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A large class of monads used to model computational effects have natural presentations by operations and

equations, for example, the list monad can be presented by a constant and a binary operation subject to

unitality and associativity. Graded monads are a generalization of monads that enable us to track quantitative

information about the effects being modelled. Correspondingly, a large class of graded monads can be

presented using an existing notion of graded presentation. However, the existing notion has some deficiencies,

in particular many effects do not have natural graded presentations.

We introduce a notion of flexibly graded presentation that does not suffer from these issues, and develop

the associated theory. We show that every flexibly graded presentation induces a graded monad equipped

with interpretations of the operations of the presentation, and that all graded monads satisfying a particular

condition on colimits have a flexibly graded presentation. As part of this, we show that the usual algebra-

preserving correspondence between presentations and a class of monads transfers to an algebra-preserving

correspondence between flexibly graded presentations and a class of flexibly graded monads.
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1 INTRODUCTION
Consider a language in which we can write backtracking computations using an operation or for
nondeterministic choice, and an operation cut for pruning any remaining choices. Let 𝑡 be the

computation or(return 17, cut), which offers only 17 as a possible result, and prunes the rest of

the search space. The computation or(𝑡, return 42) is equivalent to 𝑡 , and more generally, the

equation or(𝑥,𝑦) ≈ 𝑥 is valid whenever we know that 𝑥 definitely cuts.
We may seek to analyse a computation statically to determine whether it definitely cuts, and

whether we can therefore apply the equation or(𝑥,𝑦) ≈ 𝑥 to simplify a program. One way of

performing such an analysis is through grading, an approach that goes back to effect systems [Lu-

cassen and Gifford 1988]. We assign a grade ⊥ to each computation we know will cut, assign some

other grade 1 to computations that might not cut, and propagate this information throughout the
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program.
1
For example, we can assign the grade ⊥ to 𝑡 because one of the arguments to or has

grade ⊥.
This approach has a well-established semantics using graded monads, which were introduced

by Smirnov [2008] in connection with graded rings, and independently by Katsumata [2014] to

model effects for which we track quantitative information, like whether a computation cuts. There
is a graded monad Cut for modelling our backtracking example above (we define it in Section 2.4

below). It is a graded version of a monad described by Piróg and Staton [2017], and is somewhat

similar to the familiar list monad.

Piróg and Staton [2017] show that their monad has a presentation in terms of operations for

nondeterministic choice and cut, with several equations. Presentations of ordinary monads have

number of important applications, for example in proving program equivalences [Kammar and

Plotkin 2012] and in combining effects [Hyland et al. 2006]. We may expect there to be a similar

presentation of Cut, using the notions of presentation for graded monads defined by Smirnov

[2008], and subsequently by Milius et al. [2015], Dorsch et al. [2019] and Kura [2020]. However,

all of these (roughly equivalent) notions of presentation have a deficiency, which makes them

unsuitable for the backtracking example: they require all arguments to each operation to have the

same grade. This is not immediately a problem for 𝑡 above, since while return 17 has grade 1 and
cut has grade ⊥, we can also assign the grade 1 to cut as a safe overapproximation. But then we

do not know that either argument of or definitely cuts, and have to assign the grade 1 to 𝑡 . We

would therefore fail to notice that 𝑡 definitely cuts, and would not be able to apply the equation

or(𝑥,𝑦) ≈ 𝑥 . In fact, in the equational logics associated with these presentations, it is not possible

to express equations with restrictions on the grades of variables. We cannot even state the equation
or(𝑥,𝑦) ≈ 𝑥 , where 𝑥 stands for a computation of grade ⊥.
We introduce a notion of flexibly graded presentation that does not suffer from these issues.

Flexibly graded presentations are more general than the existing graded presentations (which we

call ‘rigidly graded’ below for clarity). The leading idea is to relax the condition that all arguments to

each operation have the same grade. Hence we can allow, for example, or to be applied to arguments

of possibly different grades, and assign the grade ⊥ when at least one of the arguments has grade

⊥. We would then assign the grade ⊥ to the computation 𝑡 above. Flexibly graded presentations

also allow equations over variables of different grades, like the example above.

Every flexibly graded presentation induces a graded monad, but relationship between the two

is more subtle than for rigidly graded presentations. For the latter, there is a correspondence with
a class of rigidly graded monads. The fact that enables such a correspondence is that, for each

rigidly graded presentation, there is a graded monad with the same algebras, where an algebra for a

presentation is a space equipped with interpretations of the operations, satisfying the equations. By

generalizing to flexibly graded presentations we lose this property. We instead get a correspondence

with a class of flexibly graded monads of McDermott and Uustalu [2022], which are different from

graded monads (below we call the latter ‘rigidly graded monads’, again for clarity). Despite this, as

we show, every flexibly graded monad does induce a canonical rigidly graded monad, and moreover

the induced rigidly graded monad comes with interpretations of the operations of the presentation.

In this sense, flexibly graded presentations do present rigidly graded monads. In fact, they present

exactly the same class of rigidly graded monads as rigidly graded presentations do. We introduce

flexibly graded presentations not in order to present more rigidly graded monads, but to enable

more natural presentations of rigidly graded monads.

The purpose of this paper is to introduce flexibly graded presentations and to develop their

theory. As well as the backtracking example, we give several other instances. Graded monads

1
We in fact also need a third grade ⊤ to get everything to work correctly, but this does not come up in the introduction.
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have several applications, for example in semantics of type-and-effect systems [Katsumata 2014;

Mycroft et al. 2016], in process semantics [Dorsch et al. 2019; Milius et al. 2015], and in probability

theory [Fritz and Perrone 2019]. We intend for our results to be applicable to all of these.

Contributions.
• We introduce the examples of rigidly graded monads we use (Section 2). Some of these are

new (e.g. our gradings of global state, of the stack monad, and of backtracking with cut).

• We outline the theory of rigidly graded presentations (Section 4), filling in some gaps from

the existing literature. In particular, we show that operations of rigidly graded presentations

induce rigidly graded algebraic operations.
• Our main contribution is the introduction of flexibly graded presentations (Section 6). We

develop much of their theory, defining a flexibly graded equational logic and notions of

algebra and of flexibly graded algebraic operation. We show that our examples have natural

flexibly graded presentations.

• As a step towards proving a correspondence for flexibly graded monads, we introduce a

notion of flexibly graded clone (Section 7). We also introduce rigidly graded clones in the same

section.

• We prove a correspondence between flexibly graded presentations and those flexibly graded

monads that a colimit condition (Section 8).

2 GRADED MONADS AND EXAMPLES
The grades are elements of a partially ordered monoid (pomonoid) E = ( |E|, ≤, 1, ·); that is, ( |E|, ≤)
is a partially ordered set (poset), and ( |E|, 1, ·) is a monoid for which · is monotone. (More generally,

we could consider an arbitrary small monoidal category E of grades, but we restrict to pomonoids

for simplicity.) The order enables overapproximation of grades. The grade of a trivial computation

is 1, and the grade of a sequence of two computations is provided by the · operator.

Definition 2.1. An E-graded set 𝑋 consists of a set 𝑋𝑒 for each grade 𝑒 ∈ |E| (the elements of
grade 𝑒), and a coercion function (𝑒 ≤ 𝑒′)∗ : 𝑋𝑒 → 𝑋𝑒′ for each 𝑒 ≤ 𝑒′ ∈ |E|, functorial in the sense

that (𝑒 ≤ 𝑒)∗ = id𝑋𝑒 and (𝑒 ≤ 𝑒′′)∗ = (𝑒′ ≤ 𝑒′′)∗ ◦ (𝑒 ≤ 𝑒′)∗. A grade-preserving function 𝑓 : 𝑋 ⇒ 𝑌

is a family of functions 𝑓𝑒 : 𝑋𝑒 → 𝑌𝑒 , natural in the sense that 𝑓𝑒′ ◦ (𝑒 ≤ 𝑒′)∗ = (𝑒 ≤ 𝑒′)∗ ◦ 𝑓𝑒 .

We often omit the prefix E- from E-graded.

Remark. In other words, graded sets are functors from E to Set (presheaves over E). Grade-
preserving functions are natural transformations between such functors.

The following is the notion of graded monad introduced by Smirnov [2008], Melliès [2012], and

Katsumata [2014]. They are similar to ordinary monads, except that instead of having a set 𝑇𝑋 of

computations for every set 𝑋 of values, they have a graded set 𝑅𝑋 of computations for every set 𝑋 .

We give the definition only for the category of sets and functions (which is all we need), and in

terms of a Kleisli extension operation (−)†. We say ‘rigidly graded monad’ instead of just ‘graded

monad’, to more clearly distinguish between these and the flexibly graded monads defined below.

Definition 2.2. A rigidly E-graded monad R consists of an E-graded set 𝑅𝑋 and unit function
[𝑋 : 𝑋 → 𝑅𝑋1 for each set𝑋 , and aKleisli extension operator that maps every function 𝑓 : 𝑋 → 𝑅𝑌𝑒

to a grade-preserving function 𝑓 † : 𝑅𝑋 ⇒ 𝑅𝑌 (− ·𝑒) (i.e., a family of functions 𝑓
†
𝑑
: 𝑅𝑋𝑑 → 𝑅𝑌 (𝑑 ·𝑒)

natural in 𝑑); Kleisli extension is required to be natural in 𝑒 , and to satisfy the following unitality

and associativity laws.

𝑓
†
1
◦ [𝑋 = 𝑓 id𝑅𝑋𝑑 = ([𝑋 )†𝑑 (𝑔†𝑒 ◦ 𝑓 )

†
𝑑 = 𝑔

†
𝑑 ·𝑒 ◦ 𝑓

†
𝑑

(for 𝑓 : 𝑋 → 𝑅𝑌𝑒,𝑔 : 𝑌 → 𝑅𝑍𝑒′)
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The unit is also known as return and the Kleisli extension as bind, written 𝑡 >>= 𝑓 instead of 𝑓 †𝑡 .
Instead of having a graded set 𝑅𝑋 for each ordinary (ungraded) set 𝑋 , flexibly graded monads

[McDermott and Uustalu 2022] have a graded set 𝑇𝑋 for each graded set 𝑋 . The intuition is that

the elements of 𝑋 may themselves be computations, and may have grades.

Definition 2.3. A flexibly E-graded monad T consists of an E-graded set 𝑇𝑋 and unit grade-
preserving function [𝑋 : 𝑋 ⇒ 𝑇𝑋 for each E-graded set 𝑋 , and a Kleisli extension operator

that sends every grade-preserving function 𝑓 : 𝑋 ⇒ 𝑇𝑌 (− · 𝑒) to a grade-preserving function

𝑓 † : 𝑇𝑋 ⇒ 𝑇𝑌 (− · 𝑒), natural in 𝑒 , and satisfying the following unitality and associativity laws:

𝑓 †◦[𝑋 = 𝑓 id𝑇𝑋 = ([𝑋 )† (𝑔†−·𝑒 ◦ 𝑓 )
†
= 𝑔†−·𝑒 ◦ 𝑓 † (𝑓 : 𝑋 ⇒ 𝑇𝑌 (− · 𝑒), 𝑔 : 𝑌 ⇒ 𝑇𝑍 (− · 𝑒′))

2.1 Example: Writer
Our first example involves a graded writer monadWrM; these are analogous to the usual non-graded
writer monads. We use this example in our discussion of rigidly graded presentations in Section 4.

As such, the rigidly graded presentation ofWrM is perfectly natural, and there is no obvious benefit

to giving a flexibly graded presentation of WrM. This is not the case for our other examples.

For each monoidM = (𝑀, Y, ⊗), there is an non-graded writer monad given by 𝑇M𝑋 = 𝑀 × 𝑋 ,
for which we can define an operation tell𝑝,𝑋 : 𝑇𝑋 → 𝑇𝑋 for producing an output 𝑝 ∈ 𝑀 , by

tell𝑝,𝑋 (𝑝′, 𝑥) = (𝑝 ⊗ 𝑝′, 𝑥). These monads can be presented by the operations tell𝑝 (with suitable

equations).

Rigidly graded writer monadsWrM are analogous. Fix aE-gradedmonoidM, that is, anE-graded set
𝑀 , together with a unit element Y ∈ 𝑀1 and family ofmultiplication functions ⊗𝑒1,𝑒2 : 𝑀𝑒1×𝑀𝑒2 →
𝑀 (𝑒1 · 𝑒2) natural in 𝑒1, 𝑒2 ∈ E, satisfying Y ⊗ 𝑝 = 𝑝 = 𝑝 ⊗ Y and (𝑝 ⊗ 𝑞) ⊗ 𝑟 = 𝑝 ⊗ (𝑞 ⊗ 𝑟 ) for each
𝑝 ∈ 𝑀𝑒1, 𝑞 ∈ 𝑀𝑒2, 𝑟 ∈ 𝑀𝑒3. (We write multiplication infix and omit the subscripts.) For example,

we could let E be the pomonoid of natural numbers with addition and their usual ordering, and let

𝑀𝑒 be the set of strings of length at most 𝑒 (over some set of characters), with concatenation as the

multiplication. We could also, with the same E, let𝑀𝑒 be the powerset of some fixed set, restricted

to subsets of cardinality at most 𝑒 , with union as multiplication. We defineWrM in exactly the same

way as the ungraded writer monad, except that at grade 𝑒 we use𝑀𝑒:

Wr
M𝑋𝑒 = 𝑀𝑒 × 𝑋 (𝑒 ≤ 𝑒′)∗ (𝑝, 𝑥) = ((𝑒 ≤ 𝑒′)∗𝑝, 𝑥)

[𝑋𝑥 = (Y, 𝑥) 𝑓
†
𝑑
(𝑝, 𝑥) = let (𝑝′, 𝑦) = 𝑓 𝑥 in (𝑝 ⊗ 𝑝′, 𝑦)

We again define an operation for outputting an element 𝑝 ∈ 𝑀𝑒′, but with the appropriate grading:

tell𝑝,𝑋,𝑑 : Wr
M𝑋𝑑 → Wr

M𝑋 (𝑒′ · 𝑑) tell𝑝,𝑋,𝑑 (𝑝′, 𝑥) = (𝑝 ⊗ 𝑝′, 𝑥)

In Section 4, we give a rigidly graded presentation ofWrM involving the operations tell𝑝 (which
are rigidly graded algebraic operations in the sense of Section 4.4).

2.2 Example: Global State
For our second example, we consider computations that read from and write to a global 𝑉 -valued

state, where𝑉 is a finite set. These computations can be interpreted using the ordinary state monad

𝑉 ⇒ 𝑉 × (−). We give rigidly and flexibly graded versions of this monad.

The grades 𝑒 in this example are binary relations on𝑉 , which we represent as functions 𝑒 : 𝑉 →
P𝑉 . The idea is that, if a computation of grade 𝑒 is run with initial state 𝑣 , and terminates with

final state 𝑣 ′, then 𝑣 ′ ∈ 𝑒𝑣 . Grades are allowed to overapproximate these relations, so the ordering

is given by set inclusion. The unit grade 1 is the diagonal relation, and the multiplication 𝑒 · 𝑒′ of

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 123. Publication date: August 2022.
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grades is the composition of relations. We write Rel𝑉 for the pomonoid of grades.

𝑒 ≤ 𝑒′ iff ∀𝑣 ∈ 𝑉 . 𝑒𝑣 ⊆ 𝑒′𝑣 1 = _𝑣 . {𝑣} 𝑒 · 𝑒′ = _𝑣 .{𝑣 ′′ ∈ 𝑉 | ∃𝑣 ′ . 𝑣 ′ ∈ 𝑒𝑣 ∧ 𝑣 ′′ ∈ 𝑒′𝑣 ′}
The rigidly Rel𝑉 -graded monad State is defined analogously to the ordinary state monad, so a

computation is a function that sends each state 𝑣 to a pair of a state 𝑣 ′ and a result 𝑥 , except that

the initial state 𝑣 and final state 𝑣 ′ are required to be related by the grade 𝑒:

State𝑋 𝑒 =
∏
𝑣:𝑉

∐
𝑣′ :𝑒𝑣 𝑋 (𝑒 ≤ 𝑒′)∗𝑡 = _𝑣. 𝑡𝑣

[𝑋𝑥 = _𝑣 . (𝑣, 𝑥) 𝑓
†
𝑑
𝑡 = _𝑣 . let (𝑣 ′, 𝑥) = 𝑡𝑣 in 𝑓 𝑥𝑣 ′

(Grades 𝑒 in which 𝑒𝑣 is not a singleton are in a sense unnecessary: each computation maps each

initial state to a single final state, so we could also work with functions 𝑒 : 𝑉 → 𝑉 . The reason for

allowing 𝑒𝑣 to contain multiple values is to enable overapproximation of grades.)

There is also a flexibly Rel𝑉 -graded monad Stateflex. The definition is again similar to that of the

ordinary state monad, except that 𝑋 is a graded set. In the definition, we use grades (𝑣, 𝑣 ′)▶𝑒 .
(𝑣, 𝑣 ′)▶𝑒 = _𝑤 ′ . if 𝑤 ′ = 𝑣 ′ then 𝑒𝑣 else 𝑉

Stateflex𝑋 𝑒 =
∏
𝑣:𝑉

∐
𝑣′ :𝑉 𝑋 ((𝑣, 𝑣 ′)▶𝑒) (𝑒 ≤ 𝑒′)∗𝑡 = _𝑣 . 𝑡𝑣

[𝑋,𝑑𝑥 = _𝑣. (𝑣, (𝑑 ≤ (𝑣, 𝑣)▶𝑑)∗𝑥) 𝑓
†
𝑑
𝑡 = _𝑣 . let (𝑣 ′, 𝑥) = 𝑡𝑣 in 𝑓(𝑣,𝑣′ )▶𝑑𝑥𝑣 ′

A computation 𝑡 ∈ State𝑋𝑒 therefore takes an initial state 𝑣 and produces another state 𝑣 ′, and
some 𝑥 ∈ 𝑋 ((𝑣, 𝑣 ′)▶𝑒). Here 𝑥 should be thought of as a further computation that can interact with

the state; 𝑣 ′ is unrestricted, but the grade of 𝑥 ensures that, if we run 𝑥 with initial state 𝑣 ′ and get

a final state 𝑣 ′′, then we have 𝑣 ′′ ∈ 𝑒𝑣 .
For an example, we define for any set 𝑋 a graded set 𝑋 , by 𝑋𝑒 = 𝑋 if ∀𝑣 . 𝑣 ∈ 𝑒𝑣 , and 𝑋𝑒 = ∅

otherwise. This graded set should be thought of as containing computations that return elements of

𝑋 without interacting with the state at all, so𝑋𝑒 only contains a computation when 𝑒 allows the state

to be left unchanged (in other words, contains the diagonal relation), and then computations are

just elements of 𝑋 . The grade (𝑣, 𝑣 ′)▶𝑒 contains the diagonal exactly when 𝑣 ′ ∈ 𝑒𝑣 . A computation

𝑡 ∈ Stateflex𝑋𝑒 sends each initial state 𝑣 to a state 𝑣 ′ and element 𝑥 ∈ 𝑋 ((𝑣, 𝑣 ′)▶𝑒), but the latter
condition amounts to 𝑥 ∈ 𝑋 and 𝑣 ′ ∈ 𝑒𝑣 . Here the final state is 𝑣 ′, which is required to be related to

𝑣 by 𝑒 , so 𝑡 is equivalently an element of State𝑋𝑒 . (This is the basis of the construction in Section 5

below.) For a more interesting example, we can nest computations over Stateflex:

Stateflex (Stateflex𝑋 )𝑒 �
∏
𝑣:𝑉

∐
𝑣′ :𝑉

∏
𝑤′

:𝑉

∐
𝑤′′

:( (𝑣,𝑣′ )▶𝑒 )𝑤′ 𝑋

Here the condition on𝑤 ′′
says if we pass the final state 𝑣 ′ of the outer computation as the initial

state𝑤 ′
of the inner computation, then we get𝑤 ′′ ∈ 𝑒𝑣 .

The ordinary state monad has a presentation by operations for reading from and writing to the

state [Plotkin and Power 2002]. The rigidly graded monad State similarly has a flexibly graded

presentation, by an operation get𝑒 for each 𝑒 : 𝑉 → Rel𝑉 , and an operation put𝑤 for each𝑤 ∈ 𝑉 :
get𝑒,𝑋,𝑑 :

∏
𝑣 State𝑋 (𝑒𝑣 · 𝑑) → State𝑋 (_𝑤. (𝑒𝑤 · 𝑑)𝑤) get𝑒,𝑋,𝑑 𝑓 = _𝑣 . 𝑓 𝑣𝑣

put𝑤,𝑋,𝑑 : State𝑋𝑑 → State𝑋 (__. 𝑑𝑤) put𝑤,𝑋,𝑑𝑡 = __. 𝑡𝑤

The computation get𝑒,𝑋,𝑑 (_𝑤.𝑡𝑤) gets the initial value 𝑣 of the state, and then continues as 𝑡𝑣 . The

computation put𝑤,𝑋,𝑑𝑡 sets the state to𝑤 and then continues as 𝑡 . The initial state is irrelevant, and

this is reflected in the grade (__. 𝑑𝑤). For example, if𝑉 = {true, false}, then we have a computation

𝑡neg = get (_𝑣. put¬𝑣 ([𝑉 𝑣)) ∈ State𝑉 (_𝑤. {¬𝑤}) that negates the state.
In get, the computations given as arguments are allowed to have different grades. This is essential

to avoid overapproximating the grade in examples like 𝑡neg. If we had instead said that all of these
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computations had to have the same grade, the best grade we would be able to give to 𝑡neg is the total

relation __.𝑉 . In fact, if we had required the grades to be equal in this way, get and put would not

suffice for a presentation of State. This is part of the motivation for flexibly graded presentations,

in which we allow arguments to have different grades. While there is a rigidly graded presentation

of State, there is no rigidly graded presentation in terms of get and put. Flexibly graded operations

are essential to give a natural presentation of State.

2.3 Example: A Stack
Our next example involves computations interacting with a stack of values drawn from a finite

set 𝑉 . Each computation either: pushes a value 𝑣 ∈ 𝑉 onto the stack, and then continues with

another computation; or attempts to pop a value from the stack, continuing as one computation if

the stack was empty, and continuing as one of |𝑉 | other computations if there was a value to pop.

This example is a grading of Goncharov’s stack monad [2013].

Grades are pairs (ℓ,𝑢) of an lower bound ℓ ∈ {−∞} ∪ Z and an upper bound 𝑢 ∈ Z∪ {∞} on the

net change in the height of the stack. The ordering is given by (ℓ,𝑢) ≤ (ℓ ′, 𝑢′) if ℓ ′ ≤ ℓ and 𝑢 ≤ 𝑢′.
The unit grade is (0, 0), and multiplication of grades is given by (ℓ1, 𝑢1) · (ℓ2, 𝑢2) = (ℓ1 + ℓ2, 𝑢1 + 𝑢2).
We call this pomonoid Interval.

We give a rigidly Interval-graded monad Stk that has interpretations of the push and pop

operations above, as functions

push𝑣,𝑋,(ℓ,𝑢 ) : Stk𝑋 (ℓ,𝑢) → Stk𝑋 (ℓ + 1, 𝑢 + 1) (for each 𝑣 ∈ 𝑉 )
pop𝑋,(ℓ,𝑢 ) : Stk𝑋 (ℓ,𝑢) × (𝑉 ⇒ Stk𝑋 (ℓ + 1, 𝑢 + 1)) → Stk𝑋 (ℓ,𝑢)

We first define some notation. For a set 𝑉 , let List𝑉 be the set of finite, possibly empty lists over

the set 𝑉 . We write |®𝑣 | for the length of a list ®𝑣 , and Listℓ ..𝑢𝑉 and List𝜌𝑉 for the subsets of List𝑉

containing the lists ®𝑣 such that ℓ ≤ |®𝑣 | ≤ 𝑢 and such that |®𝑣 | = 𝜌 respectively. We also write the

cons operation as 𝑣 :: ®𝑣 , write concatenation of lists as ®𝑣 ++ ®𝑣 ′, and write head ®𝑣 and tail ®𝑣 for the
first and remaining elements of a non-empty list ®𝑣 .
A computation of grade (ℓ,𝑢) that returns elements of 𝑋 is in particular a function

𝑡 :

∏
®𝑣:List𝑉 (List | ®𝑣 |+ℓ .. | ®𝑣 |+𝑢𝑉 × 𝑋 ), which sends each initial stack ®𝑣 to a pair of a final stack of

the appropriate length and a result from 𝑋 . The graded monad Stk restricts to only a subset of

these computations; this restriction has to do with the fact that computations are finite: for every 𝑡 ,

there is some natural number 𝜌 , such that 𝑡 only uses at most the first 𝜌 values on the initial stack.

The graded set Stk𝑋 of computations that return elements of the set 𝑋 is given by:

Stk𝑋 (ℓ,𝑢) = {𝑡 : ∏®𝑣:List𝑉 (List | ®𝑣 |+ℓ .. | ®𝑣 |+𝑢𝑉 × 𝑋 )
| ∃𝜌 ∈ N.∀®𝑣 ∈ List𝜌𝑉 , ®𝑤 ∈ List𝑉 . fst(𝑡 (®𝑣 ++ ®𝑤)) = fst(𝑡 ®𝑣) ++ ®𝑤

∧ snd(𝑡 (®𝑣 ++ ®𝑤)) = snd(𝑡 ®𝑣)}

Coercions ((ℓ,𝑢) ≤ (ℓ ′, 𝑢′))∗ just use the inclusions List | ®𝑣 |+ℓ .. | ®𝑣 |+𝑢𝑉 ⊆ List | ®𝑣 |+ℓ ′ .. | ®𝑣 |+𝑢′𝑉 . The unit
and Kleisli extension are similar to those of the state monad:

[𝑋𝑥 = _®𝑣 .(𝑥, ®𝑣) 𝑓
†
(ℓ,𝑢 )𝑡 = _®𝑣 . let (®𝑣

′, 𝑥) = 𝑡 ®𝑣 in 𝑓 𝑥 ®𝑣 ′

The interpretations of the push and pop operations are the following:

push𝑣,𝑋,(ℓ,𝑢 ) 𝑡 = _®𝑣 ′ . 𝑡 (𝑣 :: ®𝑣 ′) pop𝑋,(ℓ,𝑢 ) (𝑡0, 𝑡) = _®𝑣 . if |®𝑣 | = 0 then 𝑡0 ®𝑣 else 𝑡 (head ®𝑣) (tail ®𝑣)

We also define a flexibly graded monad Stkflex for this example. It is similar to the rigidly graded

monad Stk, except that there is no restriction on the stack produced by the computation (which

should be thought of as an intermediate stack). Instead, the grade of the element of 𝑋 compensates
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for having a stack of the wrong length.

Stkflex𝑋 (ℓ,𝑢) = {𝑡 : ∏®𝑣:List𝑉
∐

®𝑣′ :List𝑉 𝑋 (ℓ − (|®𝑣 ′ | − |®𝑣 |), 𝑢 − (|®𝑣 ′ | − |®𝑣 |))
| ∃𝜌 ∈ N.∀®𝑣 ∈ List𝜌𝑉 , ®𝑤 ∈ List𝑉 . fst(𝑡 (®𝑣 ++ ®𝑤)) = fst(𝑡 ®𝑣) ++ ®𝑤

∧ snd(𝑡 (®𝑣 ++ ®𝑤)) = snd(𝑡 ®𝑣)}

There are also push and pop operations for the flexibly graded monad Stkflex. These are defined
in exactly the same way as the operations for the rigidly graded monad above, and have almost

identical types (the key difference being that 𝑋 now ranges over graded sets):

push𝑣,𝑋,(ℓ,𝑢 ) : Stkflex𝑋 (ℓ,𝑢) → Stkflex𝑋 (ℓ + 1, 𝑢 + 1) (for each 𝑣 ∈ 𝑉 )
pop𝑋,(ℓ,𝑢 ) : Stkflex𝑋 (ℓ,𝑢) × (𝑉 ⇒ Stkflex𝑋 (ℓ + 1, 𝑢 + 1)) → Stkflex𝑋 (ℓ,𝑢)

Stkflex is actually presented by these operations. The reason we can give such a presentation is

that every 𝑡 ∈ Stkflex𝑋 (ℓ,𝑢) can be written using only [ and finitely many pushes and pops. Indeed,

if 𝜌 is a witness from the definition of Stkflex𝑋 (ℓ,𝑢), then:

𝑡 = push
fst(𝑡 [ ] ) ([ (snd(𝑡 []))) (if 𝜌 = 0)

𝑡 = pop
(
push

fst(𝑡 [ ] ) ([ (snd(𝑡 []))), _𝑣 . _ ®𝑤. 𝑡 (𝑣 :: ®𝑤)
)

(if 𝜌 > 0)

Here we have omitted some of the subscripts, andwritten push[𝑤1,...,𝑤𝑛 ] for push𝑤𝑛
◦· · ·◦push𝑤1

. This

provides a recursive procedure for writing 𝑡 using push𝑣 , pop and [. The recursion is well-founded

because the witness 𝜌 for _ ®𝑤. 𝑡 (𝑣 :: ®𝑤) is strictly smaller than the witness for 𝑡 .

2.4 Example: Backtracking Nondeterminism, with Cut
We give a rigidly graded monad for finite nondeterminism with a cut operator, similar to the

ungraded monad described by Piróg and Staton [2017].

For this example, the pomonoid of grades is {⊥ ≤ 1 ≤ ⊤}, with multiplication given by ⊥ · 𝑒 = ⊥,
1 · 𝑒 = 𝑒 and ⊤ · 𝑒 = ⊤. The grade ⊥ means ‘definitely cuts’; the unit grade 1 means ‘definitely cuts

or produces at least one value’; and ⊤ imposes no restrictions. The rigidly graded monad Cut is
defined as follows.

Cut𝑋𝑒 = {( ®𝑥, 𝑐) ∈ List𝑋 × {⊥,⊤} | (𝑒 = ⊥ ⇒ 𝑐 = ⊥) ∧ (𝑒 = 1 ⇒ 𝑐 = ⊥ ∨ ®𝑥 ≠ [])}
(𝑒 ≤ 𝑒′)∗ ( ®𝑥, 𝑐) = ( ®𝑥, 𝑐) [𝑋𝑥 = ( [𝑥],⊤) 𝑓

†
𝑑
( [], 𝑐) = ( [], 𝑐)

𝑓
†
𝑑
(𝑥 :: ®𝑥 ′, 𝑐) = let ( ®𝑦, 𝑐′) = 𝑓 𝑥 in if 𝑐′ = ⊥ then ( ®𝑦, 𝑐′) else let ( ®𝑦′, 𝑐′′) = 𝑓 †

𝑑
( ®𝑥 ′, 𝑐) in ( ®𝑦 ++ ®𝑦′, 𝑐′′)

A computation over 𝑋 is a list of values drawn from 𝑋 , plus a tag that indicates whether the

computation cuts (⊥ for ‘cuts’, ⊤ for ‘does not cut’). Kleisli extension applies 𝑓 to each of the

elements of the list ®𝑥 and concatenates the results, except that everything after the first cut is

discarded.

3 LOCALLY GRADED CATEGORIES AND ALGEBRAS
In classical universal algebra, the monad T corresponding to a presentation (Σ, 𝐸) is determined

by the fact that it has the same algebras as the presentation. Precisely, (Σ, 𝐸)-algebras and T-
algebras both form concrete categories (categories equipped with a functor into Set), and there is

an isomorphism between these concrete categories.

Similar considerations apply to both rigidly graded presentations and flexibly graded presen-

tations. In this case however, ordinary category theory does not suffice. Instead of just having

sets of morphisms between algebras, we instead have graded sets of morphisms between algebras.

Algebras form locally graded categories in the sense of the following definition.
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Definition 3.1 (Wood [1976]). A locally E-graded category C consists of

• a collection |C| of objects;
• for each 𝑋,𝑌 ∈ |C|, an E-graded set C(𝑋,𝑌 ) ofmorphisms from 𝑋 to 𝑌 ; we write 𝑓 : 𝑋 𝑒 𝑌

to indicate that 𝑓 ∈ C(𝑋,𝑌 )𝑒;
• for each 𝑋 ∈ |C|, a morphism id𝑋 : 𝑋 1 𝑋 ;

• for each 𝑓 : 𝑋 𝑒 𝑌 and 𝑔 : 𝑌 𝑒′ 𝑍 , a morphism 𝑔 ◦ 𝑓 : 𝑋 𝑒 · 𝑒′ 𝑍 ;

such that composition is unital (id𝑌 ◦ 𝑓 = 𝑓 = 𝑓 ◦ id𝑋 ), associative ((ℎ ◦ 𝑔) ◦ 𝑓 = ℎ ◦ (𝑔 ◦ 𝑓 )), and
natural ((𝑒1·𝑒2 ≤ 𝑒′1·𝑒′2)∗ (𝑔 ◦ 𝑓 ) = (𝑒′

1
≤ 𝑒′

2
)∗𝑔 ◦ (𝑒1 ≤ 𝑒2)∗ 𝑓 ).

Locally graded categories were introduced by Wood [1976] and used by Gaboardi et al. [2021]

for the semantics of graded Hoare logic. The terminology we use is from Levy [2019]. Instead of

locally graded categories, it is possible to work instead with actegories, like [Fujii et al. 2016], but
locally graded categories turn out to be more convenient for us.

Remark. Locally graded categories are an instance of enriched categories. In detail, the category

[E, Set] forms a monoidal category with Day convolution as tensor:

𝐼 = E(1,−) 𝑋 ⊗ 𝑌 =

∫ 𝑒1,𝑒2∈ |E |
E(𝑒1 · 𝑒2,−) × 𝑋𝑒1 × 𝑌𝑒2

Locally E-graded categories are [E, Set]-enriched categories. This correspondence extends to locally
graded and enriched functors and natural transformations (we define locally graded functors below),

so the 2-categories of E-graded categories and [E, Set]-enriched categories are equivalent.

We use the following locally graded category of graded sets throughout. It has the same role

here as Set does in the classical presentation–monad correspondence.

Definition 3.2. The locally graded categoryGSetE has as objects E-graded sets, and as morphisms

𝑋 𝑒 𝑌 grade-preserving functions𝑋 ⇒ 𝑌 (− ·𝑒). The coercion (𝑒≤𝑒′)∗ 𝑓 : 𝑋 𝑒′ 𝑌 of 𝑓 : 𝑋 𝑒 𝑌

uses coercions in 𝑌 on the left below. The identity on 𝑋 is the identity grade-preserving function

id𝑋 : 𝑋 ⇒ 𝑋 , the composition 𝑔 ◦ 𝑓 : 𝑋 𝑒 · 𝑒′ 𝑍 of 𝑓 : 𝑋 𝑒 𝑌 and 𝑔 : 𝑌 𝑒′ 𝑍 is defined on

the right below.

((𝑒≤𝑒′)∗ 𝑓 )𝑑 : 𝑋𝑑
𝑓𝑑−→ 𝑌 (𝑑 · 𝑒)

(𝑑 ·𝑒≤𝑑 ·𝑒′ )∗
−−−−−−−−→ 𝑌 (𝑑 · 𝑒′) (𝑔 ◦ 𝑓 )𝑑 : 𝑋𝑑

𝑓𝑑−→ 𝑌 (𝑑 · 𝑒)
𝑔𝑑 ·𝑒−−−→ 𝑍 (𝑑 · 𝑒 · 𝑒′)

Using the notion of morphism of graded sets given in this definition, the Kleisli extensions of

each rigidly graded monad R and each flexibly graded monad T have the following types:

𝑓 : 𝑋 → 𝑅𝑌𝑒

𝑓 † : 𝑅𝑋 𝑒 𝑅𝑌

𝑓 : 𝑋 𝑒 𝑇𝑌

𝑓 † : 𝑇𝑋 𝑒 𝑇𝑌

The appropriate notion of functor between locally graded categories is as follows:

Definition 3.3 (Wood [1976]). A functor 𝐹 : C → D between locally graded categories consists

of an object mapping 𝐹 : |C| → |D| and a mapping of morphisms as on the left below; these are

required to preserve identities and composition, and to be natural, as on the right below.

𝑓 : 𝑋 𝑒 𝑌

𝐹 𝑓 : 𝐹𝑋 𝑒 𝐹𝑌

𝐹 id𝑋 = id𝐹𝑋

𝐹 (𝑔 ◦ 𝑓 ) = 𝐹𝑔 ◦ 𝐹 𝑓
𝐹 ((𝑒 ≤ 𝑒′)∗ 𝑓 ) = (𝑒 ≤ 𝑒′)∗ (𝐹 𝑓 )

For an example, let T be a flexibly E-graded monad. The assignment 𝑋 ↦→ 𝑇𝑋 of graded sets to

graded sets extends to a functor 𝑇 : GSetE → GSetE by defining 𝑇 𝑓 = ([𝑌 ◦ 𝑓 )† : 𝑇𝑋 𝑒 𝑇𝑌 for

each morphism 𝑓 : 𝑋 𝑒 𝑌 of graded sets. We use this construction in Section 8 below. (There is

also a similar construction for rigidly graded monads, see Section 8.2.)
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We define the locally graded categories of algebras for rigidly graded monads and for flexibly

graded monads. In both cases an algebra is essentially a graded set in which we can interpret

computations. These are defined in terms of an extension operator analogous to Kleisli extension.

Definition 3.4. Let R be a rigidly E-graded monad. An R-algebra A consists of an E-graded

set 𝐴 (the carrier) and an extension operator (−)‡ that maps each function 𝑓 : 𝑋 → 𝐴𝑒 to a

grade-preserving function 𝑓 ‡ : 𝑅𝑋 ⇒ 𝐴(− · 𝑒); this is required to satisfy the following equations:

𝑓
‡
1
◦ [𝑋 = 𝑓 𝑔

‡
𝑑 ·𝑒 ◦ 𝑓

†
𝑑
= (𝑔‡𝑒 ◦ 𝑓 )

‡
𝑑

A morphism 𝑓 : A 𝑒 A′
of R-algebras is a morphism 𝑓 : 𝐴 𝑒 𝐴′

of graded sets satisfying

𝑓𝑑 ·𝑒 ◦ 𝑔‡𝑑 = (𝑓𝑒 ◦ 𝑔)‡𝑑 . These form a locally E-graded category EM(R), with coercions, identities

and composition as in GSetE. There is a forgetful functor 𝑈R : EM(R) → GSetE that sends each
R-algebra to its carrier, and each morphism of R-algebras to itself.

The free R-algebra on a set 𝑋 is the R-algebra consisting of the graded set 𝑅𝑋 equipped with the

Kleisli extension operator (−)†.

Instead of defining algebras in terms of the extension operator (−)‡, there is also a definition

in terms of a family of functions 𝑎𝑒1,𝑒2 : 𝑅(𝐴𝑒2)𝑒1 → 𝐴(𝑒1 · 𝑒2) [Fujii et al. 2016] (analogous to the

usual definition of monad algebra in terms of a function 𝑇𝐴 → 𝐴), but we do not need this here.

Example 3.5. Recall the rigidly E-graded writer monadWrM (Section 2.1), and let A be aWrM-
algebra. By specializing the extension operator (−)‡ : Set(𝑋,𝐴𝑒) → GSetE (𝑀 (−) × 𝑋,𝐴)𝑒 to

𝑋 = 1 and defining ⟦tell𝑝⟧𝑒𝑎 = (__.𝑎)‡
𝑑
(𝑝,★), we obtain a grade-preserving function ⟦tell𝑝⟧ : 𝐴 ⇒

𝐴(𝑑 · −) for each 𝑝 ∈ 𝑀𝑑 ; this satisfies the equations
(𝑑 ·𝑒≤𝑑 ′·𝑒)∗ (⟦tell𝑝⟧𝑒𝑎) = ⟦tell(𝑑≤𝑑 ′ )∗𝑝⟧𝑒𝑎 𝑎 = ⟦tellY⟧𝑒𝑎 ⟦tell𝑝⟧𝑑 ·𝑒 (⟦tell𝑝′⟧𝑒𝑎) = ⟦tell𝑝⊗𝑝′⟧𝑒𝑎
This construction is one half of a bijection. For the other half, given a graded set 𝐴 and grade-

preserving functions ⟦tell𝑝⟧ : 𝐴 ⇒ 𝐴(𝑑 · −) satisfying these equations, 𝐴 is the carrier of a

WrM-algebra A with extension operator 𝑓
‡
𝑑
(𝑝, 𝑥) = ⟦tell𝑝⟧𝑒 (𝑓 𝑥). In the case of the free WrM-

algebra (Wr
M𝑋, (−)†), we have ⟦tell𝑝⟧𝑒 = tell𝑝,𝑋,𝑒 where tell𝑝 is as defined in Section 2.1.

Under this bijection, a morphism 𝑓 : A 𝑒 A′
of WrM-algebras is equivalently a morphism

𝑓 : 𝐴 𝑒 𝐴′
of graded sets that preserves each ⟦tell𝑝⟧ in the sense that 𝑓𝑑 ·𝑑 ′ (⟦tell𝑝⟧𝑑 ′𝑎) =

⟦tell𝑝⟧𝑑 ′ ·𝑒 (𝑓𝑑 ′𝑎). The bijection between the two forms of algebras therefore extends to an isomor-

phism of locally graded categories (between EM(WrM) and the locally graded category of graded

sets equipped with ⟦tell𝑝⟧). This isomorphism moreover preserves carriers and sends morphisms

to themselves.

Below we show thatWrM has a rigidly graded presentation by a family of unary operations tell𝑝 ;
this isomorphism is precisely the reason why such a presentation inducesWrM. As the notation
suggests, the functions ⟦tell𝑝⟧ are the interpretations of the operations tell𝑝 .

In the above example, we have an isomorphism of locally graded categories that preserves carriers

and morphisms. Functors like this appear throughout this paper, we say they are over GSetE. They
are analogous to the concrete functors from the classical correspondence. (The functors 𝑈 , 𝑈 ′

in

the following definition are typically forgetful functors, like𝑈R above.)

Definition 3.6. Let C, C′
be locally graded categories equipped with functors 𝑈 : C → GSetE

and𝑈 ′
: C′ → GSetE. A functor 𝐹 : C → C′

is over GSetE when𝑈 ′ · 𝐹 = 𝑈 .

Definition 3.7. Let T be a flexiblyE-gradedmonad. A T-algebra A consists of anE-graded set𝐴 (the

carrier) and an extension operator (−)‡ that maps each grade-preserving function 𝑓 : 𝑋 ⇒ 𝐴(− · 𝑒)
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to a grade-preserving function 𝑓 ‡ : 𝑇𝑋 ⇒ 𝐴(− · 𝑒); this is required to satisfy the following

equations:

𝑓 ‡ ◦ [𝑋 = 𝑓 𝑔‡−·𝑒 ◦ 𝑓 † = (𝑔‡−·𝑒 ◦ 𝑓 )
‡

(𝑓 : 𝑋 ⇒ 𝑇𝑌 (− · 𝑒), 𝑔 : 𝑌 ⇒ 𝐴(− · 𝑒′))
A morphism 𝑓 : A 𝑒 A′

of T-algebras is a morphism 𝑓 : 𝐴 𝑒 𝐴′
of graded sets satisfying

𝑓 ◦ 𝑔‡ = (𝑓 ◦ 𝑔)‡. These form a locally E-graded category EM(T), with coercions, identities and

composition as inGSetE. There is a forgetful functor 𝑈T : EM(T) → GSetE that sends each T-algebra
to its carrier, and each morphism of T-algebras to itself.

The free T-algebra on a graded set 𝑋 is the T-algebra consisting of the graded set 𝑇𝑋 equipped

with the Kleisli extension operator (−)†.

Example 3.8. In Example 3.5, we characterize algebras for the rigidly graded monad WrM in

terms of operations tell𝑝 . We give a similar characterization for the flexibly graded monad Stkflex
for 𝑉 -valued stacks (Section 2.3). In this case, the operations are push𝑣 and pop.
Let A be a Stkflex-algebra. Define2 a graded set 𝑃 by 𝑃𝑒 = {★ | (0, 0) ≤ 𝑒} ∪ {𝑣 ∈ 𝑉 | (1, 1) ≤ 𝑒},

where★ is not in𝑉 (so the union is disjoint). There are bijections 𝜗 : 𝐴(ℓ,𝑢)×(𝑉 ⇒ 𝐴(ℓ+1, 𝑢+1)) �
GSetInterval (𝑃,𝐴) (ℓ,𝑢), defined by

(𝜗 (𝑎, 𝑓 ))𝑒★ = ((ℓ,𝑢)≤(𝑒 ·(ℓ,𝑢)))∗𝑎 (𝜗 (𝑎, 𝑓 ))𝑒𝑣 = ((ℓ+1, 𝑢+1)≤(𝑒 ·(ℓ,𝑢)))∗ (𝑓 𝑣)
By applying the extension operator (−)‡ : GSetInterval (𝑃,𝐴) (ℓ,𝑢) → GSetInterval (Stkflex𝑃,𝐴) (ℓ,𝑢)
we can therefore define for each (ℓ,𝑢) a function

⟦pop⟧(ℓ,𝑢 ) : 𝐴(ℓ,𝑢) × (𝑉 ⇒ 𝐴(ℓ + 1, 𝑢 + 1)) → 𝐴(ℓ,𝑢)

⟦pop⟧(ℓ,𝑢 ) (𝑎, 𝑓 ) = (𝜗 (𝑎, 𝑓 ))‡(0,0) (_®𝑣 . if ®𝑣 = [] then ( [],★) else (tail ®𝑣, head ®𝑣))

We can similarly define a graded set 𝑃 ′ by 𝑃 ′𝑒 = {★ | (0, 0) ≤ 𝑒}, so that there are bijections

𝜗 : 𝐴(ℓ,𝑢) � GSetInterval (𝑃 ′, 𝐴) (ℓ,𝑢), and use these to define

⟦push𝑤⟧(ℓ,𝑢 ) : 𝐴(ℓ,𝑢) → 𝐴(ℓ+1, 𝑢+1) ⟦push𝑤⟧(ℓ,𝑢 )𝑎 = (𝜗𝑎)‡(1,1) (_®𝑣 . (𝑤 :: ®𝑣,★))

These functions are natural in (ℓ,𝑢), and satisfy the following equations:

⟦push𝑣⟧(ℓ,𝑢 ) (⟦pop⟧(ℓ,𝑢 ) (𝑎, 𝑓 )) = 𝑓 𝑣 (for each 𝑣 ∈ 𝑉 )
⟦pop⟧(ℓ,𝑢 ) (𝑎, (_𝑣. ⟦push𝑣⟧(ℓ,𝑢 )𝑎)) = 𝑎 ⟦pop⟧(ℓ,𝑢 ) (⟦pop⟧(ℓ,𝑢 ) (𝑎, 𝑓 ), 𝑔) = ⟦pop⟧(ℓ,𝑢 ) (𝑎,𝑔)

Every morphism A 𝑒 A′
of Stkflex-algebras preserves the functions ⟦pop⟧ and ⟦push𝑣⟧.

This is half of an isomorphism of locally graded categories over GSetInterval, essentially because

every Stkflex-computation can be written using finitely many pops and pushes, as in Section 2.3.

When A is the free Stkflex-algebra on a graded set𝑋 (with Stkflex𝑋 as the carrier), then we recover

the operations defined for Stkflex in Section 2.3 as pop𝑋 = ⟦pop⟧ and push𝑣,𝑋 = ⟦push𝑣⟧.

4 RIGIDLY GRADED PRESENTATIONS
Before introducing flexibly graded presentations, we consider the less general rigidly graded pre-

sentations. The theory of these is quite well-developed. They are discussed (at varying levels of

generality) by Dorsch et al. [2019]; Kura [2020]; Smirnov [2008], all of whom show a correspon-

dence between rigidly graded presentations and a class of rigidly graded monads. Our discussion

mostly follows Kura [2020]. We do however reformulate several definitions (primarily to ease the

comparison with flexibly graded presentations), for example we work with locally graded categories

2
The graded sets 𝑃, 𝑃 ′ and bijections 𝜗 defined here are special cases of the graded sets𝐾E®𝑒 and bijections 𝜗 of Definition 8.5.

Specifically, we have 𝑃 � 𝐾Interval ( (0, 0), (1, 1), . . . , (1, 1)︸              ︷︷              ︸
|𝑉 |

) and 𝑃 ′ � 𝐾Interval ( (0, 0) ) .
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(Kura uses actegories). We also fill in a few gaps. In particular, we show that the operations of the

presentation induce algebraic operations (Section 4.4).

A presentation firstly has a collection of operations, forming a signature.

Definition 4.1. A rigidly E-graded signature consists of a set Σ(𝑛; 𝑒′) for each natural number 𝑛

and grade 𝑒′. We call the elements of Σ(𝑛; 𝑒′) the (𝑛; 𝑒′)-ary operations.

(In this section we often use 𝑒′ even when there is no 𝑒 , for easier comparison with later sections.)

Here 𝑛 is the number of arguments the operation has, and 𝑒′ is the grade associated with applying

the operation. All of the arguments are required to have the same grade 𝑑 when applying the

operation (hence rigid). The result of applying the operation has grade 𝑒′ · 𝑑 when the arguments

have grade 𝑑 .

For each rigidly graded signature Σ we have a notion of term (derived operation) over Σ. A
context Γ = 𝑥1, . . . , 𝑥𝑛 is a list of variable names (without repetitions). (We often call the 𝑖th variable

𝑥𝑖 , but permit ourselves to use other variable names and identify terms up to 𝛼-equivalence, so

that a context is equivalently just a natural number specifying the number of variables.) We write

Γ ⊢ 𝑡 : 𝑒 to indicate that 𝑡 is a term of grade 𝑒 in context Γ; these are generated inductively by the

following rules for variables, application of operations, and coercion:

𝑥 ∈ Γ

Γ ⊢ 𝑥 : 1

op ∈ Σ(𝑛; 𝑒′) Γ ⊢ 𝑡1 : 𝑑 · · · Γ ⊢ 𝑡𝑛 : 𝑑

Γ ⊢ op(𝑑 ; 𝑡1, . . . , 𝑡𝑛) : 𝑒′ · 𝑑
𝑒 ≤ 𝑒′ Γ ⊢ 𝑡 : 𝑒
Γ ⊢ (𝑒≤𝑒′)∗𝑡 : 𝑒′

In particular, variables have the unit grade 1, and operations can only be applied when all of their

arguments have the same grade 𝑑 . There is no restriction at all on which grade 𝑑 is; this is crucial

when defining substitution of terms, because even though variables have grade 1, we can substitute

terms of arbitrary grades 𝑑 . The grade 𝑑 in fact has exactly the same role as the 𝑑 in the definition

of rigidly graded monad (Definition 2.2). Given a term 𝑥1, . . . , 𝑥𝑛 ⊢ 𝑡 : 𝑒′ and a list of terms Γ ⊢ 𝑢𝑖 : 𝑑
(all of the same grade), by substituting we obtain a term Γ ⊢ 𝑡{𝑑 ;𝑥1 ↦→ 𝑢1, . . . , 𝑥𝑛 ↦→ 𝑢𝑛} : 𝑒′ · 𝑑 .

Now that we have a notion of term, we can say what an equation is (just a pair of terms that we

wish to be equal), and then define rigidly graded presentations.

Definition 4.2. An (𝑛; 𝑒′)-ary term over a rigidly graded signature Σ is a term 𝑥1, . . . , 𝑥𝑛 ⊢ 𝑡 : 𝑒′.
An (𝑛; 𝑒′)-ary equation over Σ is a pair (𝑡,𝑢) of (𝑛; 𝑒′)-ary terms over Σ.

We will often write an (𝑛; 𝑒′)-ary equation (𝑡,𝑢) as 𝑥1, . . . , 𝑥𝑛 ⊢ 𝑡 ≈ 𝑢 : 𝑒′, and, for convenience,
permit ourselves to give different names to the variables.

Definition 4.3. A rigidly E-graded presentation (Σ, 𝐸) consists of
• a rigidly E-graded signature Σ;
• for each natural number 𝑛 and grade 𝑒′, a set 𝐸 (𝑛; 𝑒′) of (𝑛; 𝑒′)-ary equations over Σ.

Example 4.4. Recall the rigidly E-graded writer monad WrM from Section 2.1. We give a rigidly

graded presentation (Σ, 𝐸) ofWrM. The signature Σ consists of a (1; 𝑒′)-ary operation tell𝑝 for each
𝑝 ∈ 𝑀𝑒′, so that terms are generated by variables, coercions, and

Γ ⊢ 𝑡 : 𝑑
Γ ⊢ tell𝑝 (𝑑 ; 𝑡) : 𝑒′ · 𝑑

(𝑝 ∈ 𝑀𝑒′)

There is a (1; 𝑒′)-ary equation for each 𝑝 ∈ 𝑀𝑒 and 𝑒′ ≥ 𝑒 , a single (1; 1)-ary equation, and a

(1; 𝑒 · 𝑒′)-ary equation for each 𝑝 ∈ 𝑀𝑒 and 𝑝′ ∈ 𝑀𝑒′:
𝑥 ⊢ (𝑒 ≤ 𝑒′)∗ (tell𝑝 (1;𝑥)) ≈ tell(𝑒≤𝑒′ )∗𝑝 (1;𝑥) : 𝑒′

𝑥 ⊢ tellY (1;𝑥) ≈ 𝑥 : 1 𝑥 ⊢ tell𝑝 (𝑒′; tell𝑝′ (1;𝑥)) ≈ tell𝑝⊗𝑝′ (1;𝑥) : 𝑒 · 𝑒′
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4.1 Rigidly Graded Equational Logic
A rigidly graded presentation (Σ, 𝐸) specifies a collection 𝐸 of equations as axioms, but further

equations Γ ⊢ 𝑡 ≈ 𝑢 : 𝑒 can be derived from these axioms in the rigidly graded equational logic over
(Σ, 𝐸). This is given by the following rules, plus reflexivity, transitivity and symmetry. The first

two rules are congruences, the next two express that coercions are compatible with reflexivity and

transitivity of ≤, the fifth rule says that operator application is natural in the grade 𝑑 , and the final

rule is application of the axioms of the rigidly graded presentation.

op ∈ Σ(𝑛; 𝑒′) Γ ⊢ 𝑡1 ≈ 𝑢1 : 𝑑 · · · Γ ⊢ 𝑡𝑛 ≈ 𝑢𝑛 : 𝑑

Γ ⊢ op(𝑑 ; 𝑡1, . . . , 𝑡𝑛) ≈ op(𝑑 ;𝑢1, . . . , 𝑢𝑛) : 𝑒′ · 𝑑
𝑒 ≤ 𝑒′ Γ ⊢ 𝑡 ≈ 𝑢 : 𝑒

Γ ⊢ (𝑒≤𝑒′)∗𝑡 ≈ (𝑒≤𝑒′)∗𝑢 : 𝑒′

Γ ⊢ 𝑡 : 𝑒
Γ ⊢ 𝑡 ≈ (𝑒≤𝑒)∗𝑡 : 𝑒

𝑒 ≤ 𝑒′ ≤ 𝑒′′ Γ ⊢ 𝑡 : 𝑒
Γ ⊢ (𝑒′≤𝑒′′)∗ ((𝑒≤𝑒′)∗𝑡) ≈ (𝑒≤𝑒′′)∗𝑡 : 𝑒′′

op ∈ Σ(𝑛; 𝑒′) 𝑑 ≤ 𝑑 ′ Γ ⊢ 𝑡1 : 𝑑 · · · Γ ⊢ 𝑡𝑛 : 𝑑

Γ ⊢ (𝑒′·𝑑 ≤ 𝑒′·𝑑 ′)∗ (op(𝑑 ; 𝑡1, . . . , 𝑡𝑛)) ≈ op(𝑑 ′; (𝑑 ≤ 𝑑 ′)∗𝑡1, . . . , (𝑑 ≤ 𝑑 ′)∗𝑡𝑛) : 𝑒′ · 𝑑 ′

(𝑡,𝑢) ∈ 𝐸 (𝑛; 𝑒′) Γ ⊢ 𝑠1 : 𝑑 · · · Γ ⊢ 𝑠𝑛 : 𝑑

Γ ⊢ 𝑡{𝑑 ;𝑥1 ↦→ 𝑠1, . . . , 𝑥𝑛 ↦→ 𝑠𝑛} ≈ 𝑢{𝑑 ;𝑥1 ↦→ 𝑠1, . . . , 𝑥𝑛 ↦→ 𝑠𝑛} : 𝑒′ · 𝑑

For every natural number 𝑛 and grade 𝑒′ we write Term(Σ,𝐸 )𝑛𝑒′ for the set of (𝑛; 𝑒′)-ary terms over

Σ, quotiented by ≈. These form graded sets Term
(Σ,𝐸 )𝑛.

4.2 Algebras
An algebra for a rigidly graded presentation (Σ, 𝐸) is a graded set equipped with interpretations

of the operations in Σ, satisfying the equations in 𝐸. We define this notion in two steps, by first

defining an notion of algebra for a signature Σ. This matches the definition given by Kura [2020],

but, differently from Kura, we work with locally graded categories of algebras.

Definition 4.5. Let Σ be a rigidly E-graded signature. A Σ-algebra A consists of a graded set 𝐴

(the carrier), together with a grade-preserving function ⟦op⟧ : 𝐴𝑛 → 𝐴(𝑒′ · −) for every operation

op ∈ Σ(𝑛; 𝑒′). The Σ-algebras form a locally E-graded category Alg(Σ), in which a morphism
𝑓 : A 𝑒 A′

is a morphism 𝑓 : 𝐴 𝑒 𝐴′
between the carriers, i.e. a grade-preserving function

𝑓 : 𝐴 ⇒ 𝐴′ (− · 𝑒), preserving interpretations of operations as follows:

𝑓𝑒′ ·𝑑 (⟦op⟧𝑑 (𝑎1, . . . , 𝑎𝑛)) = ⟦op⟧𝑑 ·𝑒 (𝑓𝑑𝑎1, . . . , 𝑓𝑑𝑎𝑛)

Every Σ-algebra A admits interpretations of terms over Σ. For each (𝑛; 𝑒′)-ary term 𝑡 and grade

𝑑 , the interpretation of 𝑡 is the grade-preserving function ⟦𝑡⟧ : 𝐴𝑛 ⇒ 𝐴(𝑒′ · −) defined as follows:

⟦𝑥𝑖⟧𝑑 (𝑎1, . . . , 𝑎𝑛) = 𝑎𝑖
⟦op(𝑑 ′; 𝑡1, . . . , 𝑡𝑚)⟧𝑑 (𝑎1, . . . , 𝑎𝑛) = ⟦op⟧𝑑 ′ ·𝑑 (⟦𝑡1⟧𝑑 (𝑎1, . . . , 𝑎𝑛), . . . , ⟦𝑡𝑚⟧𝑑 (𝑎1, . . . , 𝑎𝑛)))

⟦(𝑒≤𝑒′)∗𝑡⟧𝑑 (𝑎1, . . . , 𝑎𝑛) = (𝑒 ·𝑑 ≤ 𝑒′·𝑑)∗ (⟦𝑡⟧𝑑 (𝑎1, . . . , 𝑎𝑛))

Definition 4.6. Let (Σ, 𝐸) be a rigidly graded presentation. A (Σ, 𝐸)-algebra is a Σ-algebra A that

satisfies all of the equations in 𝐸, in the sense that for every equation (𝑡,𝑢) ∈ 𝐸 (𝑛; 𝑒′) and grade 𝑑 ,

we have ⟦𝑡⟧𝑑 = ⟦𝑢⟧𝑑 . We write Alg(Σ, 𝐸) for the locally graded category of (Σ, 𝐸)-algebras, which
has the same morphisms as Alg(Σ). There is a forgetful functor𝑈 (Σ,𝐸 ) : Alg(Σ, 𝐸) → GSetE which
sends algebras to carriers and morphisms to themselves.
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Example 4.7. Recall the presentation (Σ, 𝐸) ofWrM, from Example 4.4. The locally graded category

Alg(Σ, 𝐸) is exactly the one described in Example 3.5: objects are graded sets equipped with grade-

preserving functions ⟦tell𝑝⟧ satisfying the equations given there. Morphisms are ⟦tell𝑝⟧-preserving
morphisms of graded sets. In particular, there is an isomorphismAlg(Σ, 𝐸) � EM(WrM) overGSetE.
For every natural number 𝑛, the terms in context 𝑥1, . . . , 𝑥𝑛 , quotiented by ≈, form a (Σ, 𝐸)-

algebra. The carrier is the graded set Term
(Σ,𝐸 )𝑛 defined above, and operations are interpreted

by ⟦op⟧𝑑 (𝑢1, . . . , 𝑢𝑛) = op(𝑑 ;𝑢1, . . . , 𝑢𝑛). It follows from this definition that arbitrary terms are

interpreted by substitution as ⟦𝑡⟧𝑑 (𝑢1, . . . , 𝑢𝑚) = 𝑡{𝑑 ;𝑥1 ↦→ 𝑢1, . . . , 𝑥𝑚 ↦→ 𝑢𝑚}. In particular, the

rule for application of axioms in the equational logic amounts to the fact that, in these Σ-algebras,
⟦𝑡⟧𝑑 = ⟦𝑢⟧𝑑 for every (𝑡,𝑢) ∈ 𝐸 (𝑛; 𝑒′′) and 𝑑 , so Term

(Σ,𝐸 )𝑛 does indeed form a (Σ, 𝐸)-algebra.

4.3 Rigidly Graded Monads from Rigid Presentations
Our motivation for rigidly graded presentations is to present rigidly graded monads, and indeed

every rigidly graded presentation (Σ, 𝐸) induces a rigidly graded monad R(Σ,𝐸 )
. Of course we do

not want just any rigidly graded monad: in particular the operations of (Σ, 𝐸) have interpretations
in R(Σ,𝐸 )

. It turns out that R(Σ,𝐸 )
is canonical in the sense that to equip a graded set A with the

structure of an R(Σ,𝐸 )
-algebra is equivalently to equip 𝐴 with the structure of a (Σ, 𝐸)-algebra. In

other words, to interpret computations over R(Σ,𝐸 )
is equivalently to interpret the operations of Σ

in a way that satisfies the equations of 𝐸. Formally, we have the following:

Theorem 4.8. For every rigidly E-graded presentation (Σ, 𝐸), there is a rigidly graded monad R(Σ,𝐸 )

and isomorphism Alg(Σ, 𝐸) � EM(R(Σ,𝐸 ) ) over GSetE.
(We do not prove this yet, instead we show a stronger theorem (Theorem 8.8) that there is a

correspondence between rigidly graded presentations and a class of rigidly graded monads. Similar

correspondences can be found e.g. in [Kura 2020].)

Example 4.9. For the presentation (Σ, 𝐸) introduced for WrM (Example 4.4), there is an iso-

morphism Alg(Σ, 𝐸) � EM(WrM) over GSetE (Example 4.7). Since rigidly graded monads are

determined by their algebras, the rigidly graded monad R(Σ,𝐸 )
induced by this presentation is WrM

(up to isomorphism). Hence (Σ, 𝐸) is indeed a presentation of WrM.

4.4 Algebraic Operations
Every rigidly graded presentation (Σ, 𝐸) induces a rigidly graded monad R(Σ,𝐸 )

that is canonical

in the sense that (Σ, 𝐸)-algebras are equivalently R(Σ,𝐸 )
-algebras. It follows that R(Σ,𝐸 )

admits an

interpretation of each of the operations in Σ. To make this precise, we define a notion of rigidly

graded algebraic operation. These are a special case of Katsumata’s [2014] algebraic operations, and

are analogous to Plotkin and Power’s [2003] algebraic operations for non-graded monads.

Definition 4.10. If R is a rigidly E-graded monad, then a (𝑛; 𝑒′)-ary algebraic operation consists of

a grade-preserving function 𝛼𝑋 : (𝑅𝑋 )𝑛 ⇒ 𝑅𝑋 (𝑒′ · −) for each set 𝑋 , and such that

𝑓
†
𝑒′ ·𝑑 (𝛼𝑋,𝑑 (𝑟1, . . . , 𝑟𝑛)) = 𝛼𝑌,𝑑 ·𝑒 (𝑓

†
𝑑
𝑟1, . . . , 𝑓

†
𝑑
𝑟𝑛) (𝑓 : 𝑋 → 𝑅𝑌𝑒 , 𝑟𝑖 ∈ 𝑅𝑋𝑑)

Consider the rigidly graded monad R(Σ,𝐸 )
presented by (Σ, 𝐸). For every set 𝑋 , the graded set

𝑅 (Σ,𝐸 )𝑋 is the carrier of the free R(Σ,𝐸 )
-algebra on 𝑋 , and hence also forms a (Σ, 𝐸)-algebra. Every

operation op ∈ Σ(𝑛; 𝑒′) therefore has an interpretation in 𝑅 (Σ,𝐸 )𝑋 :

⟦op⟧𝑋 : (𝑅 (Σ,𝐸 )𝑋 )𝑛 ⇒ 𝑅 (Σ,𝐸 )𝑋 (𝑒′ · −)
These collectively (for all 𝑋 ) form an (𝑛; 𝑒′)-ary algebraic operation for the rigidly graded monad

R(Σ,𝐸 )
.
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Example 4.11. Recall the presentation (Σ, 𝐸) ofWrM (Example 4.4). Since in this case we have

R(Σ,𝐸 ) = WrM, for every 𝑝 ∈ 𝑀𝑒′ we obtain a (1; 𝑒′)-ary algebraic operation tell𝑝 forWrM:

tell𝑝,𝑋 = ⟦tell𝑝⟧𝑋 : Wr
M𝑋 ⇒ Wr

M𝑋 (𝑒′ · −)

These are exactly the grade-preserving functions tell𝑝,𝑋 defined in Section 2.1. We have recovered

them directly from the presentation ofWrM.

5 FROM FLEXIBLE TO RIGID
Our goal is to develop a more flexible notion of presentation. The extra flexibility comes at a cost:

there cannot be a precise correspondence between flexibly graded presentations and a class of

rigidly graded monads. In particular, for a given flexibly graded presentation, there is in general no

rigidly graded monad that has the same algebras. Despite this, each flexibly graded presentation

induces a rigidly graded monad that carries interpretations of the operations of the presentation.

To show this, we use flexibly graded monads. We show that there is a correspondence between
flexibly graded presentations and flexibly graded monads, so every flexibly graded presentation

induces a flexibly graded monad (with the same algebras). To get a rigidly graded monad, it then

suffices to show that each flexibly graded monad induces an appropriate rigidly graded monad. The

goal of the present section is explain how to do this. (This construction is discussed in more detail

in [McDermott and Uustalu 2022].)

This is possible because every set 𝑋 induces a graded set 𝑋 as follows, intuitively by considering

the elements of 𝑋 to have grade 1. (This is the same 𝑋 we define in Section 2.2, but here we

generalize to arbitrary E.)

Definition 5.1. Every set 𝑋 induces an E-graded set 𝑋 , defined by

𝑋𝑒 = 𝑋 if 1 ≤ 𝑒 𝑋𝑒 = ∅ if 1 ≰ 𝑒 (𝑒≤𝑒′)∗𝑥 = 𝑥

If 𝑌 is a graded set and 𝑒 is a grade, then there is a bijection \ as follows:

\ : Set(𝑋,𝑌𝑒) � GSetE (𝑋,𝑌 )𝑒 : \−1 (\ 𝑓 )𝑑𝑥 = 𝑓 𝑥 \−1𝑔𝑥 = 𝑔1𝑥

Now suppose that T is a flexibly graded monad; we define a rigidly graded monad ⌊T⌋, essentially
by restricting T to graded sets of the form 𝑋 . For every set 𝑋 , we have a graded set 𝑋 , and hence

a graded set ⌊𝑇 ⌋𝑋 = 𝑇𝑋 . The latter intuitively contains computations that return elements of 𝑋 ,

where elements of𝑋 have grade 1. The unit of T induces a family of functions [𝑋 : 𝑋 → 𝑇𝑋 = ⌊𝑇 ⌋𝑋 ,
which is equivalently a family of functions \−1[�̂� : 𝑋 → ⌊𝑇 ⌋𝑋1; these form the unit of ⌊𝑇 ⌋. Finally,
the Kleisli extension of ⌊𝑇 ⌋ sends 𝑓 : 𝑋 → ⌊𝑇 ⌋𝑌𝑒 to (\ 𝑓 )† : ⌊𝑇 ⌋𝑋 ⇒ ⌊𝑇 ⌋𝑌 (− · 𝑒).

[�̂� : 𝑋 ⇒ 𝑇𝑋

\−1[�̂� : 𝑋 → 𝑇𝑋1

𝑓 : 𝑋 → 𝑇𝑌𝑒

\ 𝑓 : 𝑋 ⇒ 𝑇𝑌 (− · 𝑒)
(\ 𝑓 )† : 𝑇𝑋 ⇒ 𝑇𝑌 (− · 𝑒)

Example 5.2. As we explain in Section 2.2, if we apply this construction to the flexibly graded

monad Stateflex, the rigidly graded monad ⌊Stateflex⌋ we get is State. There is an equivalent state-

ment for all of the flexibly graded monads T we define in Section 2: in each case, ⌊T⌋ is the

corresponding rigidly graded monad.

We show that this construction is in a sense canonical. First, every T-algebra A induces an

⌊T⌋-algebra 𝑄TA, again essentially by restricting the structure to graded sets of the form 𝑋 . The

carrier of 𝑄TA is the carrier 𝐴 of A, while the extension operator maps each function 𝑓 : 𝑋 → 𝐴𝑒
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to the natural transformation (\ 𝑓 )‡ : ⌊𝑇 ⌋𝑋 ⇒ 𝐴(− · 𝑒).

𝑓 : 𝑋 → 𝐴𝑒

\ 𝑓 : 𝑋 ⇒ 𝐴(− · 𝑒)
(\ 𝑓 )‡ : 𝑇𝑋 ⇒ 𝐴(− · 𝑒)

This construction forms a functor𝑄T : EM(T) → EM(⌊T⌋), by sending each morphism 𝑓 : A 𝑒 A′

to itself. In general 𝑄T is not an isomorphism, since in general, there is no rigidly graded monad

with the same algebras as T. However, we do have the following universal property for ⌊T⌋, which
informally says that ⌊T⌋ is as close as we can get to T.

Lemma 5.3. Let T be a flexibly E-graded monad. For every rigidly E-graded monad R and functor
𝑄 ′

: EM(T) → EM(R) over GSetE, there is a unique functor 𝐹 : EM(⌊T⌋) → EM(R) over GSetE such
that such that 𝑄 ′ = 𝐹 ·𝑄T.

EM(T) EM(⌊T⌋)

EM(R)
𝑄 ′

𝑄T

𝐹

It is in this sense that ⌊T⌋ is canonical (and since rigidly gradedmonads are completely determined

by their algebras, this lemma actually characterizes ⌊T⌋ up to isomorphism of rigidly gradedmonads).

We show in Section 6.4 that algebraic operations for T induce algebraic operations for ⌊T⌋, which
will ensure that operations of a flexibly graded presentation can be interpreted in the induced

rigidly graded monad.

6 FLEXIBLY GRADED PRESENTATIONS
We turn now to the main contribution of this paper: the notion of flexibly graded presentation.
As we describe in the introduction, these generalize rigidly graded presentations so that their

arguments do not all need to have the same grade. Instead of having natural numbers 𝑛 in the

arities of operations, we instead have lists ®𝑒 = (𝑒1, . . . , 𝑒𝑛) of grades.

Definition 6.1. A flexibly E-graded signature consists of a set Σ(®𝑒 ; 𝑒′) for each list ®𝑒 of grades and
grade 𝑒′. We call the elements of Σ(®𝑒; 𝑒′) the (®𝑒; 𝑒′)-ary operations.

For each flexibly graded signature Σ, we have a notion of term (derived operation) over Σ. A
context Γ = 𝑥1 : 𝑒1, . . . , 𝑥𝑛 : 𝑒𝑛 is a list of (variable name, grade)-pairs. (We often call the 𝑖th variable

𝑥𝑖 , but permit ourselves to use other variable names and identify terms up to 𝛼-equivalence.) We

write Γ ⊢ 𝑡 : 𝑒 to indicate that 𝑡 is a term of grade 𝑒 in context Γ; these are generated inductively by

the following rules for variables, application of operations, and coercions:

(𝑥 : 𝑒) ∈ Γ

Γ ⊢ 𝑥 : 𝑒

op ∈ Σ(𝑒1, . . . , 𝑒𝑛 ; 𝑒′) Γ ⊢ 𝑡1 : 𝑒1 · 𝑑 · · · Γ ⊢ 𝑡𝑛 : 𝑒𝑛 · 𝑑
Γ ⊢ op(𝑑 ; 𝑡1, . . . , 𝑡𝑛) : 𝑒′ · 𝑑

𝑒 ≤ 𝑒′ Γ ⊢ 𝑡 : 𝑒
Γ ⊢ (𝑒≤𝑒′)∗𝑡 : 𝑒′

The grade 𝑑 has a crucial role in the definition of substitution below.

Example 6.2. Let 𝑉 = {v1, . . . , v |𝑉 | } be a finite set. We have a flexibly Interval-graded signa-

ture Σ that we use below as part of a flexibly graded presentation for our 𝑉 -valued stack ex-

ample (Section 2.3). This consists of a ((0, 0); (1, 1))-ary operation push𝑣 for each 𝑣 ∈ 𝑉 , and a

((0, 0), (1, 1), . . . , (1, 1)︸             ︷︷             ︸
|𝑉 |

; (0, 0))-ary operation pop. The operations push𝑣 are actually rigidly graded

in the sense that all arguments have the same grade (because there is only one argument). However,
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pop is genuinely flexibly graded, since one argument has a different grade from the rest. Terms

over Σ are generated by rules for variables, coercions, and the following rules for the operations:

Γ ⊢ 𝑡 : (ℓ,𝑢)
Γ ⊢ push𝑣 ((ℓ,𝑢); 𝑡) : (ℓ + 1, 𝑢 + 1)

Γ ⊢ 𝑡 : (ℓ,𝑢) Γ ⊢ 𝑡 ′
1
: (ℓ+1, 𝑢+1) · · · Γ ⊢ 𝑡 ′|𝑉 | : (ℓ+1, 𝑢+1)

Γ ⊢ pop((ℓ,𝑢); 𝑡, 𝑡 ′
1
, . . . , 𝑡 ′|𝑉 | ) : (ℓ,𝑢)

The term push𝑣 ((ℓ,𝑢); 𝑡) pushes 𝑣 onto the stack and continues as 𝑡 ; the term pop((ℓ,𝑢); 𝑡, 𝑡 ′
1
, . . . , 𝑡 ′|𝑉 | )

attempts to pop a value, continues as 𝑡 if the stack was empty, and continues as 𝑡 ′𝑖 if the stack had

the value 𝑣𝑖 at the top.

Definition 6.3. An (𝑒1, . . . , 𝑒𝑛 ; 𝑒′)-ary term over Σ is a term 𝑥1 : 𝑒1, . . . , 𝑥𝑛 : 𝑒𝑛 ⊢ 𝑡 : 𝑒′. An
(®𝑒; 𝑒′)-ary equation over a signature Σ is a pair (𝑡,𝑢) of (®𝑒; 𝑒′)-ary terms over Σ.

We write (®𝑒 ; 𝑒′)-ary equations (𝑡,𝑢) as 𝑥1 : 𝑒1, . . . , 𝑥𝑛 : 𝑒𝑛 ⊢ 𝑡 ≈ 𝑢 : 𝑒′, and allow ourselves to use

different names for the variables. We now come to our main definition.

Definition 6.4. A flexibly E-graded presentation (Σ, 𝐸) consists of

• a flexibly E-graded signature Σ;
• for each ®𝑒 and 𝑒′, a set 𝐸 (®𝑒; 𝑒′) of (®𝑒; 𝑒′)-ary equations over Σ.

Example 6.5. Recall the signature Σ for 𝑉 -valued stacks, from Example 6.2. We make this into a

flexibly Interval-graded presentation (Σ, 𝐸), with 𝐸 consisting of the following equations:

𝑥 : (0, 0), 𝑦1 : (1, 1), . . . , 𝑦 |𝑉 | : (1, 1) ⊢ pushv𝑖 ((0, 0); pop((0, 0);𝑥,𝑦1, . . . , 𝑦 |𝑉 | )) ≈ 𝑦𝑖 : (0, 0)
for each 𝑖 ≤ |𝑉 |

𝑥 : (0, 0) ⊢ pop((0, 0);𝑥, pushv1 ((0, 0);𝑥), . . . , pushv|𝑉 |
((0, 0);𝑥)) ≈ 𝑥 : (0, 0)

𝑥 : (0, 0), 𝑦1 : (1, 1), . . . , 𝑦 |𝑉 | : (1, 1), 𝑧1 : (1, 1), . . . , 𝑧 |𝑉 | : (1, 1) ⊢
pop((0, 0); pop((0, 0);𝑥,𝑦1, . . . , 𝑦 |𝑉 | ), 𝑧1, . . . , 𝑧 |𝑉 | ) ≈ pop((0, 0);𝑥, 𝑧1, . . . , 𝑧 |𝑉 | ) : (0, 0)

These equations are analogous to the equations that ⟦push𝑣⟧ and ⟦pop⟧ satisfy in Example 3.8.

This is of course not a coincidence, as we explain in Example 6.8 below.

The appropriate notion of substitution for terms over a flexibly graded signature Σ is the following.

Given a term 𝑥1 : 𝑒1, . . . , 𝑥𝑛 : 𝑒𝑛 ⊢ 𝑡 : 𝑒′, grade 𝑑 , and a list of terms Γ ⊢ 𝑢𝑖 : 𝑒𝑖 · 𝑑 , we have a term
Γ ⊢ 𝑡{𝑑 ;𝑥1 ↦→ 𝑢1, . . . , 𝑥𝑛 ↦→ 𝑢𝑛} : 𝑒′ · 𝑑 , defined by

𝑥𝑖 {𝑑 ;𝑥1 ↦→ 𝑢1, . . . , 𝑥𝑛 ↦→ 𝑢𝑛} = 𝑢𝑖
(op(𝑑 ′; 𝑡1, . . . , 𝑡𝑚)){𝑑 ;𝑥1 ↦→ 𝑢1, . . . , 𝑥𝑛 ↦→ 𝑢𝑛} = op(𝑑 ′·𝑑 ; 𝑡1{𝑑 ;𝑥1 ↦→𝑢1, . . . }, . . . , 𝑡𝑚{𝑑 ;𝑥1 ↦→𝑢1, . . . })

((𝑒′≤𝑒′′)∗𝑡){𝑑 ;𝑥1 ↦→ 𝑢1, . . . , 𝑥𝑛 ↦→ 𝑢𝑛} = (𝑒′·𝑑≤𝑒′′·𝑑)∗ (𝑡{𝑑 ;𝑥1 ↦→ 𝑢1, . . . , 𝑥𝑛 ↦→ 𝑢𝑛})

6.1 Flexibly Graded Equational Logic
We define an equational logic for proving equalities between terms over Σ, where (Σ, 𝐸) is a flexibly
graded presentation. We write Γ ⊢ 𝑡 ≈ 𝑢 : 𝑒 to indicate that the terms Γ ⊢ 𝑡 : 𝑒 and Γ ⊢ 𝑢 : 𝑒 are

equal in this equational logic. This is defined inductively by the following rules: two congruence

rules, two rules for identity and composition of coercions, one rule for naturality of operations,
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and one rule for application of the axioms of 𝐸; plus reflexivity, symmetry and transitivity.

op ∈ Σ(𝑒1, . . . , 𝑒𝑛 ; 𝑒′) Γ ⊢ 𝑡1 ≈ 𝑢1 : 𝑒1 · 𝑑 · · · Γ ⊢ 𝑡𝑛 ≈ 𝑢𝑛 : 𝑒𝑛 · 𝑑
Γ ⊢ op(𝑑 ; 𝑡1, . . . , 𝑡𝑛) ≈ op(𝑑 ;𝑢1, . . . , 𝑢𝑛) : 𝑒′ · 𝑑

𝑒 ≤ 𝑒′ Γ ⊢ 𝑡 ≈ 𝑢 : 𝑒

Γ ⊢ (𝑒≤𝑒′)∗𝑡 ≈ (𝑒≤𝑒′)∗𝑢 : 𝑒′

Γ ⊢ 𝑡 : 𝑒
Γ ⊢ 𝑡 ≈ (𝑒≤𝑒)∗𝑡 : 𝑒

𝑒 ≤ 𝑒′ ≤ 𝑒′′ Γ ⊢ 𝑡 : 𝑒
Γ ⊢ (𝑒′≤𝑒′′)∗ ((𝑒≤𝑒′)∗𝑡) ≈ (𝑒≤𝑒′′)∗𝑡 : 𝑒′′

op ∈ Σ(𝑒1, . . . , 𝑒𝑛 ; 𝑒′) 𝑑 ≤ 𝑑 ′ Γ ⊢ 𝑡1 : 𝑒1 · 𝑑 · · · Γ ⊢ 𝑡𝑛 : 𝑒𝑛 · 𝑑
Γ ⊢ (𝑒′·𝑑 ≤ 𝑒′·𝑑 ′)∗ (op(𝑑 ; 𝑡1, . . . , 𝑡𝑛)) ≈ op(𝑑 ′; (𝑒1·𝑑 ≤ 𝑒1·𝑑 ′)∗𝑡1, . . . , (𝑒𝑛 ·𝑑 ≤ 𝑒𝑛 ·𝑑 ′)∗𝑡𝑛) : 𝑒′ · 𝑑 ′

(𝑡,𝑢) ∈ 𝐸 (𝑒1, . . . , 𝑒𝑛 ; 𝑒′) Γ ⊢ 𝑠1 : 𝑒1 · 𝑑 · · · Γ ⊢ 𝑠𝑛 : 𝑒𝑛 · 𝑑
Γ ⊢ 𝑡{𝑑 ;𝑥1 ↦→ 𝑠1, . . . , 𝑥𝑛 ↦→ 𝑠𝑛} ≈ 𝑢{𝑑 ;𝑥1 ↦→ 𝑠1, . . . , 𝑥𝑛 ↦→ 𝑠𝑛} : 𝑒′ · 𝑑

(We do not need a general rule for closure of ≈ under substitution, because this is admissible.) We

show that this equational logic is sound and complete in Theorem 6.9 below.

6.2 Algebras
Definition 6.6. Let Σ be a flexibly E-graded signature. A Σ-algebra A consists of a graded set 𝐴

(the carrier), together with an assignment to every operation op ∈ Σ(®𝑒; 𝑒′) of a grade-preserving
function ⟦op⟧ :

∏
𝑖 𝐴(𝑒𝑖 · −) ⇒ 𝐴(𝑒′ · −).

Amorphism 𝑓 : A 𝑒 A′
is a morphism 𝑓 : 𝐴 𝑒 𝐴′

between the carriers, i.e., a grade-preserving

function 𝑓 : 𝐴 ⇒ 𝐴′ (− · 𝑒), preserving interpretations of operations as follows:

𝑓𝑒′ ·𝑑 (⟦op⟧𝑑 (𝑎1, . . . , 𝑎𝑛)) = ⟦op⟧𝑑 ·𝑒 (𝑓𝑒1 ·𝑑𝑎1, . . . , 𝑓𝑒𝑛 ·𝑑𝑎𝑛)

Every Σ-algebra A admits interpretations of terms over Σ. The interpretation of a (®𝑒 ; 𝑒′)-ary term
𝑡 in A at grade 𝑑 is the function ⟦𝑡⟧𝑑 :

∏
𝑖 𝐴(𝑒𝑖 · 𝑑) → 𝐴(𝑒′ · 𝑑) defined as follows:

⟦𝑥𝑖⟧𝑑 (𝑎1, . . . , 𝑎𝑛) = 𝑎𝑖
⟦op(𝑑 ′; 𝑡1, . . . , 𝑡𝑚)⟧𝑑 (𝑎1, . . . 𝑎𝑛) = ⟦op⟧𝑑 ′ ·𝑑 (⟦𝑡1⟧𝑑 (𝑎1, . . . , 𝑎𝑛), . . . , ⟦𝑡𝑚⟧𝑑 (𝑎1, . . . , 𝑎𝑛)))

⟦(𝑒≤𝑒′)∗𝑡⟧𝑑 (𝑎1, . . . , 𝑎𝑛) = (𝑒 ·𝑑 ≤ 𝑒′·𝑑)∗ (⟦𝑡⟧𝑑 (𝑎1, . . . , 𝑎𝑛))

Definition 6.7. Let (Σ, 𝐸) be a flexibly graded presentation. A (Σ, 𝐸)-algebra is a Σ-algebra A that

satisfies all of the equations in 𝐸, in the sense that for every equation (𝑡,𝑢) ∈ 𝐸 (®𝑒; 𝑒′) and grade 𝑑 ,

we have ⟦𝑡⟧𝑑 = ⟦𝑢⟧𝑑 .

Example 6.8. For the flexibly graded presentation (Σ, 𝐸) of 𝑉 -valued stacks (Example 6.5), the

(Σ, 𝐸)-algebras are exactly as described in Example 3.8: they are graded sets 𝐴 equipped with

grade-preserving functions ⟦pop⟧, ⟦push𝑣⟧, satisfying equations. The isomorphism described

there is an isomorphism Alg(Σ, 𝐸) � EM(Stkflex) over GSetInterval.

Using the equational logic, the terms over the signature Σ form (Σ, 𝐸)-algebras as follows. For
each list of grades ®𝑒 , let Term(Σ,𝐸 ) ®𝑒 be the graded set of terms over the signature Σ, quotiented
by ≈. Coercions (𝑒 ≤ 𝑒′)∗𝑡 are just those provided in the syntax of terms. This graded set forms

a Σ-algebra by interpreting operations as ⟦op⟧𝑑 (𝑢1, . . . , 𝑢𝑛) = op(𝑑 ;𝑢1, . . . , 𝑢𝑛). It follows that
arbitrary terms are interpreted in this Σ-algebra by substitution:

⟦𝑡⟧𝑑 (𝑢1, . . . , 𝑢𝑚) = 𝑡{𝑑 ;𝑥1 ↦→ 𝑢1, . . . , 𝑥𝑚 ↦→ 𝑢𝑚} (1)

In particular, the rule for application of axioms in the equational logic amounts to the fact that

⟦𝑡⟧𝑑 = ⟦𝑢⟧𝑑 for every (𝑡,𝑢) ∈ 𝐸 (®𝑒′; 𝑒′′), so Term(Σ,𝐸 ) ®𝑒 in fact forms a (Σ, 𝐸)-algebra. It follows that
flexibly graded equational logic is sound and complete in the following sense.
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Theorem 6.9. For every flexibly graded presentation (Σ, 𝐸), the judgment 𝑥1 : 𝑒1, . . . , 𝑥𝑛 : 𝑒𝑛 ⊢ 𝑡 ≈
𝑢 : 𝑒′ is derivable if and only if, for every (Σ, 𝐸)-algebra and grade 𝑑 , we have ⟦𝑡⟧𝑑 = ⟦𝑢⟧𝑑 .

Proof. Only if (soundness): this is proved by induction on the derivation of ≈. In the case of an

axiom from 𝐸, we use the following substitution lemma, which is proved by induction on 𝑡 ′:

⟦𝑡 ′{𝑑 ;𝑥1 ↦→ 𝑠1, . . . , 𝑥𝑚 ↦→ 𝑠𝑚}⟧𝑑 ′ (𝑎1, . . . , 𝑎𝑘 ) = ⟦𝑡 ′⟧𝑑 ·𝑑 ′ (⟦𝑠1⟧𝑑 ′ (𝑎1, . . . , 𝑎𝑘 ), . . . , ⟦𝑠𝑚⟧𝑑 ′ (𝑎1, . . . , 𝑎𝑘 ))
If (completeness): the graded set Term

(Σ,𝐸 ) ®𝑒 of terms quotiented by ≈ forms a (Σ, 𝐸)-algebra
as above. If we have ⟦𝑡⟧𝑑 = ⟦𝑢⟧𝑑 in every (Σ, 𝐸)-algebra, then in particular ⟦𝑡⟧1 (𝑥1, . . . , 𝑥𝑛) =

⟦𝑢⟧1 (𝑥1, . . . , 𝑥𝑛) in this (Σ, 𝐸)-algebra so, using Eq. (1), we have 𝑡 = 𝑡{1;𝑥1 ↦→ 𝑥1, . . . , 𝑥𝑛 ↦→ 𝑥𝑛} ≈
𝑢{1;𝑥1 ↦→ 𝑥1, . . . , 𝑥𝑛 ↦→ 𝑥𝑛} = 𝑢. □

6.3 Rigidly Graded Monads from Flexibly Graded Presentations
We now turn to the main theorem of this paper: that each flexibly graded presentation induces a

canonical flexibly graded monad, and hence a canonical rigidly graded monad.

Theorem 6.10. For every flexibly E-graded presentation (Σ, 𝐸), we have:
(1) a flexibly E-graded monad T(Σ,𝐸 ) , and an isomorphism Alg(Σ, 𝐸) � EM(T(Σ,𝐸 ) ) over GSetE;
(2) a rigidly E-graded monad ⌊T(Σ,𝐸 )⌋, and a functor 𝑄 (Σ,𝐸 ) : Alg(Σ, 𝐸) → EM(⌊T(Σ,𝐸 )⌋) over

GSetE. The latter are universal in the sense that, for every rigidly E-graded monad R and functor
𝑄 ′

: Alg(Σ, 𝐸) → EM(R) over GSetE, there is a unique functor 𝐹 : EM(⌊T(Σ,𝐸 )⌋) → EM(R)
over GSetE such that 𝑄 ′ = 𝐹 ·𝑄 (Σ,𝐸 ) .

We postpone the proof of the first part to Section 8, while the second part follows from the first

by Lemma 5.3. The characterizations of algebras uniquely determine both T(Σ,𝐸 )
and ⌊T(Σ,𝐸 )⌋ (up to

structure-preserving isomorphism), so we can call these the flexibly graded monad and the rigidly
graded monad presented by (Σ, 𝐸).

Example 6.11. Let (Σ, 𝐸) be the flexibly graded presentation for 𝑉 -valued stacks (Example 6.5).

Due to the isomorphism described in Example 6.8, the induced flexibly graded monad T(Σ,𝐸 )
is

Stkflex, and the induced flexibly graded monad ⌊T(Σ,𝐸 )⌋ is Stk. Hence (Σ, 𝐸) presents Stkflex and Stk.

6.4 Algebraic Operations
We have shown that every flexibly graded presentation (Σ, 𝐸) induces a rigidly graded monad

⌊T(Σ,𝐸 )⌋ that is in some sense canonical. We now show that ⌊T(Σ,𝐸 )⌋ carries an interpretation of

each of the operations in Σ. We introduce a notion of flexibly graded algebraic operation for a

rigidly graded monad. These are analogous to Plotkin and Power’s [2003] algebraic operations

for non-graded monads, and are related to effect-function graded algebraic operations for rigidly

graded monads [Katsumata 2014]. We show that every operation in Σ induces a flexibly graded

algebraic operation for ⌊T(Σ,𝐸 )⌋. The construction takes two steps: first we show that operations

in Σ induce algebraic operations for the flexibly graded monad T(Σ,𝐸 )
, and then that these induce

flexibly graded algebraic operations for the restriction ⌊T(Σ,𝐸 )⌋.

Definition 6.12. If T is a flexibly E-graded monad, then a (®𝑒; 𝑒′)-ary algebraic operation consists

of a grade-preserving function 𝛼𝑋 :

∏
𝑖 𝑇𝑋 (𝑒𝑖 · −) ⇒ 𝑇𝑋 (𝑒′ · −) for each graded set 𝑋 , satisfying

𝑓
†
𝑒′ ·𝑑 (𝛼𝑋,𝑑 (𝑡1, . . . , 𝑡𝑛)) = 𝛼𝑌,𝑑 ·𝑒 (𝑓

†
𝑒1 ·𝑑𝑡1, . . . , 𝑓

†
𝑒𝑛 ·𝑑𝑡𝑛) (𝑓 : 𝑋 ⇒ 𝑇𝑌 (− · 𝑒), 𝑡𝑖 ∈ 𝑇𝑋 (𝑒𝑖 · 𝑑))

If R is a rigidly E-graded monad, then a (®𝑒; 𝑒′)-ary algebraic operation consists of a grade-

preserving function 𝛼𝑋 :

∏
𝑖 𝑅𝑋 (𝑒𝑖 · −) ⇒ 𝑅𝑋 (𝑒′ · −) for each set 𝑋 , such that

𝑓
†
𝑒′ ·𝑑 (𝛼𝑋,𝑑 (𝑟1, . . . , 𝑟𝑛)) = 𝛼𝑌,𝑑 ·𝑒 (𝑓

†
𝑒1 ·𝑑𝑟1, . . . , 𝑓

†
𝑒𝑛 ·𝑑𝑟𝑛) (𝑓 : 𝑋 → 𝑅𝑌𝑒 , 𝑟𝑖 ∈ 𝑅𝑋 (𝑒𝑖 · 𝑑))
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Every (®𝑒 ; 𝑒′)-ary algebraic operation𝛼 for a flexibly gradedmonad T induces a (®𝑒 ; 𝑒′)-ary algebraic
operation for the rigidly graded restriction ⌊T⌋—by restricting 𝛼 to the graded sets 𝑋 .

Now suppose that (Σ, 𝐸) is a presentation, and consider the induced flexibly graded monad

T(Σ,𝐸 )
. Since there is an isomorphism Alg(Σ, 𝐸) � EM(T(Σ,𝐸 ) ) over GSetE, the carrier of every

T(Σ,𝐸 )
-algebra forms a (Σ, 𝐸)-algebra. In particular, for every graded set 𝑋 , the graded set 𝑇 (Σ,𝐸 )𝑋

is the carrier of the free T(Σ,𝐸 )
-algebra on 𝑋 , and hence forms a (Σ, 𝐸)-algebra. For every (®𝑒 ; 𝑒′)-ary

operation op ∈ Σ(®𝑒; 𝑒′), we therefore have grade-preserving functions

⟦op⟧𝑋 :

∏
𝑖 𝑇

(Σ,𝐸 )𝑋 (𝑒𝑖 · −) ⇒ 𝑇 (Σ,𝐸 )𝑋 (𝑒′ · −)
The assignment of a grade-preserving function ⟦op⟧𝑋 to each graded set 𝑋 constitutes a (®𝑒 ; 𝑒′)-ary
flexibly graded algebraic operation 𝛼op for the flexibly graded monad T(Σ,𝐸 )

. The assignment of

⟦op⟧�̂� to each set 𝑋 makes a (®𝑒; 𝑒′)-ary flexibly graded operation for the rigidly graded monad

⌊T(Σ,𝐸 )⌋. That is, the rigidly graded monad induced by a flexibly graded presentation carries

interpretations of all of the operations of the presentation.

Example 6.13. For the presentation (Σ, 𝐸) of𝑉 -valued stacks (Example 6.5), the induced algebraic

operations for Stkflex and for Stk are the push and pop operations defined in Section 2.3.

Remark. Katsumata [2014] discussed the inconvenience of rigid grading. He introduced a notion

of algebraic operation for rigidly graded monads based on effect functions.

In Katsumata’s proposal, an algebraic operation is graded by an effect function. An 𝑛-ary effect
function is a monotone function 𝜙 : |E|𝑛 → |E| such that 𝜙 (𝑒1 · 𝑑, . . . , 𝑒𝑛 · 𝑑) = 𝜙 (𝑒1, . . . , 𝑒𝑛) · 𝑑 for

all 𝑒1, . . . , 𝑒𝑛, 𝑑 . A 𝜙-ary algebraic operation of a rigidly graded monad R is a family of functions

𝛼𝑋,𝑒1,...,𝑒𝑛 : 𝑅𝑋𝑒1 × . . . × 𝑅𝑋𝑒𝑛 → 𝑅𝑋 (𝜙 (𝑒1, . . . , 𝑒𝑛)) for every 𝑋, 𝑒1, . . . , 𝑒𝑛 appropriately agreeing

with coercion and the Kleisli extension.

An algebraic operation like this induces a flexibly graded algebraic operation in our sense for

every individual point (𝑒1, . . . , 𝑒𝑛 ;𝜙 (𝑒1, . . . , 𝑒𝑛)) in the graph of 𝜙 . To capture one effect-function

graded algebraic operation, we need a flexibly graded algebraic operation for each tuple (𝑒1, . . . , 𝑒𝑛)
of mutually prime grades.

While the idea of effect functions is appealing, they are too restrictive to capture rigidly graded

algebraic operations: an effect function 𝜙 has to be total, one cannot choose to define it only for

(𝑒1, . . . , 𝑒𝑛) of the form (𝑑, . . . , 𝑑).
This shortcoming can be solved by switching to effect relations. We could define an 𝑛-ary

effect relation as a relation 𝜌 ⊆ |E|𝑛 × |E| such that 𝑒1 ≤ 𝑒′
1
, . . . , 𝑒𝑛 ≤ 𝑒′𝑛 and 𝜌 (𝑒1, . . . , 𝑒𝑛 ; 𝑒)

imply existence of 𝑒′ such that 𝑒 ≤ 𝑒′ and 𝜌 (𝑒′
1
, . . . , 𝑒′𝑛 ; 𝑒

′) for all 𝑒1, . . . , 𝑒𝑛, 𝑒, 𝑒′1, . . . , 𝑒′𝑛 , and also

𝜌 (𝑒1, . . . , 𝑒𝑛 ; 𝑒) implies 𝜌 (𝑒1 · 𝑑, . . . , 𝑒𝑛 · 𝑑 ; 𝑒 · 𝑑) for all 𝑒1, . . . , 𝑒𝑛, 𝑒, 𝑑 . A rigidly graded algebraic

operation of grade 𝑒′ could then be graded by the relation {𝑑, . . . , 𝑑 ; 𝑒′ · 𝑑 | 𝑑 ∈ |E|}.

6.5 Examples
We give some further examples of flexibly graded presentations, and the flexibly and rigidly graded

monads they induce.

6.5.1 Global State. We give a flexibly Rel𝑉 -graded presentation (Σ, 𝐸) for global 𝑉 -valued state,

where 𝑉 is a finite set {v1, . . . , v |𝑉 | }. This is analogous to the ungraded presentation described by

Plotkin and Power [2002], and to the definition of a mnemoid [Melliès 2010]. The flexibly graded

monad presented by (Σ, 𝐸) is Stateflex, and the rigidly graded monad is State, both defined in

Section 2.2. The operations are the following:

• a (𝑒1, . . . , 𝑒 |𝑉 | ; 𝛾 (𝑒1, . . . , 𝑒 |𝑉 | ))-ary operation get®𝑒 for each 𝑒1, . . . , 𝑒 |𝑉 | where 𝛾 : Rel |𝑉 |
𝑉

→
Rel𝑉 is given by 𝛾 (𝑒1, . . . , 𝑒 |𝑉 | ) = _v𝑖 . 𝑒𝑖v𝑖 ;

• a (1; (__. {𝑤}))-ary operation put𝑤 for each𝑤 ∈ 𝑉 .
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The equations are:

𝑥1 : 𝑒1 · 𝑑, . . . , 𝑥 |𝑉 | : 𝑒 |𝑉 | · 𝑑 ⊢ get®𝑒 (𝑑 ;𝑥1, . . . , 𝑥 |𝑉 | ) ≈ get®𝑒 ·𝑑 (1;𝑥1, . . . , 𝑥 |𝑉 | ) : 𝛾 (®𝑒) · 𝑑 (for each ®𝑒, 𝑑)
𝑥1 : 𝑒1, . . . , 𝑥 |𝑉 | : 𝑒 |𝑉 | ⊢ (𝛾 (®𝑒) ≤ 𝛾 (®𝑒′))∗ (get®𝑒 (1;𝑥1, . . . )) ≈ get®𝑒′ (1; (𝑒1≤𝑒′1)∗𝑥1, . . . ) : 𝛾 (®𝑒′)

(for each ®𝑒 ≤ ®𝑒′)
𝑥 : 1 ⊢ get__.{v1 },...,__.{v|𝑉 | } (1; putv1 (1;𝑥), . . . , putv|𝑉 |

(1;𝑥)) ≈ 𝑥 : 1

𝑥 : 1 ⊢ put𝑤′ ((__. {𝑤}); put𝑤 (1;𝑥)) ≈ put𝑤 (1;𝑥) : (__. {𝑤}) (for each𝑤,𝑤 ′ ∈ 𝑉 )
𝑥1 : 𝑒1, . . . , 𝑥 |𝑉 | : 𝑒 |𝑉 | ⊢ putv𝑖 (𝛾 (®𝑒); get®𝑒 (1;𝑥1, . . . )) ≈ putv𝑖 (𝑒𝑖 ;𝑥𝑖 ) : (__.𝑒𝑖v𝑖 ) (for each 𝑖 ≤ |𝑉 |, ®𝑒)

The operations of the presentation (Σ, 𝐸) induce flexibly graded algebraic operations for the

flexibly graded monad Stateflex and for the rigidly graded monad State. For State, these are exactly
get ®𝑒 and put𝑤 , as defined in Section 2.2.

6.5.2 Backtracking Nondeterminism, with Cut. We give a flexibly graded presentation (Σ, 𝐸), similar

to Piróg and Staton’s ungraded presentation [2017], for the rigidly graded monad Cut defined in

Section 2.4. (There is some redundancy; we do not claim this is the most efficient presentation.)

The operations are

• a ( ;⊥)-ary operation cut;
• a ( ;⊤)-ary operation fail;
• for each 𝑒1, 𝑒2 ∈ {⊥, 1,⊤}, a (𝑒1, 𝑒2; 𝑒1 ⊓ 𝑒2)-ary operation or𝑒1,𝑒2 where ⊓ denotes meet.

The equations are:

𝑥 : 𝑒1 · 𝑑,𝑦 : 𝑒2 · 𝑑 ⊢ or𝑒1,𝑒2 (𝑑 ;𝑥,𝑦) ≈ or𝑒1 ·𝑑,𝑒2 ·𝑑 (1;𝑥,𝑦) : (𝑒1 ⊓ 𝑒2) · 𝑑 (for each 𝑒1, 𝑒2, 𝑑)

𝑥 : 𝑒1, 𝑦 : 𝑒2 ⊢ (𝑒1⊓𝑒2≤𝑒′1⊓𝑒′2)∗ (or𝑒1,𝑒2 (1;𝑥,𝑦)) ≈ or𝑒′
1
,𝑒′
2

(1; (𝑒1≤𝑒′1)∗𝑥, (𝑒2≤𝑒′2)∗𝑦) : 𝑒′1 ⊓ 𝑒′2
(for each 𝑒1 ≤ 𝑒′1, 𝑒2 ≤ 𝑒′2)

𝑥 : 𝑒 ⊢ or⊤,𝑒 (1; fail(1; ), 𝑥) ≈ 𝑥 : 𝑒 𝑥 : 𝑒 ⊢ 𝑥 ≈ or𝑒,⊤ (1;𝑥, fail(1; )) : 𝑒 (for each 𝑒)

𝑥 : 𝑒1, 𝑦 : 𝑒2, 𝑧 : 𝑒3 ⊢ or𝑒1⊓𝑒2,𝑒3 (1; or𝑒1,𝑒2 (1;𝑥,𝑦), 𝑧) ≈ or𝑒1,𝑒2⊓𝑒3 (1;𝑥, or𝑒2,𝑒3 (1;𝑦, 𝑧)) : 𝑒
(for each 𝑒1, 𝑒2, 𝑒3)

𝑥 : ⊥, 𝑦 : 𝑒 ⊢ or⊥,𝑒 (1;𝑥,𝑦) ≈ 𝑥 : ⊥ (for each 𝑒)

A notable aspect of this presentation is the equation at the bottom. We should of course have

or⊥,𝑒 (1; cut, 𝑦) ≈ cut, since this is precisely the behaviour of a cut. If we had this as an axiom

instead, we would get strictly fewer equalities in the equational theory. We impose the equation

or⊥,𝑒 (1;𝑥,𝑦) ≈ 𝑥 for every 𝑥 that definitely cuts—where the fact that 𝑥 cuts is indicated only by

having grade ⊥. It is not possible to express equations like this, that hold only for variables of

certain grades, in a rigidly graded presentation.

The flexibly graded presentation (Σ, 𝐸) does indeed induce the rigidly graded monad Cut, and
hence also flexibly graded algebraic operations for Cut. These are:

⟦cut⟧𝑑 : 1 → Cut𝑋⊥ ⟦cut⟧𝑑★ = ( [],⊥) ⟦fail⟧𝑑 : 1 → Cut𝑋⊤ ⟦fail⟧𝑑★ = ( [],⊤)
⟦or𝑒1,𝑒2⟧𝑑 : Cut𝑋 (𝑒1 · 𝑑) × Cut𝑋 (𝑒2 · 𝑑) → Cut𝑋 ((𝑒1 ⊓ 𝑒2) · 𝑑)

⟦or𝑒1,𝑒2⟧𝑑 ((®𝑣,⊥), (®𝑣 ′, 𝑐′)) = (®𝑣,⊥) ⟦or𝑒1,𝑒2⟧𝑑 ((®𝑣,⊤), (®𝑣 ′, 𝑐′)) = (®𝑣 ++ ®𝑣 ′, 𝑐′)

6.6 Flexibly Graded Presentations from Rigidly Graded Presentations
We show that flexibly graded presentations are more general than rigidly graded presentations,

in that every rigidly graded presentation induces a flexibly graded presentation with the same

algebras.
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Suppose that (Σ𝑟 , 𝐸𝑟 ) is a rigidly graded presentation. We define a flexibly graded presentation

(Σ𝑓 , 𝐸 𝑓 ), by treating every (𝑛; 𝑒′)-ary operation or equation of (Σ𝑟 , 𝐸𝑟 ) as a (1, . . . , 1; 𝑒′)-ary oper-

ation or equation of (Σ𝑓 , 𝐸 𝑓 ) (the sets Σ𝑓 (®𝑒, 𝑒′) and 𝐸 𝑓 (®𝑒, 𝑒′) are empty when ®𝑒 contains a grade
that is not 1).

Σ𝑓 (1, . . . , 1︸  ︷︷  ︸
𝑛

; 𝑒′) = Σ𝑟 (𝑛; 𝑒′) 𝐸 𝑓 (1, . . . , 1︸  ︷︷  ︸
𝑛

; 𝑒′) = 𝐸𝑟 (𝑛; 𝑒′)

Here we are treating the (𝑛; 𝑒′)-ary terms over Σ𝑟 as (1, . . . , 1; 𝑒′)-ary terms over Σ𝑓 . It is in fact

trivial to show that (Σ𝑟 , 𝐸𝑟 )-algebras are the same as (Σ𝑓 , 𝐸 𝑓 )-algebras – the definitions expand to

the same thing. We therefore also obtain a flexibly graded monad T(Σ𝑓 ,𝐸 𝑓 )
with the same algebras,

along with the rigidly graded monad presented by (Σ𝑟 , 𝐸𝑟 ), which is in fact ⌊T(Σ𝑓 ,𝐸 𝑓 )⌋.
Theorem 6.14. For every rigidly E-graded presentation (Σ𝑟 , 𝐸𝑟 ), there is a flexibly E-graded presen-

tation (Σ𝑓 , 𝐸 𝑓 ), flexibly E-graded monad T(Σ𝑓 ,𝐸 𝑓 ) , and rigidly E-graded monad ⌊T(Σ𝑓 ,𝐸 𝑓 )⌋, together
with isomorphisms over GSetE:

Alg(Σ𝑟 , 𝐸𝑟 ) � Alg(Σ𝑓 , 𝐸 𝑓 ) � EM(T(Σ𝑓 ,𝐸 𝑓 ) ) � EM(⌊T(Σ𝑓 ,𝐸 𝑓 )⌋)
The operations of Σ𝑟 induce algebraic operations. We say that an (𝑛; 𝑒′)-ary algebraic operation

for a flexibly graded monad T is a (1, . . . , 1; 𝑒)-ary algebraic operation for T (with 𝑛 arguments). (A

(𝑛; 𝑒′)-ary algebraic operation for a rigidly graded monad R, as defined in Section 4.4, is the same

an (1, . . . , 1; 𝑒′)-ary algebraic operation for R). Since each (𝑛; 𝑒′)-ary operation op ∈ Σ𝑟 (𝑛; 𝑒′) is an
operation in Σ𝑓 , and these induce algebraic operations as in Section 6.4, op induces a (𝑛; 𝑒′)-ary
rigidly graded algebraic operation for the flexibly graded monad T(Σ𝑓 ,𝐸 𝑓 )

(Hence also an algebraic

operation for the rigidly E-graded monad ⌊T(Σ𝑓 ,𝐸 𝑓 )⌋ � R(Σ𝑟 ,𝐸𝑟 )
; this is the same as the algebraic

operation constructed in Section 4.4.)

7 GRADED CLONES
The goal of the remainder of this paper is to prove a correspondence between flexibly graded

presentations and a class of flexibly graded monads. This correspondence in particular provides the

proof that every flexibly graded presentation presents a flexibly graded monad (Theorem 6.10). We

prove the correspondence in two steps: first we prove a correspondence between flexibly graded

presentations and flexibly graded clones (Theorem 7.7), and then between flexibly graded clones
and a class of flexibly graded monads. We also do the same for rigidly graded presentations. This

section discusses the first step.

The (abstract) clones [Cohn 1981] of classical universal algebra axiomatize collections of terms,

with variables and substitution. There is a folklore correspondence between classical presentations

and clones. In one direction, given a presentation (Σ, 𝐸), the terms over Σ, quotiented by the

equations, form a clone. In the other direction, the terms of a clone are the operations of the

corresponding presentation. Clones provide a presentation-independent notion of algebraic theory.

7.1 Rigidly Graded Clones
We give the rigidly graded version of the correspondence, by first introducing the appropriate

notion of rigidly graded clone.

Definition 7.1. A rigidly E-graded clone R consists of

• for each natural number 𝑛, an E-graded set 𝑅𝑛 of terms;
• for each natural number 𝑛 and positive integer 𝑖 ≤ 𝑛, a term var𝑖 ∈ 𝑅𝑛1 (the 𝑖th variable);
• for each term 𝑡 ∈ 𝑅𝑛𝑒′′, grade 𝑑 ∈ |E|, and tuple of terms 𝑢1, . . . , 𝑢𝑛 ∈ 𝑅𝑚𝑑 , a term

𝑡 [𝑑 ;𝑢1, . . . , 𝑢𝑛] ∈ 𝑅𝑚(𝑒′′ · 𝑑) (substitution)
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such that substitution is natural in 𝑑 ∈ E and 𝑒′′ ∈ E, and satisfies the following equations:

var𝑖 [𝑑 ;𝑢1, . . . , 𝑢𝑛] = 𝑢𝑖 𝑡 = 𝑡 [1; var1, . . . , var𝑛]
(𝑡 [𝑑 ;𝑢1, . . . , 𝑢𝑛]) [𝑑 ′; 𝑣1, . . . , 𝑣𝑚] = 𝑡 [(𝑑 · 𝑑 ′);𝑢1 [𝑑 ′; 𝑣1, . . . , 𝑣𝑚], . . . , 𝑢𝑛 [𝑑 ′; 𝑣1, . . . , 𝑣𝑚]]

Since these are rigidly graded, substitution requires the terms 𝑢1, . . . , 𝑢𝑛 to have the same grade.

The main examples of rigidly graded clones are those induced by presentations as in the following

construction, which is half of the rigidly graded presentation–monad correspondence.

Definition 7.2. Let (Σ, 𝐸) be a rigidly graded presentation. The rigidly graded clone Term(Σ,𝐸 )
of

terms over (Σ, 𝐸) is defined as follows.

• The graded sets Term
(Σ,𝐸 )𝑛 are those of terms over Σ, quotiented by ≈ (as defined in Section 4).

• The 𝑖th variable var𝑖 is the term 𝑥1, . . . , 𝑥𝑛 ⊢ 𝑥𝑖 : 1.
• Substitution is defined by 𝑡 [𝑑 ;𝑢1, . . . , 𝑢𝑛] = 𝑡{𝑑 ;𝑥1 ↦→ 𝑢1, . . . , 𝑥𝑛 ↦→ 𝑢𝑛}.

Each rigidly graded clone R induces a notion of R-algebra, consisting of a carrier equipped with

interpretations of the terms of R. We omit the definition (it is similar to Definition 7.6 below). We

state the correspondence between rigidly graded presentations and clones. (The proof is analogous

to the proof of Theorem 7.7 below.)

Theorem 7.3. We have the following correspondence between rigidly graded presentations and
rigidly graded clones:

(1) For each rigidly E-graded presentation (Σ, 𝐸), there is a rigidly E-graded clone Term(Σ,𝐸 ) and
isomorphism Alg(Term(Σ,𝐸 ) ) � Alg(Σ, 𝐸) over GSetE.

(2) For each rigidly E-graded clone R, there is a rigidly E-graded presentation (ΣR, 𝐸R) and isomor-
phism Alg(ΣR, 𝐸R) � Alg(R) over GSetE.

7.2 Flexibly Graded Clones
We now turn to the analogous correspondence for flexibly graded presentations, which is similar

to the correspondence for rigidly graded presentations. First, we introduce flexibly graded clones.

Definition 7.4. A flexibly E-graded clone T consists of

• for each list ®𝑒 = (𝑒1, . . . , 𝑒𝑛) of grades, an E-graded set 𝑇 ®𝑒 of terms;
• for each list of grades (𝑒1, . . . , 𝑒𝑛) and positive integer 𝑖 ≤ 𝑛, a term var𝑖 ∈ 𝑇 (𝑒1, . . . , 𝑒𝑛)𝑒𝑖
(the 𝑖th variable);

• for each term 𝑡 ∈ 𝑇 (𝑒′
1
, . . . , 𝑒′𝑛)𝑒′′, grade𝑑 , and tuple of terms𝑢1 ∈ 𝑇 ®𝑒 (𝑒′1 ·𝑑), . . . ,𝑢𝑛 ∈ 𝑇 ®𝑒 (𝑒′𝑛 ·𝑑),

a term 𝑡 [𝑑 ;𝑢1, . . . , 𝑢𝑛] ∈ 𝑇 ®𝑒 (𝑒′′ · 𝑑) (substitution)
such that substitution is natural in 𝑑 ∈ E and 𝑒′′ ∈ E, and satisfies the following equations:

var𝑖 [𝑑 ;𝑢1, . . . , 𝑢𝑛] = 𝑢𝑖 𝑡 = 𝑡 [1; var1, . . . , var𝑛]
(𝑡 [𝑑 ;𝑢1, . . . , 𝑢𝑛]) [𝑑 ′; 𝑣1, . . . , 𝑣𝑚] = 𝑡 [(𝑑 · 𝑑 ′);𝑢1 [𝑑 ′; 𝑣1, . . . , 𝑣𝑚], . . . , 𝑢𝑛 [𝑑 ′; 𝑣1, . . . , 𝑣𝑚]]

Here substitution does not require the terms 𝑢1, . . . , 𝑢𝑛 to all have the same grade.

Definition 7.5. Let (Σ, 𝐸) be a flexibly graded presentation. The flexibly graded clone Term(Σ,𝐸 )

of terms over (Σ, 𝐸) is defined as follows.

• The graded sets Term
(Σ,𝐸 ) ®𝑒 are those of terms over Σ, quotiented by ≈ (Section 6.1).

• The 𝑖th variable var𝑖 is the term 𝑥1 : 𝑒1, . . . , 𝑥𝑛 : 𝑒𝑛 ⊢ 𝑥𝑖 : 𝑒𝑖 .
• Substitution is defined by 𝑡 [𝑑 ;𝑢1, . . . , 𝑢𝑛] = 𝑡{𝑑 ;𝑥1 ↦→ 𝑢1, . . . , 𝑥𝑛 ↦→ 𝑢𝑛}.
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Definition 7.6. Let T be a flexibly E-graded clone. A T-algebra A is an E-graded set 𝐴 (the

carrier), together with, for each term 𝑡 ∈ 𝑇 (𝑒1, . . . , 𝑒𝑛)𝑒′ and grade 𝑑 , a family of functions ⟦𝑡⟧𝑑 :∏
𝑖 𝐴(𝑒𝑖 · 𝑑) → 𝐴(𝑒′ · 𝑑). This family is required to be natural in 𝑑 ∈ E and 𝑒′ ∈ E, and to respect

variables and substitution in the sense that ⟦var𝑖⟧𝑑 (𝑎1, . . . , 𝑎𝑛) = 𝑎𝑖 and
⟦𝑡 [𝑑 ;𝑢1, . . . , 𝑢𝑚]⟧𝑑 ′ (𝑎1, . . . , 𝑎𝑛) = ⟦𝑡⟧𝑑 ·𝑑 ′ (⟦𝑢1⟧𝑑 ′ (𝑎1, . . . , 𝑎𝑛), . . . , ⟦𝑢𝑚⟧𝑑 ′ (𝑎1, . . . , 𝑎𝑛))

A morphism 𝑓 : A 𝑒′′ A′
of grade 𝑒′′ is a morphism 𝑓 : 𝐴 𝑒 𝐴′

of graded sets that satisfies

𝑓𝑒′ ·𝑑 (⟦𝑡⟧𝑑 (𝑎1, . . . , 𝑎𝑛)) = ⟦𝑡⟧𝑑 ·𝑒′′ (𝑓𝑒1 ·𝑑𝑎1, . . . , 𝑓𝑒𝑛 ·𝑑𝑎𝑛) (𝑡 ∈ 𝑇 ®𝑒𝑒′, 𝑎𝑖 ∈ 𝐴(𝑒𝑖 · 𝑑))
These form a locally E-graded category Alg(T), and there is a forgetful functor 𝑈T : Alg(T) →
GSetE, which sends each T-algebra to its carrier, and each morphism to itself.

Theorem 7.7. We have the following correspondence between flexibly graded presentations and
flexibly graded clones:
(1) For each flexibly E-graded presentation (Σ, 𝐸), there is a flexibly E-graded clone Term(Σ,𝐸 ) and

isomorphism Alg(Term(Σ,𝐸 ) ) � Alg(Σ, 𝐸) over GSetE.
(2) For each flexibly E-graded clone T, there is a flexibly E-graded presentation (ΣT, 𝐸T) and

isomorphism Alg(ΣT, 𝐸T) � Alg(T) over GSetE.

Proof. For (1), the clone Term(Σ,𝐸 )
is defined in Definition 7.5. It remains to show that (Σ, 𝐸) and

Term(Σ,𝐸 )
have the same algebras. Every (Σ, 𝐸)-algebrawith carrierA admits interpretations of terms

that respect ≈ by Theorem 6.9; these make A into a Term(Σ,𝐸 )
-algebra. Conversely, given a Term(Σ,𝐸 )

-

algebra with carrier A, we can interpret the operations op using the terms op(1;𝑥1, . . . , 𝑥𝑛):
⟦op⟧𝑑 = ⟦op(1;𝑥1, . . . , 𝑥𝑛)⟧𝑑 :

∏
𝐴(𝑒𝑖 · 𝑑) → 𝐴(𝑒′ · 𝑑) (op ∈ Σ(𝑒1, . . . , 𝑒𝑛 ; 𝑒′))

Simple calculations show that these constructions form the required isomorphism over GSetE.
For (2), let T be a flexibly graded clone. We construct the corresponding flexibly graded presenta-

tion (ΣT, 𝐸T). The sets of operations are given by ΣT (®𝑒; 𝑒′) = 𝑇 ®𝑒 𝑒′, so a (®𝑒; 𝑒′)-ary operation is a

term 𝑡 ∈ 𝑇 ®𝑒𝑒′. The collection of equations 𝐸T consists of:

• For each ®𝑒 and 𝑖 , a (®𝑒; 𝑒𝑖 )-ary equation 𝑥𝑖 ≈ var𝑖 (1;𝑥1, . . . , 𝑥𝑛).
• For each term 𝑡 ∈ 𝑇 (𝑒′

1
, . . . , 𝑒′𝑚)𝑒′′ and tuple of terms 𝑢𝑖 ∈ 𝑇 ®𝑒 (𝑒′𝑖 ·𝑑), a (®𝑒 ; 𝑒′′ ·𝑑)-ary equation

𝑡 (𝑑 ;𝑢1 (1;𝑥1, . . . , 𝑥𝑛), . . . , 𝑢𝑚 (1;𝑥1, . . . , 𝑥𝑛)) ≈ (𝑡 [𝑑 ;𝑢1, . . . , 𝑢𝑚]) (1;𝑥1, . . . , 𝑥𝑛)
• For each 𝑒′ ≤ 𝑒′′ ∈ E and term 𝑡 ∈ 𝑇 (®𝑒 ; 𝑒′), a (®𝑒 ; 𝑒′′)-ary equation ((𝑒′≤𝑒′′)∗𝑡) (1;𝑥1, . . . , 𝑥𝑛) ≈
(𝑒′≤𝑒′′)∗ (𝑡 (1;𝑥1, . . . , 𝑥𝑛)).

Both T-algebras and (ΣT, 𝐸T)-algebras have interpretations ⟦𝑡⟧𝑑 :

∏
𝑖 𝐴(𝑒𝑖 · 𝑑) → 𝐴(𝑒′ · 𝑑) of each

𝑡 ∈ 𝑇 ®𝑒′. It follows from this that we have Alg(ΣT, 𝐸T) � Alg(T) over GSetE. □

We do not give the details here but, just as flexibly graded monads induce rigidly graded monads,

each flexibly graded clone T induces a rigidly graded clone ⌊T⌋, and ⌊T⌋ satisfies a universal property
that can be expressed in terms of its algebras. We can also go in the other direction, but this is not

as simple as constructing a flexibly graded presentation from a rigidly graded presentation.

We end this section by noting that the substitution of a flexibly graded clone T restricts to a vari-
able renaming operation. This will be useful in the next section. We define a locally graded category

of flexibly graded contexts (viewed as lists of grades), with variable renamings as morphisms.

Definition 7.8. We write FCtxE for the locally E-graded category in which objects are lists of

grades, and morphisms, identities, and composition are given as follows:

FCtxE (®𝑒, ®𝑒′)𝑑 =
∏
𝑖 { 𝑗 | 𝑒′𝑗 ≤ 𝑒𝑖 · 𝑑} id®𝑒 = (1, . . . , 𝑛) (𝑘1, . . . , 𝑘𝑚) ◦ ( 𝑗1, . . . , 𝑗𝑛) = (𝑘 𝑗1 , . . . , 𝑘 𝑗𝑛 )
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The assignment ®𝑒 ↦→ 𝑇 ®𝑒 extends to a functor 𝑇 : FCtxE → GSetE, by

(𝑇 ( 𝑗1, . . . , 𝑗𝑛))𝑒′′𝑡 = 𝑡 [𝑑 ; (𝑒′𝑗1≤𝑒1 · 𝑑)
∗
var𝑗1 , . . . , (𝑒′𝑗𝑛≤𝑒𝑛 · 𝑑)

∗
var𝑗𝑛 ] ( 𝑗 ∈ FCtxE (®𝑒, ®𝑒′)𝑑 , 𝑡 ∈ 𝑇 ®𝑒 𝑒′′)

8 GRADED MONAD–PRESENTATION CORRESPONDENCES
It is well-known that there is a correspondence between ordinary (ungraded) presentations and

finitary monads on Set: given any presentation there is a finitary monad with the same algebras,

and vice-versa. There are analogous correspondences for flexibly graded presentations and for

rigidly graded presentations, which we give in this section.

8.1 Flexibly Graded Correspondence
We first consider the flexibly graded correspondence (Theorem 8.4 below), which is between flexibly

graded presentations and flexibly graded monads satisfying a condition on colimits. To say which

condition, we need some more machinery for locally graded categories.

Definition 8.1. Every locally graded category C has an underlying ordinary category C with

the same objects; a morphism 𝑓 : 𝑋 → 𝑌 in C is a morphism 𝑓 : 𝑋 1 𝑌 in C. Every functor

𝐹 : C → D between locally graded categories restricts to an ordinary functor 𝐹 : C → D.

The underlying ordinary category of GSetE is the category [E, Set] of E-graded sets and grade-

preserving functions between them. We now define conical colimits in locally graded categories.

Definition 8.2. Let C be a locally graded category, and let 𝐷 : I→ C be an ordinary functor. A

cocone of grade 𝑒 is an object 𝑋 ∈ |C| equipped with a morphism 𝑐𝑖 : 𝐷𝑖 𝑒 𝑋 for each 𝑖 ∈ |I|, such
that 𝑐𝑖′ ◦ 𝐷𝑓 = 𝑐𝑖 for each 𝑓 : 𝑖 → 𝑖′ in I. A cocone in𝑖 : 𝐷𝑖 1 colim𝐷 of grade 1 is the conical
colimit of 𝐷 if, for every grade 𝑒 and cocone 𝑐𝑖 : 𝐷𝑖 𝑒 𝑋 of grade 𝑒 , there is a unique morphism

[𝑐] : colim𝐷 𝑒 𝑋 such that 𝑐𝑖 = [𝑐] ◦ in𝑖 for all 𝑖 . A functor 𝐹 : C → D preserves this conical
colimit if the cocone (𝐹 (colim𝐷), 𝐹 in𝑖 ) is the conical colimit of 𝐹 ◦ 𝐷 in D.

(This is an instance of the notion of conical colimit given by Gordon and Power [1999], which

generalizes the standard notion for categories enriched over a symmetric monoidal category [Kelly

1982].)

The locally graded category GSetE has conical colimits of small diagrams, given pointwise by

ordinary colimits in Set. If 𝐹 : C → GSetE is a functor, then 𝐹 preserves a conical colimit colim𝐷

whenever the ordinary functor 𝐹 : C → [E, Set] preserves the ordinary colimit of𝐷 in C. (However,
existence of a ordinary colimit in C is not enough to guarantee existence of a conical colimit in C.)

The ordinary presentation–monad correspondence is usually stated in terms of filtered colimits,

but can equivalently be stated in terms of the more general sifted colimits, because an endofunctor

on Set preserves filtered colimits exactly when it preserves sifted colimits [Lack and Rosický 2011].

Here we have no choice; we need to use sifted colimits.

Definition 8.3. An ordinary small category I is sifted when ordinary colimits of shape I commute

with finite products in Set. Explicitly this means, for all finite sets J and functors 𝐷 : I × J→ Set,
the canonical function

colim𝑖

( ∏
𝑗 𝐷 (𝑖, 𝑗)

) [∏𝑗 in𝑖 ]𝑖−−−−−−−→ ∏
𝑗 colim𝑖 𝐷 (𝑖, 𝑗)

is a bijection. A conical sifted colimit is a conical colimit of a diagram with sifted domain.

Theorem 8.4. We have the following correspondence between flexibly graded presentations and a
class of flexibly graded monads.
(1) For each flexibly E-graded presentation (Σ, 𝐸), there is a flexibly E-graded monad T(Σ,𝐸 ) such

that 𝑇 (Σ,𝐸 ) preserves conical sifted colimits and Alg(Σ, 𝐸) � EM(T(Σ,𝐸 ) ) over GSetE.
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(2) For each flexibly E-graded monad T such that 𝑇 preserves conical sifted colimits, there is a
flexibly E-graded presentation (ΣT, 𝐸T) such that Alg(ΣT, 𝐸T) � EM(T) over GSetE.

We outline the proof of the correspondence. Since we have already proved a correspondence

between flexibly graded presentations and flexibly graded clones (Theorem 7.7), it actually suffices

to prove a correspondence between flexibly graded clones and flexibly graded monads.

The first step is to characterize the conical-sifted-colimit-preserving functors GSetE → GSetE:
they are equivalently functors FCtxE → GSetE.

Definition 8.5. For every list ®𝑒 of grades, we define an E-graded set 𝐾E®𝑒 by 𝐾E®𝑒𝑒′ = {𝑖 | 𝑒𝑖 ≤ 𝑒′},
with inclusions for coercions. If 𝐴 is a graded set and 𝑑 a grade, then there is a bijection 𝜗 between

tuples 𝑎 = (𝑎𝑖 )𝑖 ∈
∏
𝑖 𝐴(𝑒𝑖 · 𝑑) and morphisms 𝐾E®𝑒 𝑑 𝐴 of graded sets as follows:

𝜗 :

∏
𝑖 𝐴(𝑒𝑖 · 𝑑) � GSetE (𝐾E®𝑒, 𝐴)𝑑 : 𝜗−1 (𝜗𝑎)𝑒′ 𝑖 = (𝑒𝑖 ·𝑑≤𝑒′·𝑑)∗𝑎𝑖 𝜗−1 𝑓 = (𝑓𝑒𝑖 𝑖)𝑖

We extend 𝐾E to a functor 𝐾E : FCtxE → GSetE by defining 𝐾E ( 𝑗1, . . . , 𝑗𝑛) = 𝜗 ( 𝑗1, . . . , 𝑗𝑛).

Given any functorGSetE → GSetE, we can compose with𝐾E, to obtain a functor FCtxE → GSetE.
To go in the other direction, we take the left Kan extension along 𝐾E.

Definition 8.6. Let 𝐽 : J → C and 𝐹 : J → D be functors between locally graded categories. A

functor Lan𝐽 𝐹 : C → D equipped with a natural family _𝑍 : 𝐹𝑍 1 Lan𝐽 𝐹 (𝐽𝑍 ) is the (pointwise)
left Kan extension of 𝐹 along 𝐽 when, for all 𝑋 ∈ |C|, 𝑌 ∈ |D|, grades 𝑒 , and natural families of

functions 𝛼𝑍,𝑑 : C(𝐽𝑍, 𝑋 )𝑑 → D(𝐹𝑍,𝑌 ) (𝑑 · 𝑒), there is a unique morphism [𝛼] : Lan𝐽 𝐹𝑋 𝑒 𝑌

such that 𝛼𝑍,𝑑 𝑓 = [𝛼] ◦ Lan𝐽 𝐹 𝑓 ◦ _𝑍 .

The crucial property of 𝐾E is the following lemma.

Lemma 8.7. The functor 𝐾E : FCtxE → GSetE is the cocompletion of FCtxE under conical sifted
colimits. Explicitly this means, for every locally graded category D with conical sifted colimits and
functor 𝐹 : FCtxE → D, the left Kan extension of 𝐹 along 𝐾E exists, and is, up to isomorphism, the
unique conical-sifted-colimit-preserving functor 𝐹 ♯ : GSetE → D such that 𝐹 � 𝐹 ♯ · 𝐾E.

Proof sketch. First consider the ordinary functor 𝐾E : FCtxE → [E, Set]. The category FCtxE
has finite coproducts. By [Adámek and Rosický 2001, Section 2], the cocompletion of FCtxE under
sifted colimits is therefore given by the Yoneda embedding 𝑦 : FCtxE → Sind(FCtxE), where
the codomain is the full subcategory of [FCtxEop, Set] on the finite-product-preserving functors.

The singleton functor E ↩→ FCtxEop is the completion of E under finite products, so we have an

equivalence Sind(FCtxE) ≃ [E, Set]. It follows that the ordinary functor 𝐾E : FCtxE → [E, Set] is
the cocompletion of 𝐾E under sifted colimits.

It follows that 𝐾E is itself a cocompletion, by noting that the left Kan extension of a functor

𝐹 : 𝐾E → C along 𝐾E is actually given by the left Kan extension of 𝐹 along 𝐾E.
3 □

From this it follows that functors GSetE → GSetE preserve conical sifted colimits exactly when

they are left Kan extensions along 𝐾E, and that left Kan extension provides an equivalence between

such functors and functors FCtxE → GSetE.
The next step is to show that this equivalence restricts, so that to make a conical-sifted-colimit-

preserving functor 𝑇 : GSetE → GSetE into the underlying functor of a flexibly graded monad T is

equivalently to make𝑇 ′ = 𝑇 ·𝐾E : FCtxE → GSetE into the underlying functor of a flexibly graded

clone T′, in such a way that morphisms of flexibly graded monads become morphisms of flexibly

graded clones. Since𝐾E is a cocompletion (in particular, it is dense), families ofmorphisms[𝑋 : 𝑋 1

3
This fact is particular to 𝐾E. As far as we know it does not hold for Kan extensions along other functors.
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𝑇𝑋 natural in 𝑋 are completely determined by the components [𝐾E ®𝑒 : 𝐾E®𝑒 1 𝑇 ′®𝑒 , equivalently
𝜗[𝐾E ®𝑒 ∈

∏
𝑖 𝑇

′®𝑒𝑒𝑖 . The latter gives the variables of the flexibly graded clone T′. Since 𝑇 is a left Kan

extension along 𝐾E, each natural family of morphisms (−)† : GSetE (𝑋,𝑇𝑌 )𝑑 → GSetE (𝑇𝑋,𝑇𝑌 )𝑑
is determined by its restriction to the components (−)† : GSetE (𝐾E®𝑒′,𝑇𝑌 )𝑑 → GSetE (𝑇 ′®𝑒′,𝑇𝑌 )𝑑
Since 𝐾E is a cocompletion, the functors GSetE (𝐾E®𝑒′,−) preserve left Kan extensions along 𝐾E, so

(−)† is determined by its further restriction to 𝑌 = 𝐾E®𝑒 . Hence (−)† is determined by the functions∏
𝑖 𝑇

′®𝑒 (𝑒′𝑖 · 𝑑)
𝜗
� GSetE (𝐾E®𝑒′,𝑇 ′®𝑒)𝑑

(−)†
−−−→ GSetE (𝑇 ′®𝑒′,𝑇 ′®𝑒)𝑑

These functions give substitution in T′: for a term 𝑡 ∈ 𝑇 ′®𝑒′𝑒′′ and tuple of terms 𝑢𝑖 ∈ 𝑇 ′®𝑒 (𝑒′𝑖 · 𝑑), we
have 𝑡 [𝑑 ;𝑢1, . . . , 𝑢𝑛] = (𝜗𝑢)†

𝑒′′𝑡 ∈ 𝑇 ′®𝑒 (𝑒′′ · 𝑑).
Finally, we need to show that T and T′ have the same algebras, in the sense that there is an

isomorphism EM(T) � Alg(T′) over GSetE. Given an algebra A for the flexibly graded monad T,
we can use a construction similar to the definition of substitution above to make the carrier 𝐴 into

an algebra for the flexibly graded clone T′. Specifically, we specialize the extension operator (−)‡ to
the graded sets 𝐾E®𝑒′, and then define ⟦𝑡⟧𝑑 (𝑎1, . . . , 𝑎𝑛) = (𝜗𝑎)‡

𝑒′′𝑡 ∈ 𝐴(𝑒′′ · 𝑑) for 𝑡 ∈ 𝑇 ′®𝑒′𝑒′′. Since
𝑇 is the left Kan extension of 𝑇 ′

along 𝐾E, (−)‡ is completely determined by its restriction to the

graded sets 𝐾E®𝑒′. It follows that this construction forms an isomorphism EM(T) � Alg(T′) over
GSetE.

8.2 Rigidly Graded Correspondence
We also outline the correspondence for rigidly graded presentations. This is essentially the same as

the correspondence proved by Kura [2020], except that we rephrase it in terms of sifted colimits

and locally graded categories.

Let RSetE be the locally E-graded category in which objects are sets, morphisms 𝑓 : 𝑋 𝑒 𝑌

only exist when 1 ≤ 𝑒 , in which case they are functions 𝑓 : 𝑋 → 𝑌 , and identities and composition

are as in Set. Every rigidly graded monad R has an underlying functor 𝑅 : RSetE → GSetE, and
RSetE has conical sifted colimits computed as in Set.

Theorem 8.8. We have the following correspondence between rigidly graded presentations and a
class of rigidly graded monads.
(1) For each rigidly E-graded presentation (Σ, 𝐸), there is a rigidly E-graded monad R(Σ,𝐸 ) such

that 𝑅 (Σ,𝐸 ) preserves conical sifted colimits and Alg(Σ, 𝐸) � EM(R(Σ,𝐸 ) ) over GSetE.
(2) For each rigidly E-graded monad R such that 𝑅 preserves conical sifted colimits, there is a rigidly
E-graded presentation (ΣR, 𝐸R) such that Alg(ΣR, 𝐸R) � EM(R) over GSetE.

The proof is similar to the proof of the flexible correspondence. There is a locally graded

category RCtxE in which objects are natural numbers and morphisms are given by RCtxE (𝑛,𝑚)𝑒 =∏
𝑖≤𝑛{1, . . . ,𝑚} when 1 ≤ 𝑒 , with RCtxE (𝑛,𝑚)𝑒 empty otherwise. This embeds into RSetE via

a functor 𝐽E : 𝑛 ↦→ {1, . . . , 𝑛} : RCtxE → RSetE, which is the cocompletion of RCtxE under

conical sifted colimits. It follows that conical-sifted-colimit-preserving functors RSetE → GSetE are
equivalently functors RCtxE → GSetE. This equivalence extends to the required correspondence.

9 RELATEDWORK
(Rigidly) graded monads and presentations. Rigidly gradedmonads are a special case of lax functors.

The formal properties of the latter were studied by Street [1972], and adapted to graded monads

by Fujii et al. [2016]. In mathematics, graded monads were used as a generalization of rings by

Durov [2007] to study Arakelov geometry. Later, Smirnov [2008] studied the free construction

from generators of monads graded by commutative monoids. Graded algebraic theories with rigid

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 123. Publication date: August 2022.



Flexible Presentations of Graded Monads 123:27

grading of operations were studied by Dorsch et al. [2019]; Milius et al. [2015], who graded only

by natural numbers with addition. Kura [2020] generalized these to grading by strict monoidal

categories, and established a correspondence with graded monads and a notion of graded Lawvere

theory.

Algebraic operations. Katsumata [2014] discussed the inconvenience of rigid grading of algebraic

operations for rigidly graded monads and introduced effect-function graded algebraic operations. As

we discussed in Section 6.4, our rigidly graded algebraic operations are a special case of Katsumata’s

if one replaces functions with relations, but our flexibly graded algebraic operations are not. Plotkin

and Power [2003] define a general notion of algebraic operation for monads enriched over a

symmetric monoidal category. As remarked in Section 3, flexibly E-graded monads are monads

enriched over [E, Set] with Day convolution as the tensor product. For general non-symmetric E,
the monoidal category [E, Set] is not symmetric, and symmetry appears to be essential in Plotkin

and Power’s definition. The relationship between the latter and our flexibly graded algebraic

operations is therefore unclear.

Presentation–monad correspondences. To prove the correspondences between graded presenta-

tions and graded monads, we go via graded clones. This is essentially the same as the technique

used by Kelly and Power [1993], though they do not mention clones explicitly. Staton [2013] proves

a correspondence for a particular notion of presentation, explicitly using a notion of enriched clone.
Staton also notes that enriched clones generalize relative monads [Altenkirch et al. 2015]. Altenkirch
et al. [2015] show a correspondence between 𝐽 -relative monads and a class of monads, when 𝐽

satisfies certain well-behavedness conditions, which Szlachányi [2017] shows are equivalent to 𝐽

being a cocompletion. The correspondence between classical abstract clones and finitary monads is

an instance, because abstract clones are 𝐽 -relative monads where 𝐽 is the inclusion of finite sets

in Set. Similar considerations apply to our flexibly graded correspondence, and our proof of the

correspondence is similar to Altenkirch et al.’s proof. For the appropriate locally graded notion of

relative monad, flexibly graded clones are 𝐾E-relative monads. The functor 𝐾E is a cocompletion,

so is well-behaved (in a locally graded sense). The rigidly graded correspondence is between two

classes of relative monad, so the situation is slightly more complicated. Rigidly graded clones are

( ˆ(−) · 𝐽E)-relative monads, while rigidly graded monads are
ˆ(−)-relative monads.

10 CONCLUSIONS
This paper contributes the new notion of flexibly graded presentation, to enable more natural

presentation ofmany (rigidly) gradedmonads, such as the length-graded list monad andmany others.

Flexibly graded present the same class of rigidly graded monads as rigidly graded presentations,

but they also present a wide class of McDermott and Uustalu’s [2022] flexibly graded monads.

Central to our development here were two tools, which we suppressed somewhat, in order

to keep the exposition elementary: locally graded categories and relative monads (as adapted

to locally graded category theory). Relative monads appear in two places: while flexibly graded

monads are simply monads on the locally graded category GSetE, rigidly graded monads are

monads relative to the inclusion
ˆ(−) : RSetE → GSetE; flexibly graded clones are monads relative

to 𝐾E : FCtxE → GSetE.
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