is enriched.

Note that the definition of enriched monad involves only 3 equations whereas the definition of strong
monad has 4 and the definition of monad with a strength has as many as 12 (7 equations of a monad and
5 equations of a strength for a monad).

6 Powering

We now turn to the final perspective on strength that we consider. Enrichment fits into the picture by
considering right adjoints X _ − to − ▷X . If instead the functors Γ ▷− : C → C have right adjoints
Γ�− : C → C, then they form a powering of C over V in the following sense; we call Γ� X the power
of Γ and X .5

Definition 6.1. A powering of a category C over a monoidal category (V, I,⊗) is a functor�: Vop×C→
C equipped with natural isomorphisms

iX : X → I � X pΓ,Γ′,X : Γ� (Γ′ � X)→ (Γ′⊗Γ)� X

satisfying the following coherence conditions:

Γ� (I � X) (I ⊗Γ)� X

Γ� X Γ� X

I � (Γ� X) (Γ⊗ I)� X

iΓ�X

pI,Γ,X

ρΓ�X

Γ�iX λΓ�X

pΓ,I,X
Γ3 � ((Γ1 ⊗Γ2)� X)

Γ3 � (Γ2 � (Γ1 � X)) ((Γ1 ⊗Γ2)⊗Γ3)� X

(Γ2 ⊗Γ3)� (Γ1 � X) (Γ1 ⊗ (Γ2 ⊗Γ3))� X

Γ3�pΓ2 ,Γ1 ,X pΓ3 ,Γ1⊗Γ2 ,X

αΓ1 ,Γ2 ,Γ3�X

pΓ2⊗Γ3 ,Γ1 ,X

pΓ3,Γ2 ,Γ1�X

5The terminology here comes from the fact that, just as Γ ▷X is a copower (tensor) in the enriched sense when _ exists,
Γ� X is a power (cotensor) in the enriched sense.
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Example 6.2. If V is right closed in the sense that each Γ⊗− : V → V has a right adjoint Γ ⊸R − : V →
V, then ⊸R gives a powering of V over itself (by Proposition 6.4 below). This right adjoint is naturally
isomorphic to Γ ⊸ − exactly when V is symmetric. Even when V is symmetric, the definitions of
powered functor and powered monad are different from the enriched versions (but they are in bijection).

If a category C has small products, then it is powered over Set by defining Γ � X =
Γ ⋔ X = ∏γ∈Γ X . If C also has small coproducts, then we have adjunctions Γ•− ⊣ Γ ⋔−.

We define powered notions of functor and natural transformation analogous to the strong and en-
riched notions.

Definition 6.3. If C and D are powered categories, then a powered functor F : C → D consists of an
object FX ∈ D for each X ∈ C, and a D-morphism F(Γ) f : FX → Γ �D FY for each C-morphism f :
X → Γ�C Y such that F(Γ) is natural in Γ ∈ V and

F(I)iX = iFX for X ∈ C
F(Γ′⊗Γ)(pΓ,Γ′,Z ◦ (Γ�C g)◦ f ) = pΓ,Γ′,FZ ◦ (Γ�D F(Γ′)g)◦F(Γ) f for f : X → Γ�CY , g : Y → Γ′�CZ

If F,G : C → D are powered functors, then a powered natural transformation τ : F ⇒ G consists of a
D-morphism τX : FX →GX for each X ∈C such that (Γ�D τY )◦F(Γ) f =G(Γ) f ◦τX for f : X → Γ�C Y .

If F : C → D is a powered functor, then we obtain an ordinary functor F : C → D by defining
FX = FX and F f = i−1

FY ◦F(I)(iY ◦ f ) for f : X → Y .
Equivalently, a powered functor is an ordinary functor F with a powering, i.e. family of morphisms

powΓ,Y : F(Γ �C Y ) → Γ �D FY natural in Γ ∈ V and Y ∈ C, subject to two equations. We will not
discuss this definition further.

The relationship between strength and powering is as follows. Similar to the relationship between
strength and enrichment (Proposition 5.4), this proposition enables us to look at strength from the per-
spective of powering.

Proposition 6.4. Suppose for each Γ ∈ V an adjunction Γ ▷− ⊣ Γ � − : C → C. There is a bijection
between the additional data required for ▷ to form an action of V on C and the additional data required
for � to form a powering of C over V. If both C and D are equipped with an action and a powering
related by this bijection, then there is a bijection between strong functors and powered functors C → D;
this preserves the underlying ordinary functors. Under this bijection, natural transformations are strong
if and only if they are powered.

We can connect enrichment and powering by combining this proposition with Proposition 5.4, but
also directly by a natural isomorphism V(Γ,X _ Y )∼= C(X ,Γ� Y ); we omit the precise statement.

Definition 6.5. If C is a powered category, then a powered monad T= (T,η ,(−)†) consists of an object
T X ∈ C and morphism ηX : X → T X for each X ∈ C, and a morphism f † : T X → Γ � TY for each
f : X → Γ� TY , such that (−)† is natural in Γ and

(iT X ◦ηX)
† = iT X for X ∈ C

f † ◦ηX = f for f : X → Γ� TY
pΓ,Γ′,T Z ◦ (Γ�g†)◦ f † = (pΓ,Γ′,T Z ◦ (Γ�g†)◦ f )† for f : X → Γ�TY , g : Y → Γ′�T Z

If S and T are powered monads, then a powered monad morphism τ : S → T consists of a morphism
τX : SX → T X for each X ∈ C such that τX ◦ηX = ηX for each X ∈ C and such that (Γ � τY ) ◦ f † =
((Γ� τY )◦ f )† ◦ τX for each f : X → Γ� SY .
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If T= (T,η ,(−)†) is a powered monad, then T forms a powered functor C → C by defining T (Γ) f =
((Γ � ηY ) ◦ f )† for each f : X → Γ � Y . There is also a monad T = (T ,η ,µ), with multiplication
µX = i−1

T X ◦ i†T X .
As for the action perspective, the powering perspective gives rise to several equivalent notions of

monad, given in the following proposition. We emphasize the characterization (3) below in particular.
This characterization is useful when the monad T is constructed so that the Eilenberg-Moore category
matches some particular category (for example, the models of an algebraic theory); in which case one
way of making T into a strong monad is to first obtain a powered monad using (3), and then obtain a
strong monad using Proposition 6.4.

Proposition 6.6. For each monad T= (T,η ,µ) on a powered category C, there is a bijection between:

1. powered monads T̂ such that T̂= T;

2. powered functors T̂ such that T̂ = T and such that η and µ are powered natural transformations
Id ⇒ T̂ and T̂ · T̂ ⇒ T̂ ;

3. liftings of � to the Eilenberg-Moore category of T, i.e. powerings �T of AlgT over V, such that
the following diagram commutes (up to equality, where UT is the forgetful functor).

Vop ×AlgT AlgT

Vop ×C C

�T

Vop×UT UT

�

If S,T are monads equipped with the equivalent data from this bijection, then the following conditions
on monad morphisms τ : S→ T are equivalent: (1) τ is a powered monad morphism Ŝ→ T̂; (2) τ is a
powered natural transformation Ŝ ⇒ T̂ ; (3) τ makes the diagram below commute.

Vop ×AlgT AlgT

Vop ×AlgS AlgS

�T

Vop×Algτ Algτ

�S

6.1 Free monads on powered endofunctors

As an application of Proposition 6.6, we show that, unlike in the case of strength with respect to an
action, if T is an algebraically free monad on a powered functor, then T is powered in a canonical way.
In light of Proposition 6.4, this explains why algebraic freeness suffices to construct a (left) strength with
respect to a monoidal right-closed structure.

Proposition 6.7. If F is a powered endofunctor on a powered category C and T is the algebraically free
monad on F, then T forms a powered monad.

If ▷ is an action of V on C, related to � as in Proposition 6.4, and F is a strong endofunctor, then
every free F-algebra is strongly free.

Proof. If T is algebraically free there is an isomorphism algF ∼= AlgT that commutes with the forgetful
functors. By Proposition 6.6, to make T into a powered monad it therefore suffices to show that the
powering� lifts to algF . To do this, define�F : Vop ×algF → algF on objects by Γ�F (A,a) = (Γ�
A,(Γ� a)◦F(Γ)idΓ�A) and on morphisms by σ �F f = σ � f .
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Given an action ▷ as in Proposition 6.4, strong functors and monads are in bijection with powered
functors and monads, so the algebraically free monad T then forms a strong monad. To construct the
unique maps Γ▷T X → A of Definition 4.5, we can therefore use the strength Γ▷T X → T (Γ▷X) and the
fact that T (Γ▷X) is free on Γ▷X .

7 Conclusion

We have shown and commented on a number of different equivalent definitions of strong functor and
of strong monad, and explained how and why they arise. These definitions differ significantly in the
amount of data and the equations they involve, and they serve different applications. We presented some
sufficient conditions for uniqueness and existence of strengths for all functors, in particular the condition
of weak functional completeness, which is new as far as we know, and some examples of absence and
multiplicity of strengths, which we crafted to demonstrate that these conditions are not necessary.

There are some questions we could not settle; for example, we could neither find a Cartesian cat-
egory with multiple weak functional completeness structures nor show that there is none. We would
like to identify interesting examples of unique existence, absence and multiplicity of strengths for non-
symmetric monoidal categories and non-self-actions.

A finer analysis of strength could proceed from a generally non-symmetric non-monoidal closed
category V, this being the minimal structure needed for self-enrichment of V. A further possible direction
of refinement would be to work with skew monoidal/closed categories and actions, cf. [30]. There are
no immediate indications of obstacles, but we would also like to find interesting applications of this level
of generality.
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Types. In Erich Grädel & Reinhard Kahle, editors: Computer Science Logic, 23rd International Workshop,
CSL 2009, Lecture Notes in Computer Science 5771, Springer, pp. 240–254, doi:10.1007/978-3-642-04027-
6 19.

[4] Marcelo Fiore (2008): Second-Order and Dependently-Sorted Abstract Syntax. In: Proc. of 23rd Annual
IEEE Symposium on Logic in Computer Science, LICS ’08, IEEE, pp. 57–68, doi:10.1109/lics.2008.38.

[5] Marcelo Fiore, Gordon Plotkin & Daniele Turi (1999): Abstract Syntax and Variable Binding. In:
Proc. of 14th Annual IEEE Symposium on Logic in Computer Science, LICS ’99, IEEE, pp. 193–202,
doi:10.1109/lics.1999.782615.

[6] Marcelo Fiore & Philip Saville (2017): List Objects with Algebraic Structure. In Dale Miller, editor: 2nd
Int. Conference on Formal Structures for Computation and Deduction, FSCD 2017, Leibniz Int. Proc. in
Informatics 84, Dagstuhl Publishing, pp. 16:1–16:18, doi:10.4230/lipics.fscd.2017.16.

http://dx.doi.org/10.1090/psapm/071/599
http://dx.doi.org/10.1007/978-3-642-04027-6_19
http://dx.doi.org/10.1007/978-3-642-04027-6_19
http://dx.doi.org/10.1109/lics.2008.38
http://dx.doi.org/10.1109/lics.1999.782615
http://dx.doi.org/10.4230/lipics.fscd.2017.16


18 What Makes a Strong Monad?

[7] Robert Gordon & A. John Power (1997): Enrichment through Variation. J. Pure Appl. Algebra 120(2), pp.
167–185, doi:10.1016/s0022-4049(97)00070-4.

[8] George Janelidze & G. Max Kelly (2001): A Note on Actions of a Monoidal Category. Theor. Appl. Categ.
9(4), pp. 61–91. Available at http://www.tac.mta.ca/tac/volumes/9/n4/9-04abs.html.

[9] Ohad Kammar, Paul B. Levy, Sean K. Moss & Sam Staton (2017): A Monad for Full Ground Reference
Cells. In: Proc. of 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’17, IEEE,
pp. 1–12, doi:10.1109/lics.2017.8005109.

[10] G. Max Kelly (1980): A Unified Treatment of Transfinite Constructions for Free Algebras, Free
Monoids, Colimits, Associated Sheaves, and So on. Bull. Austral. Math. Soc. 22(1), pp. 1–83,
doi:10.1017/s0004972700006353.

[11] G. Max Kelly (1982): Basic Concepts of Enriched Category Theory. London Math. Soc. Lecture Note Se-
ries 64, Cambridge University Press. Reprinted (2005) as: Reprints in Theory and Applications of Categories
10, http://www.tac.mta.ca/tac/reprints/articles/10/tr10abs.html.

[12] Anders Kock (1970): Monads on Symmetric Monoidal Closed Categories. Arch. Math. 21(1), pp. 1–10,
doi:10.1007/bf01220868.

[13] Anders Kock (1971): Bilinearity and Cartesian Closed Monads. Math. Scand. 29(2), pp. 161–174,
doi:10.7146/math.scand.a-11042.

[14] Anders Kock (1971): Closed Categories Generated by Commutative Monads. Bull. Austral. Math. Soc.
12(4), pp. 405–424, doi:10.1017/s1446788700010272.

[15] Anders Kock (1972): Strong Functors and Monoidal Monads. Arch. Math. 23(1), pp. 113–120,
doi:10.1007/bf01304852.

[16] Anders Kock (2012): Commutative Monads as a Theory of Distributions. Theor. Appl. Categ. 26(4), pp.
97–131. Available at http://www.tac.mta.ca/tac/volumes/26/4/26-04abs.html.

[17] Joachim Lambek (1974): Functional Completeness of Cartesian Categories. Ann. Math. Log. 6(3–4), pp.
259–292, doi:10.1016/0003-4843(74)90003-5.

[18] Paul B. Levy (2003): Call-by-Push-Value: A Functional/Imperative Synthesis. Semantic Structures in Com-
putation 2, Kluwer Academic Publishers, doi:10.1007/978-94-007-0954-6.

[19] Paul B. Levy (2019): Locally Graded Categories. Slides from the talk at Univ. of Cambridge Category Theory
Seminar, 12 Feb. 2019. Available at http://www.cs.bham.ac.uk/~pbl/papers/locgrade.pdf.

[20] Paul B. Levy (2019): Strong Functors on Many-Sorted Sets. Comment. Math. Univ. Carolin. 60(4), pp.
533–540, doi:10.14712/1213-7243.2019.029.

[21] Fred E.J. Linton (1969): Coequalizers in Categories of Algebras. In Beno Eckmann, editor: Seminar
on Triples and Categorical Homology Theory, Lecture Notes in Mathematics 80, Springer, pp. 75–90,
doi:10.1007/bfb0083082.
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A Biactions, bistrong functors, commutative monads

A.1 Biactions, bistrong functors

If a monoidal category V acts on a category C from both the left and the right, the two actions can be
required to agree with each other.

Definition A.1. A right action ◁ of a monoidal category (V, I,⊗) on a category C consists of a functor
◁ : C×V → C and natural isomorphisms

ρX : X → X ◁ I αX ,Γ,Γ′ : (X ◁Γ)◁Γ
′ → X ◁ (Γ⊗Γ

′)

satisfying the following coherence conditions:

(X ◁Γ)◁ I X ◁ (Γ⊗ I)

X ◁Γ X ◁Γ

(X ◁ I)◁Γ X ◁ (I ⊗Γ)

αX ,Γ,I

αX ,I,Γ

ρX◁I

ρX◁Γ

X◁λΓ

X◁ρΓ

(X ◁Γ3)◁ (Γ2 ⊗Γ1)

((X ◁Γ3)◁Γ2)◁Γ1 X ◁ (Γ3 ⊗ (Γ2 ⊗Γ1))

(X ◁ (Γ3 ⊗Γ2))◁Γ1 X ◁ ((Γ3 ⊗Γ2)⊗Γ1)

αX ,Γ3 ,Γ2⊗Γ1αX◁Γ3 ,Γ2 ,Γ1

αX ,Γ3 ,Γ2◁Γ1

αX ,Γ3⊗Γ2 ,Γ1

X◁αΓ3 ,Γ2 ,Γ1

Definition A.2. A biaction of a monoidal category (V, I,⊗) on a category C consists of a left action
▷ : V×C → C, a right action ◁ : C×V → C, and a natural isomorphism αΓ,X ,∆ : (Γ▷X)◁∆ → Γ▷(X ◁∆)
such that

(I ▷X)◁∆ I ▷ (X ◁∆)

X ◁∆

αI,X ,∆

λX◁∆
λX◁∆

Γ▷X

(Γ▷X)◁ I Γ▷ (X ◁ I)

ρΓ▷X
Γ▷ρX

αΓ,X ,I
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((Γ⊗Γ′)▷X)◁∆ (Γ⊗Γ′)▷ (X ◁∆)

(Γ▷ (Γ′ ▷X))◁∆ Γ▷ ((Γ′ ▷X)◁∆) Γ▷ (Γ′ ▷ (X ◁∆))

α
Γ⊗Γ′,X ,∆

α
Γ,Γ′,X◁∆ α

Γ,Γ′,X◁∆

α
Γ,Γ′▷X ,∆ Γ▷α

Γ′,X ,∆

((Γ▷X)◁∆)◁∆′ (Γ▷ (X ◁∆))◁∆′ Γ▷ ((X ◁∆)◁∆′)

(Γ▷X)◁ (∆⊗∆′) Γ▷ (X ◁ (∆⊗∆′))

αΓ,X ,∆◁∆′

α
Γ▷X ,∆,∆′

α
Γ,X◁∆,∆′

Γ▷αX ,∆,∆′

α
Γ,X ,∆⊗∆′

An example is C = V and ▷= ◁=⊗.
In a biaction situation, if a functor has both a left strength and a right strength, these can be required

to cohere as follows.
Definition A.3. Suppose a biaction of a monoidal category V on a category D. A bistrength for a functor
F : C → D is a pair of a left strength strΓ,X : Γ▷D FX → F(Γ▷C X) and a right strength strR

X ,∆ : FX ◁D ∆ →
F(X ◁C ∆) such that

(Γ▷D FX)◁D ∆ F(Γ▷C X)◁D ∆ F((Γ▷C X)◁C ∆)

Γ▷D (FX ◁D ∆) Γ▷D F(X ◁C ∆) F(Γ▷C (X ◁C ∆))
Γ▷DstrR

X ,∆
strΓ,X◁C∆

αΓ,FX ,∆

strΓ,X◁D∆ strR
Γ▷CX ,∆

FαΓ,X ,∆

A natural transformation between two bistrong functors is bistrong if it is both left strong and right
strong.

Consider the case C = D = V and ▷= ◁=⊗. If V is symmetric, with braiding cX ,Y : X ⊗Y →Y ⊗X ,
then any left strength str of a functor F induces a right strength strR via strR

X ,∆ = Fc∆,X ◦ str∆,X ◦ cFX ,∆.
The two strengths together form a bistrength. But the right strength does not have to be related to the
left strength like this, not even when V is a Cartesian category. For example, take V to be the category
of pointed sets with its Cartesian structure. The identity functor is bistrong with strΓ,X(γ,x) = (γ,x) and
strR

X ,∆(x,δ ) = (x,⋆).

A.2 Commutative monads

Kock [12] studied what he named commutative monads for the case of a symmetric monoidal category.
His commutative monads were left-strong monads subject to an additional equational condition.

Symmetry is in fact not needed. The concept of commutative monad makes sense for a general
monoidal category V; Kock’s condition can be formulated for any bistrength for the tensor as a biaction
(where the right strength need not in general be defined in terms of the left strength like we did above).
Definition A.4. Suppose a monoidal category (V, I,⊗). A commutative monad is a monad T= (T,η ,µ)
with a bistrength (str,strR) of T (wrt. ⊗ as a biaction of V on itself) such that η , µ are bistrong and
moreover the following diagram commutes:

T X ⊗TY T (T X ⊗Y ) T (T (X ⊗Y ))

T (X ⊗TY ) T (T (X ⊗Y )) T (X ⊗Y )

strT X ,Y

strR
X ,TY

T strR
X ,Y

µX⊗Y

T strX ,Y µX⊗Y
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Commutative monads in this sense are exactly the same as lax monoidal monads. Even when V
is symmetric, the bistrength of a commutative monad does not need to be defined by symmetry, so
this notion of commutative monad (i.e. lax monoidal monad) is strictly more general than Kock’s. For
example, consider the writer monad WrM on ActM from Example 4.4, where M is any commutative
monoid. From the two strengths given there, we can make a bistrength

strΓ,X(γ,(x,m)) = ((γ,x),m) strR
X ,∆((x,m),δ ) = ((x,δ ∗m),m)

and WrM equipped with this bistrength is a commutative monad. Kock’s commutative monads are the
same as symmetric lax monoidal monads.
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