
1

Higher-order algebraic theories

NATHANAEL ARKOR, University of Cambridge, UK
DYLAN MCDERMOTT, Reykjavik University, Iceland

Algebraic theories give a presentation-free categorical formulation of universal algebraic structure: objects
equipped with first-order operators, subject to equational laws. Similarly, higher-order algebraic theories
describe objects equipped with higher-order, variable-binding operators, such as logical quantifiers or 𝜆-
abstraction. While higher-order structures abound in mathematics and computer science, there exists no
systematic treatment in the spirit of that for first-order structure. This has led to a proliferation of variations
of higher-order theory, and consequently a lacklustre general understanding. We take the first steps to
rectify this, defining a notion of multisorted higher-order algebraic theory and carrying out a development
analogous to that of the first-order setting. In addition to unifying various previous notions, we (1) establish
a correspondence between higher-order algebraic theories and a class of (relative) monads, whose algebras
describe the closed-term structure of the corresponding theories; (2) prove that the categories of higher-order
algebraic theories, and of the term algebras for a higher-order algebraic theory, are locally strongly finitely
presentable; (3) give a new explanation for the apparent asymmetry between models of algebraic theories in
the category of sets, and models in arbitrary cartesian categories.

1 INTRODUCTION
The notion of algebraic theory (or Lawvere theory) was introduced in Lawvere’s [1963] seminal
thesis as a categorical, presentation-free axiomatisation of universal algebraic structure. Though ex-
amples of universal algebraic structure abound, there are many structures throughout mathematics
that cannot be described thus and, since then, many extensions or variations of algebraic theories
have arisen [Bénabou 1968; Freyd 1972; Power 1999]. One such variation is that of second-order
algebraic theory [Fiore and Mahmoud 2010], which extends the structure of algebraic theories
with a notion of variable-binding operator. This is a rich setting, covering many examples of
simple type theories, such as the unityped and simply-typed 𝜆-calculi [Church 1940], and the
computational 𝜆-calculus [Moggi 1989]; as well as structures such as predicate logic, and partial
differentiation [Plotkin 2020]. Second-order algebraic theories are more conservative than cartesian-
closed categories, which may also be used to describe structures with variable-binding operators,
requiring only a set of exponentiable objects, and may thus be modelled even in categories that
are not cartesian-closed. However, second-order algebraic theories are poorly understood, having
undergone little general development. While Fiore and Mahmoud [2010] introduce second-order
algebraic theories, establishing their equivalence to the monosorted second-order presentations of
Fiore and Hur [2010], and prove them to be conservative over first-order algebraic theories, there
are many questions left unanswered [Fiore and Mahmoud 2010, Section 7]. In particular, we should
like to know to what extent the classical results in the first-order setting carry through (cf. Adámek,
Rosický, and Vitale [2010]).

This work may be seen as a starting point for a systematic treatment of second-order algebraic
theories in the spirit of that for first-order algebra. However, to fully appreciate where second-order
algebraic theories stand in relation to similarly motivated concepts, such as typed 𝜆-calculi [Lambek
1980; Lambek and Scott 1988], higher-order universal algebra [Meinke 1992, 1995; Poigné 1986],
higher-order abstract syntax [Pfenning and Elliott 1988], and parameterised algebraic theories
[Staton 2013a], we consider multisorted higher-order algebraic theories, subsuming both 𝑛th-order
algebraic theories, for 𝑛 ∈ N, and 𝜔-order algebraic theories, whose operations have unrestricted
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order. In this generality, we carry out a development of multisorted higher-order algebraic theories,
their equational logic, presentations, and models. Much of the structure known to be present in the
first-order setting is shown also to exist in the higher-order setting: for example, we show that the
category of 𝑛th-order algebraic theories is locally strongly presentable and hence complete and
cocomplete. In addition, we establish a correspondence between (𝑛 + 1)th-order algebraic theories
and a class of monads on the category of 𝑛th-order algebraic theories, which specialises, when
𝑛 = 1, to the classical correspondence between algebraic theories and finitary monads on Set.

Throughout, we have endeavoured to give intuition for the constructions and correspondences
that appear in the development; though the study of algebraic theories is well-established, it can
be difficult to find philosophical justification for certain phenomena. For instance, we discuss the
conceptual distinction between models of first-order algebraic in Set, and in arbitrary cartesian
categories; and give an explicit description of the monad induced by a higher-order algebraic theory
that is new even in the first-order setting.

1.1 Overview and contributions
We begin in Section 2 by discussing the ways in which higher-order algebraic theories may be seen
as extensions of first-order equational logic: this frames our setting in a wider context, relating it
to various similarly-motivated concepts. In Section 3, we introduce our preferred equational logic
for higher-order algebraic theories, along with their presentations, and give various examples. We
then move towards the categorical development of higher-order algebraic theories in the style of
Lawvere. Section 4 details a non-syntactic construction of free cartesian-closed categories, which
is a prerequisite to define higher-order algebraic theories. In Section 5, we introduce higher-order
algebraic theories, prove them to be equivalent to higher-order presentations, and describe their
models and term algebras. In particular, we explain an asymmetry between models for algebraic
theories and algebras for finitarymonads on Set. Next, we establish amonad–theory correspondence
for higher-order algebraic theories. We show in Section 6 that higher-order algebraic theories
correspond to a class of relative monads. In Section 7, the categories of higher-order algebraic
theories are shown to be locally strongly presentable, which allows us to obtain an equivalence
with a class of monads in Section 8. We briefly discuss 0th-order algebraic theories in Section 9. In
in ??, we define higher-order abstract clones, standing in relation to higher-order algebraic theories
as abstract clones do to algebraic theories. Finally, ??, we examine the categories of multisorted
higher-order algebraic theories, combining 𝑆-sorted higher-order algebraic theories for fixed sets
of sorts 𝑆 , and relate them to arbitrary cartesian-closed categories.

1.2 Conventions
We will use the term higher-order algebraic theory to refer to 𝑛th-order algebraic theories, for
arbitrary 𝑛 ∈ N𝜔 , where N𝜔 is the total order of extended natural numbers (N + {𝜔}, ≤). We fix
a set 𝑆 of sorts B throughout. The category Law0 (𝑆) of 𝑆-sorted 0th-order algebraic theories is
defined to be the category Set𝑆 of 𝑆-indexed sets; this definition is formally justified in Section 9.
We use 𝜋to denote coprojections.

2 PERSPECTIVES & RELATEDWORK
Before beginning the technical development, we outline several perspectives from which higher-
order algebraic theories may be viewed: each of these viewpoints has appeared separately in the
literature, though we know of no source in which the connections are explicated. Indeed, many
of the developments from each perspective appear to exist in isolation from the others, and for
this reason it is difficult for a non-expert to build a holistic picture of the field. We suggest that it
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is by considering the perspective of 𝑛th-order algebraic theories, as a bridge between first-order
algebraic theories and 𝜔-order algebraic theories, that the full picture is made most clear.

2.1 Higher-order natural deduction
Universal algebra, or more precisely its associated first-order equational logic, may be seen as a
basic natural deduction system in which we have two judgements, for the well-formedness of terms,
and for their equality. The (term) operators of an algebra take a sequence of terms, the operands,
and form a new term. One may present an operator syntactically by an inference rule of the form:

⊢ 𝑡1 · · · ⊢ 𝑡𝑛
⊢ f (𝑡1, . . . , 𝑡𝑛)

(1)

We read this inference rule as “if there exist well-formed terms 𝑡1 through to 𝑡𝑛 , then we may
form a new well-formed term f (𝑡1, . . . , 𝑡𝑛)”; we think of f as being an operator that we apply to the
operands 𝑡1 through to 𝑡𝑛 . One may consider variations on first-order equational logic by modifying
the structure of these inference rules. For example, associating a sort (or type) to each term leads
to the notion of multisorted algebraic theory [Bénabou 1968]. Here, inference rules may only be
applied if the operands have the correct type. For instance, the action of a monoid may be presented
by an inference rule of the form:

⊢𝑚 : M ⊢ 𝑥 : X
⊢ act(𝑚, 𝑥) : X (2)

We read this inference rule as “if there exists a well-formed term𝑚 of typeM and a well-formed
term 𝑥 of type X, then we may form a new well-formed term act(𝑚, 𝑥) of type X”. In fact, in
the absence of ill-formed terms (which arise only when one considers concrete syntax, formed
through string concatenation from basic symbols), we may drop “well-formed” and simply talk
about unqualified “terms”.
Higher-order equational logic arises when one considers operators that may themselves take

operators, rather than terms, as their operands. A second-order operator may therefore be presented
by an inference rule whose premisses are themselves (first-order) inference rules. For instance,
consider the following second-order inference rule:( ⊢ 𝑡1 1 · · · ⊢ 𝑡1𝑛1

⊢ 𝑓1 (𝑡1 1, . . . , 𝑡1𝑛1 )

)
· · ·

( ⊢ 𝑡𝑛 1 · · · ⊢ 𝑡𝑛𝑛𝑛
⊢ 𝑓𝑛 (𝑡𝑛 1, . . . , 𝑡𝑛𝑛𝑛 )

)
⊢ g(𝑓1, . . . , 𝑓𝑛)

(3)

We read this inference rule as “if there exist inference rules that takes 𝑡𝑖 1 through to 𝑡𝑖 𝑛𝑖 and forms
a term 𝑓𝑖 (𝑡𝑖 1, . . . , 𝑡𝑖 𝑛𝑖 ), for 1 ≤ 𝑖 ≤ 𝑛, then we may form a term g(𝑓1, . . . , 𝑓𝑛)”; we think of g as an
operator that we apply to the inference rules 𝑓1 through to 𝑓𝑛 . Note that when we say “inference
rule” for 𝑓𝑖 , we really mean any possible derivation of a term given terms 𝑡𝑖 1 through to 𝑡𝑖 𝑛𝑖 : we
permit the composition of inference rules by grafting conclusions of one inference rule to a premiss
of another, to form open derivations of terms.
Similarly, we may consider third-order operators, which take second-order operators as their

operands, and so on for arbitrary𝑛 ∈ N. Note that nullary (𝑛+1)th-order operators (that is, operators
that take no operands) are equivalently 𝑛th-order operators: in this way, (𝑛 + 1)th-order operators
strictly subsume 𝑛th-order operators. From this perspective, 0th-order operators are equivalently
constants. We may define an 𝜔-order operator to be an 𝑛th-order operator for any 𝑛 ∈ N.

These higher-order operators may be motivated for the purpose of metatheoretic reasoning: by
ascending to a higher order, it is possible to perform operations on operations (of a lower order).
For example, we can describe a second-order operator that formally adds an inverse for a unary
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first-order operator:( ⊢ 𝑥
⊢ 𝑓 (𝑥)

)
⊢ 𝑡

⊢ inv(𝑓 , 𝑡)

( ⊢ 𝑥
⊢ 𝑓 (𝑥)

)
⊢ 𝑡

⊢ inv(𝑓 , 𝑓 (𝑡)) ≡ 𝑡

( ⊢ 𝑥
⊢ 𝑓 (𝑥)

)
⊢ 𝑡

⊢ 𝑓 (inv(𝑓 , 𝑡)) ≡ 𝑡
(4)

In practice, as evidenced by even the simple second-order operator above, higher-order equational
logic presented recursively in this style quickly becomes unwieldy, but it nevertheless gives a useful
intuition. This approach was explored from a syntactic perspective by Schroeder-Heister [1984].

2.2 Equational logics with metavariables
First-order operators are usually defined as symbols that take terms as operands: for any compatible
choice of operand terms, we may form a new term, which is thought of as the application of
that operator. However, there is another choice: we may instead define operators as symbols
parameterised by a context of variables, such as in the following inference rule:

𝑥1, . . . , 𝑥𝑛 ⊢ f (5)

We read this inference rule as “we may form a term f in any context with 𝑛 variables”. We can
understand f as some term containing free variables (this is called an open term): to apply the
operator f, we substitute each of the variables 𝑥1 through to 𝑥𝑛 by terms 𝑡1 through to 𝑡𝑛 , as in the
following:

⊢ 𝑡1 · · · ⊢ 𝑡𝑛
⊢ f [𝑡1/𝑥1] · · · [𝑡𝑛/𝑥𝑛]

(6)

Note that this inference rule has the same form as (1): the difference is simply in whether we
form a compound term f (𝑡1, . . . , 𝑡𝑛) or substitute for free variables in an open term f [𝑡1/𝑥1] · · · [𝑡𝑛/𝑥𝑛].
In an appropriate, formal sense, these perspectives are equivalent; one may consider premisses
⊢ 𝑡𝑖 in empty contexts to correspond to variables 𝑥𝑖 , and vice versa. It is natural to then ask
whether there is an analogue, in terms of variables and substitution, for the higher-order operators
of Section 2.1. It turns out that there is: one may present second-order operators as terms in
metavariable contexts [Aczel 1978; Fiore and Hur 2010]. Formally, metavariables are variables that
are themselves parameterised by variables: we can instantiate any metavariable by providing terms
for each of its parameterising variables, akin to the application of (1) or substitution of (6). For
example, the metavariable context below has 𝑛 metavariables, each of which is parameterised by 𝑛𝑖
variables.

(𝑥1 1, . . . , 𝑥1𝑛1 )𝑥1, . . . , (𝑥𝑛 1, . . . , 𝑥𝑛𝑛𝑛 )𝑥𝑛 (7)
A second-order operator may be defined, similarly to (5), as a symbol parameterised by a context
of metavariables, such as in the following inference rule:

(𝑥1 1, . . . , 𝑥1𝑛1 )𝑥1, . . . , (𝑥𝑛 1, . . . , 𝑥𝑛𝑛𝑛 )𝑥𝑛 ⊢ g (8)

We read this inference rule as “we may form a term g in any context with 𝑛 metavariables, the
𝑖th of which is parameterised by 𝑛𝑖 variables”. We understand g as some term containing free
metavariables. Just as variables have an associated notion of substitution, metavariables have an
associated notion of meta-substitution [Fiore 2008; Fiore and Hur 2010]. When we substitute a
variable 𝑥 by a term 𝑡 , we replace every occurrence of the variable 𝑥 by 𝑡 (taking care to deal with
binders appropriately); similarly, we may substitute a metavariable (𝑥1, . . . , 𝑥𝑛)𝑥 by an open term
𝑥1, . . . , 𝑥𝑛 ⊢ 𝑓 . This allows us to apply a second-order operator as in (8), by meta-substituting each
of the metavariables (𝑥1 1, . . . , 𝑥1𝑛1 )𝑥1 through (𝑥𝑛 1, . . . , 𝑥𝑛𝑛𝑛 )𝑥𝑛 by open terms 𝑥1 1, . . . , 𝑥1𝑛1 ⊢ 𝑓1
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through to 𝑥𝑛 1, . . . , 𝑥𝑛𝑛𝑛 ⊢ 𝑓𝑛 , as below (we use the same notation for substitution and meta-
substitution).

𝑥1 1, . . . , 𝑥1𝑛1 ⊢ 𝑓1 · · · 𝑥𝑛 1, . . . , 𝑥𝑛𝑛𝑛 ⊢ 𝑓𝑛
⊢ g[𝑓1/𝑥1] · · · [𝑓𝑛/𝑥𝑛]

(9)

Note that this inference rule has the same form as (3), under the relationship between the first-
order operators exhibited by (1) and (6). As in the first-order setting, these two perspectives on
second-order operators are equivalent. We may similarly describe third-order operators by way
of metametavariables, metametasubstitution, and so on. In theory, we could combine the two
perspectives, introducing metavariable contexts to the formalism of Section 2.1, but we gain no
extra expressivity by doing so.
The perspective of equational logic with metavariables is well-suited to describing axiom

schemata, which are typically formalised non-syntactically through an infinite family of axioms:
metavariables permit them to be described syntactically, with each axiom of a schema arising from
a higher-order operator by meta-substitution (cf. Fiore and Hamana [2013, Section 1]). In this sense,
the notion of metavariable described here aligns with that of the traditional notion in mathematical
logic. This is the perspective taken by Fiore and Hur [2010] in the setting of second-order equational
logic (cf. Fiore [2008]; Hamana [2004]). In their setting, contexts contain both metavariables and
variables. However, just as first-order operators are equivalent to nullary second-order operators,
so variables are equivalent to nullary metavariables and so there is no loss in generality to consider
solely contexts of metavariables.

2.3 Higher-order logical frameworks
Logical frameworks are deductive systems whose reasoning is expressed through a type theory,
which plays the role of a metatheory. In particular, type theories with some capacity of function
type form the metatheories for higher-order logical frameworks. Categorical theories (e.g. algebraic
theories, essentially algebraic theories, geometric theories, etc.) have traditionally been studied
separately from logical frameworks, but the objects of study are the same, albeit in different dress.
For example, (multisorted) universal algebra can equivalently be viewed as the logical framework
corresponding to the simply-typed pairing calculus: the fragment of the simply-typed 𝜆-calculus
with products but without function types (cf. Crole [1993, Chapter 3]); this view lends itself as a
useful bridge between the approaches of categorical algebra and programming language theory.

Having made this observation, there is a clear candidate for the metatheory associated to higher-
order equational logic: the simply-typed 𝜆-calculus. Metavariables may be represented by variables
of function types, while meta-substitution is given by the (ordinary) substitution of 𝜆-terms. In fact,
it is common in computer science to use the simply-typed 𝜆-calculus to represent variable-binding
operators, treating the 𝜆-abstraction operator as a canonical variable-binding operator through
which others may be defined: this is essentially the motivating idea behind higher-order universal
algebra [Meinke 1992, 1995; Poigné 1986], and higher-order abstract syntax1 [Pfenning and Elliott
1988]. However, one could argue that this practice was formally justified only once the binding
structure of the simply-typed 𝜆-calculus was proven to be universal, in the sense of being equivalent
to arbitrary algebraic binding structure by Fiore and Mahmoud [2010]; Mahmoud [2011]. Following
this result, we may in good conscience present 𝑛th-order operators as operators with limited order
in the simply-typed 𝜆-calculus. For instance, we may present a second-order operator by a function

1We note that the metalogic of Pfenning and Elliott [1988] is also polymorphic, but reserve the term higher-order abstract
syntax for the fragment restricted to the simply-typed 𝜆-calculus.
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constant, such as the following.

⊢ g : (U𝑛1 � U) × · · · × (U𝑛𝑛 � U) � U (10)

Here, g is an operator taking functions as operands, and is equivalent to (8) by uncurrying. Given
terms ⊢ 𝑓1 : U𝑛1 � U through to ⊢ 𝑓𝑛 : U𝑛𝑛 � U, corresponding to open terms by uncurrying, we
may form a new term g(𝑓1, . . . , 𝑓𝑛) using the application operation of the simply-typed 𝜆-calculus:

⊢ 𝑓1 : U𝑛1 � U · · · ⊢ 𝑓𝑛 : U𝑛𝑛 � U

⊢ g(𝑓1, . . . , 𝑓𝑛) : U
(11)

Note that, though we distinguish informally between the operators defined using the simply-typed
𝜆-calculus and the operators of the simply-typed 𝜆-calculus itself, there is no formal difference
between the two from this perspective.

The presentation of higher-order equational logic by the simply-typed 𝜆-calculus is the one we
choose to use throughout this paper, as the syntax is particularly elegant and is likely to be most
familiar to the reader.

2.4 Simply-typed 𝜆-calculi
We consider the simply-typed 𝜆-calculus above as a logical framework for higher-order deduction.
However, extensions of the simply-typed 𝜆-calculus have often instead been studied for the purpose
of defining programming languages. Conversely, in a logical framework, the primitive type and term
operators have philosophical import: for instance, the product type corresponds to conjunction, and
the function type to implication. In a programming language, they are concrete syntactic devices,
and their meaning is defined through their behaviour. Practically, these perspectives are similar, but
the distinction between taking the simply-typed 𝜆-calculus as a metatheory, or as a programming
language, is conceptually important.
Crole [1993, Chapter 4], for instance, takes a more programming-language-theoretic approach,

defining a notion of 𝜆×-theory equivalent to our notion of presentation for an 𝜔-order algebraic
theory. Crole’s motivation is to prove an internal language result for cartesian-closed categories, as
well as to describe programming languages extending the simply-typed 𝜆-calculus: correspondingly,
he does not consider the presentation-free perspective, which is our primary motivation.

3 PRESENTATIONS OF HIGHER-ORDER ALGEBRAIC THEORIES
We proceed to describe an equational logic for higher-order algebraic theories, based on the
perspective in Section 2.3, and define their corresponding presentations. This gives a concrete
syntactic counterpoint to the later categorical formulation, allowing the higher-order equational
logic to be used as an internal language for higher-order algebraic theories.

3.1 The order-limited 𝜆-calculus
The classical correspondence between the simply-typed 𝜆-calculus and cartesian-closed categories
[Lambek 1980; Lambek and Scott 1988] is well-known: it establishes that simply-typed 𝜆-calculi
and cartesian-closed categories are equivalent notions, permitting us to treat each in terms of the
other as convenient. The correspondence straightforwardly restricts to one between the simply-
typed pairing calculus, the subcalculus of the simply-typed 𝜆-calculus without function types, and
cartesian categories. By restricting the simply-typed 𝜆-calculus appropriately, we can establish that
between these two lie a spectrum of calculi, ranging in expressivity, which we dub the order-limited
𝜆-calculi. These will play the role of the metatheory, or equational logic, for 𝑛th-order algebraic
theories.
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Remark 3.1. Order is here used to refer to the order of functions, and by extension their types and
calculi. The second-order 𝜆-calculus refers to a simply-typed 𝜆-calculus whose function types may be
at most first-order, rather than the polymorphic 𝜆-calculus, which has occasionally gone by that name.

To describe the order-limited calculi, it shall be necessary to define the order of a type: informally
the maximum left-nesting depth of any function type constructor therein. Some examples follow.
The types of the simply-typed 𝜆-calculus are generated from a set 𝑆 of base types by the unit type
(1), product types (×), and function types (�); throughout, B denotes some base type.

Order Types
0 1
1 B B × B B × B × B · · ·
2 B � B B × B � B B � B × B B � B � B
3 (B � B) � B · · ·

Definition 3.1. The order of a type in the simply-typed 𝜆-calculus is given as follows.

ord(1) def= 0 ord(B) def= 1 (B ∈ 𝑆)

ord(𝑋 × 𝑌 ) def= max(ord(𝑋 ), ord(𝑌 )) ord(𝑋 � 𝑌 ) def= max(ord(𝑋 ) + 1, ord(𝑌 ))

For 𝑛 ∈ N𝜔 , the (𝑛 + 1)th-order simply-typed 𝜆-calculus is given by the classical simply-typed
𝜆-calculus, but whose types 𝑋 are restricted to those for which ord(𝑋 ) ≤ 𝑛. Consequently, the
abstraction rule must be restricted, as in the following. The full calculus is presented in Figure A.1.

Γ, 𝑥 : 𝑋 ⊢ 𝑡 : 𝑌 ord(𝑋 ) < 𝑛
�-intro

Γ ⊢ 𝜆(𝑥 : 𝑋 .𝑡) : 𝑋 � 𝑌

The 0th-order simply-typed 𝜆-calculus is restricted further, as the only terms therein are constant: it
is presented in Figure A.2. In the following, we shall focus on 𝑛 > 0. Note that the first-order simply-
typed 𝜆-calculus coincides with the simply-typed pairing calculus; while the 𝜔-order simply-typed
𝜆-calculus coincides with the classical simply-typed 𝜆-calculus.

We may construct a category from the 𝑛th-order simply-typed 𝜆-calculus (cf. Crole [1993]).

Definition 3.2. Let 𝑛 ∈ N𝜔 . The classifying category Λ𝑛 (𝑆) of the 𝑛th-order simply-typed 𝜆-
calculus on a set 𝑆 of base types is the category defined as having
• objects, the types of the 𝑛th-order simply-typed 𝜆-calculus on 𝑆 ;
• morphisms 𝑋 → 𝑌 , the terms 𝑥 : 𝑋 ⊢ 𝑡 : 𝑌 ;
• identity morphisms 𝑋 → 𝑋 , variable projections 𝑥 : 𝑋 ⊢ 𝑥 : 𝑋 ;
• compositions (𝑥 : 𝑋 ) 𝑠−→ (𝑦 : 𝑌 ) 𝑡−→ 𝑍 , substitutions 𝑡 [𝑠/𝑦].

The classifying categories of the simply-typed pairing calculus and of the simply-typed 𝜆-calculus
are characterised by universal properties: the former is the free cartesian category on 𝑆 , while the
latter is the free cartesian-closed category on 𝑆 . One should hope for a similar characterisation of
Λ𝑛+1 (𝑆) for general 𝑛 ∈ N𝜔 . In the (𝑛 + 1)th-order simply-typed 𝜆-calculus, there are restrictions
on forming function types. One should therefore expect Λ𝑛+1 (𝑆) to always have cartesian structure,
but only limited closed structure. This limited closed structure is captured categorically by the
notion of exponentiability.

Definition 3.3. An object 𝑋 in a cartesian category is exponentiable iff the functor 𝑋 × (−) has a
right adjoint, typically denoted (−)𝑋 .
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In the context of the (𝑛 + 1)th-order simply-typed 𝜆-calculus, a type is exponentiable if it may be
used as the domain of a function type. To capture the notion of order, we shall be concerned with
objects whose powers are exponentiable, corresponding to the left-nesting depth of function types.

Definition 3.4. We define tetration for an object 𝑋 in a cartesian category inductively, whenever
the requisite powers exist. Intuitively, this corresponds to iterated exponentiation of 𝑋 .

𝑋 ↑↑ 0 def
= 1 𝑋 ↑↑ (𝑛 + 1) def= 𝑋𝑋 ↑↑𝑛 (𝑛 ∈ N)

An object is 𝑛-tetrable, for 𝑛 ∈ N, if for all 0 ≤ 𝑖 ≤ 𝑛 the object 𝑋 ↑↑ 𝑖 is exponentiable. An object
is 𝜔-tetrable if it is 𝑛-tetrable for all 𝑛 ∈ N. It follows that every object in a cartesian category is
0-tetrable, and is 1-tetrable iff it is exponentiable. In a cartesian-closed category, every object is
𝜔-tetrable, as is the terminal object in a cartesian category.

Intuitively, tetrability is inverse to order: a type in the (𝑛 + 1)th-order algebraic theory has order
1 ≤ 𝑘 ≤ 𝑛 if it is (𝑛 + 1 − 𝑘)-tetrable as an object of Λ𝑛+1 (𝑆); the base types of the (𝑛 + 1)th-order
simply-typed 𝜆-calculus, having order 1, are therefore 𝑛-tetrable in Λ𝑛+1 (𝑆). Just as types of a fixed
order are closed under taking product types, 𝑛-tetrable objects are closed under taking cartesian
products. Tetrability is therefore a faithful categorical reflection of order. The following definition
captures the idea of a category equipped with base types of order 1.

Definition 3.5. A subcategory 𝒞
′ of a cartesian category 𝒞 is 𝑛-tetrable iff each of the objects of

𝒞
′ is 𝑛-tetrable as an object of 𝒞.

We are now ready to establish the universal property of Λ𝑛+1 (𝑆).

Theorem 3.6. Let 𝑛 ∈ N𝜔 . Λ𝑛+1 (𝑆) is the 2-initial cartesian category containing 𝑆 as an 𝑛-tetrable
subcategory. This exhibits Λ𝑛+1 (𝑆) as the free cartesian category with an 𝑛-tetrable subcategory 𝑆 .

Λ1 (𝑆) and Λ𝜔 (𝑆) are thereby the free cartesian and free cartesian-closed categories on 𝑆 .

Remark 3.2. Presenting the equational logic of higher-order algebraic theories as order-limited
𝜆-calculi leads to several simplifications over previous approaches. For example, the meta-substitution
operation of Fiore [2008] is given in our framework by the substitution of a second-order variable by a
𝜆-abstraction. The near-semiring compatibility structure between substitution and meta-substitution
observed by Fiore [2016] then follows directly from the associativity of substitution.

3.2 Presentations, transliterations and translations
We may now describe the presentations of 𝑛th-order algebraic theories for 0 < 𝑛 ∈ N𝜔 , which are
analogous to those in universal algebra. Presentations allow higher-order algebraic theories to be
axiomatised by means of operators and equations.

Definition 3.7. An 𝑆-sorted 𝑛th-order signature consists of a set 𝑂 of operators and a function
|−| : 𝑂 → Λ𝑛 (𝑆) × 𝑆 . When |𝑜 | = (𝑋, 𝐵) we call 𝑋 the arity and 𝐵 the coarity of 𝑜 . A signature
gives rise to a syntactic category Λ𝑂 defined as the classifying category in Definition 3.2 with the
following additional axiom schema.

Γ ⊢ 𝑡 : 𝑋 (o ∈ 𝑂, |o| = (𝑋,B)) op
Γ ⊢ o(𝑡) : B

Λ𝑂 is a wide subcategory of Λ𝑛 (𝑆), which justifies us in treating their objects indiscriminately.

Definition 3.8. An 𝑆-sorted 𝑛th-order presentation consists of a signature (𝑂, |−|) and a set 𝐸 ⊆∑
(𝑋,𝐵) ∈Λ𝑛 (𝑆)×𝑆 Λ𝑂 (𝑋,B) ×Λ𝑂 (𝑋,B) of equations. Every presentation Σ = (𝑂, |−|, 𝐸) similarly gives
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rise to a syntactic category ΛΣ defined as the syntactic category for the underlying signature with
the following additional axiom schema.

Γ ⊢ 𝑡 : 𝑋 ((𝑋, 𝐵, 𝑙, 𝑟 ) ∈ 𝐸) eq
Γ ⊢ 𝑙 [𝑡/𝑥] ≡ 𝑟 [𝑡/𝑥] : B

We denote by 𝑄Σ : Λ𝑂 ↠ ΛΣ the quotient of Λ𝑂 by the equations of Σ.

There are natural notions of morphism between presentations: the first, which we call translitera-
tions, are homomorphisms between signatures, mapping operators in one presentation to operators
in another; the second, which we call translations2 following Fiore and Mahmoud [2010], instead
map operators in one presentation to terms in another. In practice, translations are more important,
but we shall see shortly that the two notions are tightly connected. Morphisms of presentations are
often overlooked in the literature, but are important both conceptually and practically: we give
several examples in Section 3.3.

Definition 3.9. Let Σ = (𝑂, |−|, 𝐸) and Σ′ = (𝑂 ′, |−|′, 𝐸 ′) be 𝑛th-order presentations. An 𝑛th-order
transliteration from Σ to Σ′ consists of a function 𝑓 : 𝑂 → 𝑂 ′ such that |𝑓 (o) |′ = |o| for all o ∈ 𝑂 ,
and such that, for all (Γ,B) ∈ Λ𝑛 (𝑆) × 𝑆 and 𝑙, 𝑟 ∈ Λ𝑂 (Γ,B), we have 𝑄Σ′ (𝑓 ♭ (𝑙)) = 𝑄Σ′ (𝑓 ♭ (𝑟 )) if
𝑄Σ (𝑙) = 𝑄Σ (𝑟 ), where 𝑓 ♭ is the congruent extension of 𝑓 to terms.

𝑆-sorted 𝑛th-order presentations and transliterations form a category Pre𝑛 (𝑆), with composition
and identities inherited from Set.

Every transliteration 𝑓 : Σ→ Σ′ gives rise to a syntactic functor Λ𝑓 : ΛΣ → ΛΣ′ , defined as the
identity on Λ𝑛 (𝑆) and sending each term Γ ⊢ o(𝑡) : B to Γ ⊢ 𝑓 (o) (𝑓 ♭ (𝑡)) : B, for all o ∈ 𝑂 .

Definition 3.10. Let Σ = (𝑂, |−|, 𝐸) and Σ′ = (𝑂 ′, |−|′, 𝐸 ′) be 𝑛th-order presentations. An 𝑛th-order
translation from Σ to Σ′ consists of a function 𝑓 :

∏
o∈𝑂 Λ𝑂′ ( |o|), such that, for all (Γ,B) ∈ Λ𝑛 (𝑆)×𝑆

and (𝑙, 𝑟 ) ∈ Λ𝑂 (Γ,B), we have𝑄Σ′ (𝑓 ♯ (𝑙)) = 𝑄Σ′ (𝑓 ♯ (𝑟 )) if𝑄Σ (𝑙) = 𝑄Σ (𝑟 ), where 𝑓 ♯ is the congruent
extension of 𝑓 to terms.
𝑆-sorted 𝑛th-order presentations and translations form a category Pres𝑛 (𝑆), with identities given

by inclusions, and compositions 𝑔 ◦ 𝑓 given by 𝑔♯ ◦ 𝑓 .

3.3 Examples
We give a range of examples of presentations and translations for higher-order algebraic theories.

Example 3.11. The unityped 𝜆-calculus is a second-order algebraic theory presented by a single
sort U together with the following operators and equations.

Γ ⊢ 𝑓 : U Γ ⊢ 𝑥 : U
U-intro

Γ ⊢ app(𝑓 , 𝑥) : U
Γ ⊢ 𝑓 : U � U

U-elim
Γ ⊢ abs(𝑓 ) : U

Γ ⊢ 𝑓 : U � U Γ ⊢ 𝑢 : U
U-𝛽

Γ ⊢ app(abs(𝑓 ), 𝑢) ≡ 𝑓 𝑢 : U
The unityped 𝜆-calculus is called extensional when equipped with the U-𝜂 rule.

Γ ⊢ 𝑓 : U
U-𝜂

Γ ⊢ abs(𝜆𝑥 : U. app(𝑓 , 𝑥)) ≡ 𝑓 : U
The continuation-passing style transform forms a second-order translation from the unityped 𝜆-
calculus to itself [Mahmoud 2011, Example 6.2(3)].
2Lambek and Scott [1988] use translation to refer instead to mappings from terms to terms: the congruent extensions we
define below are examples. The precise relationship between these two definitions is given in Section 5.1.
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Example 3.12. The simply-typed 𝜆-calculus on a set of base types 𝑆 is an ob(Λ𝜔 (𝑆))-sorted
second-order algebraic theory, presented by the usual rules for the simply-typed 𝜆-calculus (e.g.
those for 𝑛 = 𝜔 in Figure A.1). Note that this example demonstrates that we may express arbitrary
higher-order structure in a second-order algebraic theory, but only given an infinite set of sorts.

Example 3.13. The natural numbers, with addition and multiplication, form a monosorted first-
order algebraic theory. There is a second-order translation from the aforesaid theory of arithmetic
to the unityped 𝜆-calculus given by Church encoding [Mahmoud 2011, Example 6.2(2)].

Example 3.14. For all 𝑛 ∈ N, 𝑛th-order logic is an (𝑛 + 1)th-order algebraic theory. Higher-order
logic is an 𝜔-order algebraic theory. Analogously, Hilbert’s 𝜖-calculus is a second-order algebraic
theory, where the choice operator 𝜖 is second-order (cf. Escardó and Oliva [2010b]).

Example 3.15. Staton’s parameterised algebraic theories [2013a; 2013b] are {P, T}-sorted3 second-
order algebraic theories whose binding operands have arity P𝑛 � T for 0 < 𝑛 ∈ N and whose
operations with coarity P are monosorted. Consequently, examples of parameterised algebraic
theories, such as Fiore and Staton’s theory of jumping [Fiore and Staton 2014], and the equational
theory of the Beta-Bernoulli process [Staton, Stein, Yang, Ackerman, Freer, and Roy 2018], are also
examples of second-order algebraic theories.

Example 3.16. Context-free expressions form a monosorted second-order algebraic theory, ex-
tending regular expressions with a least fixed-point operator 𝜇 [Krishnaswami and Yallop 2019].

Example 3.17. Plotkin’s axiomatisation of partial differentiation [2020] is a monosorted second-
order algebraic theory.

Example 3.18. Control operators are presented by two sorts {A,Z} together with third-order
operators, subject to various equations, typically forcing Z to be uninhabited. Examples include
Felleisen and Friedman’s control operator [Felleisen and Friedman 1986; Griffin 1989] and call/cc
[Hofmann 1995], given respectively by the following inference rules.

Γ ⊢ 𝑓 : (A � Z) � Z

Γ ⊢ C(𝑓 ) : A
Γ ⊢ 𝑓 : (A � Z) � A

Γ ⊢ call/cc(𝑓 ) : A
There is a third-order translation from call/cc to C (described in Escardó and Oliva [2010a] as a
monad morphism from the selection monad to the continuation monad) that maps call/cc to the
term 𝑓 : (A � Z) � A ⊢ C(𝜆𝑔.𝑔 (𝑓 𝑔)) : A.

4 FREE CARTESIAN-CLOSED CATEGORIES
Having described presentations for higher-order algebraic theories, we shall proceed to describe
the categorical formalism through which we investigate their structure.

To give context for the following development, we recall that an 𝑆-sorted (first-order) algebraic
theory is a cartesian category ℒ equipped with a strict cartesian identity-on-objects functor
𝐿 : Cart(𝑆) → ℒ, where Cart(𝑆) is the free strict cartesian category on 𝑆 . This definition may
initially seem opaque, but we note that an 𝑆-sorted algebraic theory may equivalently be considered
a cartesian category with specified finite products and a specified set of generators 𝑆 , which is
the same structure as described by the pairing calculus (or equivalently, by universal algebra). A
higher-order algebraic theory should be considered similarly, but for which there is additionally
specified exponentiable structure. To describe such structure, we require a higher-order replacement
for Cart(𝑆). Theorem 3.6 suggests such a replacement: the category Λ𝑛 (𝑆). However, Λ𝑛 (𝑆) is
3Multisorted parameterised algebraic theories, as introduced in Staton [2013b], may be similarly represented.
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defined syntactically, which is unsatisfactory: we would prefer a direct, combinatorial construction.
This preference could simply be justified on aesthetic grounds, but we will also find that a direct
definition will be valuable for describing the structure of 𝑛th-order algebraic theories.

4.1 Cartesian-closed categories of trees
Theorem 3.6 establishes the 𝑆-sorted 𝑛th-order simply-typed 𝜆-calculus as a syntactic character-
isation of the free cartesian category with an 𝑛-tetrable subcategory 𝑆 . However, as given, the
description of Λ𝑛 (𝑆) contains redundancies; we shall now proceed to prune these redundancies,
leaving us with a direct definition.

Objects. Consider the types of Λ𝑛 (𝑆), which are formed inductively from the base types B ∈ 𝑆 ,
the unit type, binary products types, and function types. The following isomorphisms, for all
𝑋,𝑌, 𝑍 ∈ Λ𝑛 (𝑆), follow from the universal properties of finite products and exponential objects.

1 × 𝑋 � 𝑋 � 𝑋 × 1 × unit

𝑋 1 � 𝑋 � left-unit

1𝑋 � 1 � right-zero

𝑋 × (𝑌 × 𝑍 ) � (𝑋 × 𝑌 ) × 𝑍 × associativity

(𝑍𝑌 )𝑋 � 𝑍𝑋×𝑌 currying

(𝑌 × 𝑍 )𝑋 � 𝑌𝑋 × 𝑍𝑋 × left-distributes over �

Each type may be represented by an abstract syntax tree, whose branches are labelled with ×
and �, and whose leaves are labelled by either elements of 𝑆 or the type 1. However, due to the
isomorphisms above, each type is represented (up to isomorphism) by many different trees. We
describe a procedure to normalise a tree, producing a canonical representation.
First note that every binary product may either be eliminated by currying, or lifted to the root

by left-distributing. Similarly, any unit type that is not at the root may be eliminated by the unit
and zero isomorphisms. Since binary products are associative, we can equivalently consider lists of
abstract syntax trees whose branches are labelled (trivially) by � and whose leaves are labelled by
elements of 𝑆 . Every object of Λ𝑛 (𝑆) is described by such a list of trees, but to form a correspondence
in both directions we must restrict the trees to limit the order of each type to less than 𝑛. The
order of each type is given by the maximum number of left-steps in a path from the root of the
corresponding tree to any leaf: note that each of the isomorphisms above preserves this property.
We now make this intuition precise.

Definition 4.1. We denote by Tree(𝑆) = 𝜇𝑋 . 2×𝑋 + 𝑆 the set of binary trees whose leaves are
labelled by elements of 𝑆 . The left-width of a binary tree is defined as the maximum number of
left-steps from its root to any leaf, explicitly by the following function ℓ : Tree(𝑆) → N.

ℓ ( 𝜋

1 (𝑙, 𝑟 )) = max(1 + ℓ (𝑙), ℓ (𝑟 )) ℓ ( 𝜋

2 (𝑠)) = 0

We then denote by Tree𝑛 (𝑆) the restriction of Tree(𝑆) to those trees 𝑡 such that ℓ (𝑡) ≤ 𝑛, and by
Col𝑛 (𝑆) (for colonnade: a row of trees) the set List(Tree𝑛 (𝑆)) of ordered lists of such trees.

Every object in Λ𝑛 (𝑆) is isomorphic to one represented by an element of Col𝑛 (𝑆).

Morphisms. Consider the morphisms of Λ𝑛 (𝑆), as given between elements of Col𝑛 (𝑆). To give
a morphism into a list is to give a morphism into each of its elements. By uncurrying, to give a
morphism into a tree is to give a morphism (with an extended domain) into its rightmost leaf.
Therefore, it suffices to consider the structure of morphisms whose codomain is given by a base
type B.

The terms in the 𝑛th-order simply-typed 𝜆-calculus, for a fixed context and type, form an equiva-
lence class, according to the 𝛽- and 𝜂-laws. To pick a canonical inhabitant of each class is to define
a set of normal-form terms. We will describe a procedure to enumerate the normal-form terms for
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the order-limited 𝜆-calculi: every morphism in the corresponding syntactic category will therefore
be uniquely described by a single canonical term.
Consider a term 𝑥1 : 𝑋1, . . . , 𝑥𝑘 : 𝑋𝑘 ⊢ 𝑡 : B, where each 𝑋𝑖 is represented by a tree on 𝑆 , and

B ∈ 𝑆 is a base type. The only way to form such a term 𝑡 is to project a variable 𝑥𝑖 whose type
𝑋𝑖 has rightmost leaf B, and then to provide terms for each of its arguments. The procedure for
producing a term for an argument 𝑥 : 𝑋 is the same as that for producing the original term 𝑡 , except
that 𝑋 may be a function type: in this case, we expand the context by a fresh variable whose type
matches the domain of 𝑋 . The two processes – recursively providing arguments, and expanding
the context for function types – correspond to 𝛽-reduction and 𝜂-expansion respectively. Note that
forming new unit, pair, or 𝜆-terms during the procedure is never necessary: this inductive structure
is entirely determined by the choices of variable projections from the context. This procedure
produces the full set of 𝛽-short 𝜂-long normal-form terms for a given context and type.

Construction. In concrete terms, the descriptions of types as colonnades and terms in normal
form gives an explicit presentation of the free cartesian category with an 𝑛-tetrable subcategory. We
define the following inductive functions: intuitively, 𝜈 (Γ, 𝑋 ) is the set of 𝛽𝜂-normal terms Γ ⊢ 𝑡 : 𝑋 ;
𝜐 (Γ, 𝐵𝑖 ) produces the uncurried form of a context and type; and 𝜌 (Γ,B) is the set of 𝛽𝜂-normal
terms Γ ⊢ 𝑡 : B, for B ∈ 𝑆 a base type. ++ denotes list concatenation.

𝜈 (Γ, 𝑋 ) =
∏
𝐵𝑖 ∈𝑋

𝜌 (𝜐 (Γ, 𝐵𝑖 ))

𝜐 (Γ, 𝐵𝑖 ) =
{
𝜐 (Γ ++ [𝐵′], 𝐵) 𝐵𝑖 =

𝜋

1 (𝐵′, 𝐵)
(Γ,B) 𝐵𝑖 =

𝜋
2B

𝜌 (Γ, 𝐵) =
∑︁
𝑋𝑖 ∈Γ


𝜈 (Γ ++ [𝑋 ′], 𝑋 ) 𝑋𝑖 =

𝜋

1 (𝑋 ′, 𝑋 )
{∗} 𝑋𝑖 =

𝜋

2B
∅ 𝑋𝑖 =

𝜋

2B′, 𝐵′≠B

This construction straightforwardly generalises from a set of base types 𝑆 to a small category S of
base types and constants.

Definition 4.2. For 0 < 𝑛 ∈ N𝜔 , the 𝑛th-order theory of equality L𝑛 (𝑆) on a set 𝑆 is the category
defined as having
• objects, the elements of Col𝑛 (𝑆);
• morphisms Γ → 𝑋 , elements of 𝜈 (Γ, 𝑋 );
• identity morphisms and compositions as in Λ𝑛 (𝑆);

Proposition 4.3. L𝑛 (𝑆) ≃ Λ𝑛 (𝑆) □

The internal language of L𝑛 (𝑆) is a 𝛽𝜂-normal order-limited simply-typed 𝜆-calculus. In this
sense, it may be viewed as a lambda-free logical framework [Adams 2008]: terms are given through
parameterisation and instantiation, rather than abstraction and application. Consequently, the
structure of L𝑛 (𝑆) lends itself to representations of higher-order abstract syntax. This characterisa-
tion is more convenient to analyse than the syntactic definition given by Λ𝑛 (𝑆): for instance, we
recover the usual characterisation of Cart(1) as a skeleton of FinSet. In particular, unlike Λ𝑛 (𝑆),
the category L𝑛 (𝑆) satisfies a stronger, strict universal property.

Theorem 4.4. L𝑛+1 (𝑆) is the initial strict cartesian category containing 𝑆 as a strictly 𝑛-tetrable
subcategory, for 𝑛 ∈ N𝜔 .

Fiore and Mahmoud [2010, Section 4] give an alternative syntactic description of L2 (1), which
they call M. Though it is presented differently, the universal property implies L2 (1) � M.
For 0 < 𝑚 ≤ 𝑛 ∈ N𝜔 there is an inclusion L𝑚 (𝑆) ã→ L𝑛 (𝑆), exhibiting L𝑚 (𝑆) as a (strictly) full

subcategory of L𝑛 (𝑆). This in particular implies the following conservative extension result.
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Proposition 4.5. The (𝑛 + 1)th-order simply-typed 𝜆-calculus on 𝑆 is a (faithful) conservative
extension of the 𝑛th-order simply-typed 𝜆-calculus on 𝑆 , for 𝑛 ∈ N𝜔 .

5 HIGHER-ORDER ALGEBRAIC THEORIES
We have now developed sufficient theory to present the main definitions of this paper. Higher-order
algebraic theories provide a presentation-free formalism of higher-order structure. Any given
algebraic structure may be described by numerous different presentations and it is therefore useful
to have a unique representation that does not distinguish between these presentations. Just as
(first-order) algebraic theories represent the structure of equational logic, so higher-order algebraic
theories represent the structure of higher-order equational logic. We shall see that this categorical
formalism allows us to prove powerful results about higher-order structure.

Definition 5.1. An 𝑆-sorted 𝑛th-order algebraic theory is a cartesian category ℒ, equipped with a
strict cartesian identity-on-objects functor 𝐿 : L𝑛 (𝑆) →ℒ strictly preserving the exponentiable
objects. A map 𝐹 : 𝐿 → 𝐿′ of 𝑆-sorted 𝑛th-order algebraic theories is a functor 𝐹 : ℒ →ℒ

′ such
that 𝐹 ◦ 𝐿 = 𝐿′. 𝑆-sorted 𝑛th-order algebraic theories and their maps form a category Law𝑛 (𝑆).
The requirement that 𝐹 commutes with 𝐿 and 𝐿′ equivalently means 𝐹 strictly preserves the

finite products and exponentiable objects.

5.1 Equivalence with presentations
We establish that the notions of presentation and theory we have given are equivalent, justify-
ing their interchangeable use. This gives intuition for the definition of the latter: every 𝑛th-order
algebraic theory may be thought of as the classifying category for some (non-unique) 𝑛th-order
presentation. First, we clarify the relationship between transliterations and translations of pre-
sentations. The syntactic category and syntactic functor constructions of Section 3.2 extend to a
functor Λ (−) : Pre𝑛 (𝑆) → Law𝑛 (𝑆) given by taking the canonical inclusion of L𝑛 (𝑆) ≃ Λ𝑛 (𝑆) into
the classifying category for each presentation. There is also a functor Π (−) : Law𝑛 (𝑆) → Pre𝑛 (𝑆)
in the other direction, which sends a theory 𝐿 : L𝑛 (𝑆) → ℒ to the signature whose operators
are given by morphisms of ℒ. These functors form an adjunction Λ (−) ⊣ Π (−) . Translations are
exactly morphisms in the Kleisli category of the induced monad Π (−) ◦ Λ (−) . However, Λ (−) and
Π (−) themselves already form a Kleisli adjunction, since Λ (−) is essentially surjective: Law𝑛 (𝑆) is
hence equivalent to the Kleisli category, giving us the desired equivalence with presentations.

Theorem 5.2. Law𝑛 (𝑆) ≃ Pres𝑛 (𝑆).
It is natural to also look at the Eilenberg–Moore category for the monad induced by this adjunc-

tion. In fact, Π (−) is fully faithful, so the Eilenberg–Moore category too is equivalent to Law𝑛 (𝑆).
Intuitively, the characterisation of Law𝑛 (𝑆) as a Kleisli category corresponds to the presentation of
a type theory by operators and equations (as in the approach of Crole [1993, Discussion 4.9.6]); and
the characterisation as an Eilenberg–Moore category to its equivalent presentation as a set of terms
closed under the deductive operations (as in the approach of Lambek and Scott [1988, Section I.10]).

Remark 5.1. The characterisation of Pres1 (𝑆) as a Kleisli category was first observed in Vidal and
Tur [2010, Proposition 5.11]. The equivalence Pres2 (1) ≃ Law2 (1) was established in Mahmoud [2011,
Theorem 6.6]. The observations that the Kleisli characterisation permits a proof of the equivalence, and
that the Kleisli category is equivalent to the Eilenberg–Moore category, appear to be new.

5.2 Coreflections between categories of theories
The equivalence between theories and presentations may be used to show that Law𝑛 (𝑆) is a core-
flective subcategory of Law𝑛+1 (𝑆). In other words, there is a fully faithful functor ⌈−⌉ : Law𝑛 (𝑆) →
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Law𝑛+1 (𝑆), and this has a right adjoint ⌊−⌋ : Law𝑛+1 (𝑆) → Law𝑛 (𝑆). Informally, ⌈−⌉ freely adds
the (𝑛+1)th-order arities, and their associated evaluation and projection morphisms, to an 𝑛th-order
theory, while ⌊−⌋ forgets the (𝑛 + 1)th-order structure. The counit ⌈⌊𝐿⌋⌉ → 𝐿 of the adjunction
maps the freely added (𝑛 + 1)th-order structure to the same structure in 𝐿; while the unit 𝐿 → ⌊⌈𝐿⌉⌋
is an isomorphism, since the structure that is forgotten is the structure that was freely added. These
coreflections are crucial to our development: for instance, they are used to define the notion of term
algebra (Section 5.4), and to develop the monad–theory correspondence (Section 6 to Section 8).
We consider here the case 0 < 𝑛 ∈ N𝜔 ; the case 𝑛 = 0, with Law0 (𝑆) = Set𝑆 , requires separate

treatment but presents no particular difficulty. Every 𝑛th-order presentation can be considered as
an (𝑛 + 1)th-order presentation, with only 𝑛th-order operators and equations. The left adjoint ⌈−⌉
is the composition of this embedding with the equivalences between theories and presentations:

⌈−⌉ : Law𝑛 (𝑆)
≃−→ Pres𝑛 (𝑆) ã→ Pres𝑛+1 (𝑆)

≃−→ Law𝑛+1 (𝑆)
For the right adjoint ⌊−⌋, we generalise a construction of Fiore and Mahmoud [2010]. Given an
(𝑛 + 1)th-order algebraic theory 𝐿 : L𝑛+1 (𝑆) → ℒ, define ⌊ℒ⌋ to be the full subcategory of ℒ
on L𝑛 (𝑆). Explicitly, ⌊ℒ⌋ has the same objects as L𝑛 (𝑆) and hom-sets ⌊ℒ⌋ (𝑋,𝑌 ) = ℒ(𝑋,𝑌 ). The
𝑛th-order algebraic theory ⌊𝐿⌋ is then given by the identity-on-objects functor ⌊𝐿⌋ : L𝑛 (𝑆) → ⌊ℒ⌋
defined on morphisms as ⌊𝐿⌋ (𝑓 ) = 𝐿(𝑓 ).

Theorem 5.3. For each 𝑛 ∈ N𝜔 , the constructions above form an adjunction,

Law𝑛 (𝑆) Law𝑛+1 (𝑆)
⌈−⌉

⌊−⌋

⊣

with ⌈−⌉ fully faithful. Hence Law𝑛 (𝑆) is a coreflective subcategory of Law𝑛+1 (𝑆).

As an aside, we remark that coreflectivity implies that 𝑛th-order algebraic theories are coalgebras
for the idempotent comonad induced by this adjunction.

Coreflections compose, and since a similar construction demonstrates that each Law𝑛 (𝑆) is core-
flective in Law𝜔 (𝑆), Law𝑚 (𝑆) is therefore a coreflective subcategory of Law𝑛 (𝑆) for all𝑚 ≤ 𝑛 ∈ N𝜔 .
As might be supposed, Law𝜔 (𝑆) is the limit of the coreflections in an appropriate sense. (Note,

however, that it is not the colimit of the inclusions: this is instead given by a category of higher-order
algebraic theories, such that, for each theory 𝐿, there exists natural number 𝑘 ∈ N such that 𝐿 is
𝑘 th-order.)

Proposition 5.4. Law𝜔 (𝑆) is the limit of the 𝜔-cochain Law1 (𝑆)
⌊−⌋
←−−− Law2 (𝑆)

⌊−⌋
←−−− · · · in Cat.

5.3 Models and strict models
The equivalence between theories and presentations exhibits higher-order algebraic theories as
syntactic: we now consider the appropriate notion of semantics. The structure of a higher-order
algebraic theory may be interpreted in another category, allowing us to reason about higher-order
structure in various settings. For instance, a monoid is traditionally modelled by any set equipped
with a unital associative binary operation. However, restricting to Set is unnecessary: one can just
as readily model a monoid in any cartesian category. The same is true for higher-order algebraic
theories: here we require sufficient exponentiable structure to interpret the higher-order operations.

Definition 5.5. A model for an 𝑆-sorted 𝑛th-order algebraic theory 𝐿 : L𝑛 (𝑆) →ℒ in a cartesian
category 𝒞 is a cartesian functor 𝑀 : ℒ → 𝒞 preserving the exponentiable objects. A map of
models from𝑀 to𝑀 ′ is a natural transformation𝑀 ⇒ 𝑀 ′. Models forℒ and their maps form a
categoryMod(𝐿,𝒞), functorial contravariantly in the first argument and covariantly in the second.
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Remark 5.2. We caution that our definition of model is not the same as that of Fiore and Mahmoud
[2010]; Mahmoud [2011]: their notion is equivalent to what we call a term algebra (Definition 5.12).

This definition is a manifestation of Lawvere’s functorial semantics [1963], in which models are
given by structure-preserving functors from a theory. Note that natural transformations between
functors preserving cartesian and exponentiable structure automatically preserve cartesian and
exponentiable structure themselves, which justifies their role as maps of models.
Example 5.6. Models of the unityped 𝜆-calculus (Example 3.11) (with U-𝜂) in a category 𝒞 are

equivalently (extensional) reflexive objects in 𝒞, i.e. exponentiable objects 𝑈 equipped with an
isomorphism𝑈 � 𝑈𝑈 . Note that the only reflexive object in Set is the terminal object: preservation
of exponentials is a strong requirement, especially for monosorted theories. In a sense, the unityped
𝜆-calculus is the minimal monosorted higher-order algebraic theory and, as such, we should not
expect to find many set-theoretic models of monosorted higher-order algebraic theories.

A model of the theory of simply-typed 𝜆-calculus (Example 3.12) with base types 𝑆 , in a cartesian-
closed category 𝒞, is equivalently an interpretation of the base types as objects of 𝒞.
One particularly important class of models of 𝐿 is given by the coslices under 𝐿, i.e. pairs of a

theory 𝐿′ and a map 𝐿 → 𝐿′. Each of these coslices is a model of 𝐿, since maps of 𝑛th-order algebraic
theories are structure-preserving. In some sense, the coslices are the canonical models for theories,
in that the most natural structure in which to interpret a theory is precisely another theory, since
both are equipped with the same fundamental deductive structure. Coslices may be considered the
strict or syntactic models (insofar as theories themselves may be considered syntactic).

It is illuminating to explore the relationship between coslices and general models in a little more
detail, but we can’t immediately do so, because the categories of models assume a fixed codomain
𝒞, whereas the codomains of the coslices vary. To consider the categories of models for arbitrary
cartesian categories collectively, we will take the Grothendieck construction ofMod(𝐿,−), which
coherently combines each category of models. It is then clear that models strictly subsume coslices.
Proposition 5.7. Let 𝐿 : L𝑛 (𝑆) → ℒ be an 𝑛th-order algebraic theory, and let 𝑈 : Law𝑛 (𝑆) →

Cart be the functor forgetting the generating sorts and specified structure. The coslice category
𝐿/Law𝑛 (𝑆) is a non-full subcategory of

∫
Mod(𝐿,𝑈 (−)).

Consequently, even when we consider models for 𝐿 taken in other 𝑛th-order algebraic theories,
models are more general than coslices, since models are not required to strictly preserve the
structure. We shall make one more edifying observation.
Proposition 5.8.

∫
Mod(𝐿,−) is equivalent to the subcategory of the lax coslice ℒ//Cart for

which the coslices preserve exponentials.

In this light, we may see models for an 𝑛th-order algebraic theory 𝐿 to correspond to a notion
of coslice for a weaker notion of 𝑛th-order algebraic theories, without specified structure: 𝐿 is
implicitly considered a weak 𝑛th-order algebraic theory by forgetting the generating structure.
Many of the results about models in the first-order setting extend to the higher-order setting.

For instance, one can freely construct strict models of 𝑛th-order algebraic theories on lower-order
structure. Since Law0 (𝑆) = Set𝑆 , we recover the classical free model construction on a set of
constants, given by adjoining the constants to the theory.

Theorem 5.9. Let𝑛 ∈ N𝜔 . The forgetful functor ⌊−⌋◦𝑈 : 𝐿/Law𝑛+1 (𝑆) → Law𝑛+1 (𝑆) → Law𝑛 (𝑆)
has a left adjoint, sending 𝐿′ to 𝐿 + ⌈𝐿′⌉.
Functors between categories of strict models induced by maps of theories have left adjoints,

allowing us to freely construct models of one theory from another. Classically, this result is stated
for fixed codomain; here we only prove the strict version.
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Theorem 5.10. Let 𝐹 : 𝐿 → 𝐿′ be a map of 𝑆-sorted 𝑛th-order algebraic theories. The functor
𝐿′/Law𝑛 (𝑆) → 𝐿/Law𝑛 (𝑆) taking a strict model for 𝐿′ to its precomposition by 𝐹 has a left adjoint.

We note in passing that we can to some extent reconstruct a theory from a model (cf. [Power
2004, Proposition 1]), though we shall not explore the implications of this construction here.

Proposition 5.11. Let 𝐿 : L𝑛 (𝑆) → ℒ be an 𝑛th-order algebraic theory. For every model 𝑀 :
ℒ → 𝒞, there exists an 𝑛th-order algebraic theory 𝐿𝑀 : L𝑛 (𝑆) → ℒ𝑀 , a map 𝐹𝑀 : 𝐿 → 𝐿𝑀 and a
fully faithful functor𝑀 ′ : ℒ𝑀 → 𝒞 such that𝑀 ′ ◦ 𝐹𝑀 � 𝑀 .

5.4 Term algebras
For a first-order theory 𝐿 : L1 (𝑆) → ℒ, the terms in the empty context form a model ℒ(1,−) :
ℒ → Set. For higher-order theories, this is no longer the case, since ℒ(1,−) does not preserve
exponentials. However, the structure formed by the constant terms of a theory is nevertheless
important, and so we define a separate notion, that of term algebras, to capture it. Terms in the
empty context of a theory form the prototypical example.
Term algebras intuitively describe the substitution structure of a theory. Before giving the

definition, we shall consider the unityped 𝜆-calculus (Example 3.11) as an exemplar. The closed
terms of the theory 𝐿𝜆 : L2 ({U}) → ℒ𝜆 are given by the hom-sets ℒ𝜆 (1,UU𝑛 ) � Lam𝑛 , where
Lam𝑛 is the set of open unityped 𝜆-calculus terms with at most 𝑛 free variables, up to 𝛽𝜂-equality.
The sets Lam𝑛 are equipped with canonical substitution structure, and so we may assemble them
into a category ℒLam with objects U𝑛 ∈ L1 ({U}) and hom-sets ℒLam (U𝑛,U𝑚) = Lam𝑛

𝑚 , where
identities and composition are given by the variables and substitution respectively. In fact, this
construction forms a first-order algebraic theory 𝐿Lam : L1 ({U}) →ℒLam . Furthermore, the sets
are equipped with interpretations of the 𝜆-abstraction and application operators presented by 𝐿𝜆 ,
of the following form.

JabsK : Lam𝑛+1 → Lam𝑛 JappK : Lam𝑛 × Lam𝑛 → Lam𝑛 (𝑛 ∈ N)
The first-order algebraic theory 𝐿Lam induces a functor

L2 (𝑆)
⌈𝐿Lam ⌉−−−−−→ ⌈ℒLam⌉

⌈ℒLam ⌉ (1,−)−−−−−−−−−→ Set

The functions JabsK and JappK provide exactly the structure required to extend this functor to
oneℒ𝜆 → Set. In general, the closed terms for an (𝑛 + 1)th-order algebraic theory 𝐿 : L𝑛+1 (𝑆) →
ℒ form an 𝑛th-order algebraic theory 𝐿′, with ℒ

′(𝑋,𝑌 ) = ℒ(1, 𝑌𝑋 ), and the induced functor
⌈ℒ′⌉ (1, ⌈𝐿′⌉ (−)) : L𝑛+1 (𝑆) → Set extends to a functor ℒ → Set. The extension interprets the
operators of 𝐿 as functions on closed terms. Term algebras axiomatise this situation, which describes
the substitution structure of the closed terms of a theory.

Definition 5.12. Let 𝐿 : L𝑛+1 (𝑆) → ℒ be an (𝑛 + 1)th-order algebraic theory. The category
𝐿-TmAlg of term algebras for 𝐿 is defined (up to isomorphism) by the following strict pullback in
CAT.

𝐿-TmAlg [ℒ, Set]

Law𝑛 (𝑆) [L𝑛+1 (𝑆), Set]
−◦𝐿

𝐿′ ↦→⌈ℒ′⌉ (1, ⌈𝐿′⌉ (−))

Similar pullbacks are often used to define models of theories. This is because the notions of
model and of term algebra have historically been conflated. We discuss the distinction between
the two notions in more detail below. However, we note that first-order term algebras coincide



Higher-order algebraic theories 1:17

with first-order models in Set. It can therefore be difficult to tell whether results in the first-order
setting should apply to models or to term algebras when generalising to other settings.

Example 5.13. A term algebra for the algebraic theory 𝐿𝜆 of the unityped 𝜆-calculus (Example 3.11)
consists of a first-order algebraic theory 𝐿 : L1 (𝑆) →ℒ and two families of functions,

JabsK𝑋 : ℒ(𝑋 × U,U) →ℒ(𝑋,U) JappK𝑋 : ℒ(𝑋,U) ×ℒ(𝑋,U) →ℒ(𝑋,U)
natural in 𝑋 ∈ ℒ and satisfying two equations, corresponding to the 𝛽- and 𝜂-laws respectively:

JappK𝑋 (JabsK𝑋 (𝑓 ), 𝑔) = 𝑓 ◦ ⟨id𝑋 , 𝑔⟩ JabsK𝑋 (JappK𝑋×U (𝑓 ◦ 𝜋𝑋 , 𝜋U)) = 𝑓

These are the 𝜆-theories (with 𝜂), or algebraic theories equipped with closed structure, of Hyland
[2017, Definition 3.1]. The (first-order) term algebras for the underlying first-order algebraic theory
of the initial (second-order) term algebra for 𝐿𝜆 are Λ-algebras [Hyland 2017, Definition 4.1].

Term algebras for monosorted second-order algebraic theories are referred to as models in Fiore
and Mahmoud [2010]; Mahmoud [2011].

The structure of the pullback defines a semantics functor TmAlg : Law𝑛+1 (𝑆)op → CAT/Law𝑛 (𝑆),
which sends 𝐿 ∈ Law𝑛+1 (𝑆) to the forgetful functor 𝐿-TmAlg → Law𝑛 (𝑆). Each map 𝐿′ → 𝐿 of
(𝑛 + 1)th-order algebraic theories induces a functor 𝐿-TmAlg→ 𝐿′-TmAlg that commutes with the
forgetful functors by the universal property of the pullback. One may use the semantics functor to
show that theories are characterised by their categories of term algebras.

Lemma 5.14. For each 𝑛 ∈ N𝜔 , the semantics functor TmAlg : Law𝑛+1 (𝑆)op → CAT/Law𝑛 (𝑆) is
fully faithful. In particular, it reflects isomorphisms.

Term algebras have an equivalent characterisation as cartesian functors into Set. Let
𝐿 : L𝑛+1 (𝑆) → ℒ be an (𝑛 + 1)th-order algebraic theory. Note that the image of the projection
𝐿-TmAlg→ [ℒ, Set] in the pullback above contains only cartesian functors. Conversely, given a
cartesian functor 𝐴 : ℒ → Set, we may construct an 𝑛th-order algebraic theory 𝐿𝐴. For 𝑛 = 0, we
take the sorted set 𝐿𝐴 = (𝐴(𝑠))𝑠∈𝑆 . For 𝑛 > 0, we define 𝐿𝐴 : L𝑛 (𝑆) →ℒ𝐴 as follows. The category
ℒ𝐴 has hom-sets ℒ𝐴 (𝑋,𝑌 ) = 𝐴(𝑌𝑋 ). Composition in ℒ𝐴 uses that 𝐴 preserves products:

ℒ𝐴 (𝑌, 𝑍 ) ×ℒ𝐴 (𝑋,𝑌 ) = 𝐴(𝑍𝑌 ) ×𝐴(𝑌𝑋 ) �−→ 𝐴(𝑍𝑌 × 𝑌𝑋 ) → 𝐴(𝑍𝑋 ) = ℒ𝐴 (𝑋,𝑍 )
Products in ℒ𝐴 again use preservation of products, while exponentials are trivial:

ℒ𝐴 (𝑋,𝑍𝑌 ) = 𝐴((𝑍𝑌 )𝑋 ) = 𝐴(𝑍𝑋×𝑌 ) = ℒ𝐴 (𝑋 × 𝑌, 𝑍 )
The identity-on-objects functor 𝐿𝐴 is given on morphisms 𝑓 ∈ L𝑛 (𝑆) (𝑋,𝑌 ) ⊆ L𝑛+1 (𝑆) (𝑋,𝑌 ) by

L𝑛 (𝑆) (𝑋,𝑌 )
�−→ L𝑛+1 (𝑆) (𝑋,𝑌 ) × 1 �−→ L𝑛+1 (𝑆) (1, 𝑌𝑋 ) ×𝐴(1)

(𝑓 ,𝑎) ↦→𝐴(𝐿 (𝑓 )) (𝑎)
−−−−−−−−−−−−−−→ 𝐴(𝑌𝑋 ) = ℒ𝐴 (𝑋,𝑌 )

The theory 𝐿𝐴 ∈ Law𝑛 (𝑆) is characterised by a natural isomorphism ⌈ℒ𝐴⌉ (1, ⌈𝐿𝐴⌉ (−)) � 𝐴 ◦ 𝐿,
analogous to commutativity of the pullback square above. The pair (𝐿𝐴, 𝐴) induces an object of
𝐿-TmAlg, giving us the other direction of the equivalence.

Proposition 5.15. Let 𝐿 : L𝑛+1 (𝑆) →ℒ be an (𝑛+1)th-order algebraic theory, where𝑛 ∈ N𝜔 . Then
𝐿-TmAlg is equivalent to Cart(ℒ, Set), and this equivalence commutes up to natural isomorphism
with the forgetful functors into Law𝑛 (𝑆).

In particular, for first-order theories, we have 𝐿-TmAlg ≃ Mod(𝐿, Set). This coincidence is
peculiar to first-order algebraic theories and we suggest it is responsible for the asymmetry between
the behaviour of first-order models in Set compared to models in other cartesian categories. For
instance, first-order algebraic theories correspond to certain monads on Set [Linton 1969], while
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the algebras for a monad induced by a theory correspond to models of the theory in Set. This is not
the case for other cartesian categories. We argue this is because the monad correspondence should
relate monad algebras and term algebras, rather than monad algebras and models. This distinction
is clear in the higher-order setting, where models are not a generalisation of term algebras.

Let us give some intuition for this equivalent definition as cartesian functors. First, we note that
the prototypical examples of term algebras, namely of terms in empty contexts, are captured.

Proposition 5.16. Let 𝐿 : L𝑛 (𝑆) →ℒ be an 𝑛th-order algebraic theory. Up to the equivalence of
Proposition 5.15, the hom-functor ℒ(1,−) : ℒ → Set is the initial term algebra.

The initial term algebra for an 𝑛th-order algebraic theory 𝐿 : L𝑛 (𝑆) →ℒ is therefore given by
the sets of closed terms in 𝐿. The fact that the closed terms form a set is precisely the reason Set is
distinguished amongst cartesian categories (it is the enriching category). Let 𝐴 : ℒ → Set be a
cartesian functor. Each object Γ ∈ ℒ may be considered a context 𝑥1 : 𝑋1, . . . , 𝑥𝑘 : 𝑋𝑘 in Λ𝑛 (𝑆), and
in this light one may think of the set 𝐴(Γ) as being the set of terms that may be substituted for the
variables 𝑥1 through 𝑥𝑘 . To provide a substitute for the entire context Γ is to provide a substitute for
each variable 𝑥𝑖 , and it is this that necessitates 𝐴 be cartesian. Functoriality of 𝐴 ensures that the
substitutes are closed under the operations of 𝐿. Consequently, the substitution structure captured
by Definition 5.12 is equivalently captured by cartesian functors into Set. In general, the substitutes
in 𝐴(Γ) are not terms in 𝐿; however, there is a way in which a term algebra can always be seen as
being given by the sets of closed terms of some theory, which justifies our nomenclature.

Lemma 5.17. Let 𝐿 : L𝑛 (𝑆) →ℒ be an 𝑛th-order algebraic theory. For every term algebra𝐴 : ℒ →
Set, there exists an 𝑛th-order algebraic theory 𝐿𝐴 : L𝑛 (𝑆) → ℒ𝐴 and a map 𝐹𝐴 : 𝐿 → 𝐿𝐴 such that
ℒ𝐴 (1, 𝐹𝐴 (−)) � 𝐴.

In fact, this construction shows that term algebras and strict models are closely related.

Proposition 5.18. 𝐿-TmAlg is a coreflective subcategory of 𝐿/Law𝑛+1 (𝑆), for 𝑛 ∈ N𝜔 .

Lemma 5.17 defines a functor 𝐿(−) : 𝐿-TmAlg ≃ Cart(ℒ, Set) → 𝐿/Law𝑛 (𝑆) establishing every
term algebra for 𝐿 : L𝑛 (𝑆) →ℒ as the initial algebra for some coslice under 𝐿. In particular, every
term algebra can be seen as arising from the closed terms of some strict model of 𝐿. This construction
has a right adjoint by Proposition 5.18: for every term algebra, we can construct a model whose
closed terms coincide with those given by the term algebra. For finite 𝑛, this relationship is not
an equivalence, because the reconstruction cannot recover the highest-order structure: given two
objects 𝑋 and 𝑌 , such that 𝑋 is not exponentiable, we cannot recover morphisms 𝑋 → 𝑌 by
considering the closed terms 1 → 𝑌𝑋 . Therefore, there may be many coslices with isomorphic
initial term algebras. When 𝑛 = 𝜔 , there is no such restriction and an equivalence holds.

Corollary 5.19. For every 𝐿 : L𝜔 (𝑆) →ℒ, there is an equivalence 𝐿/Law𝜔 (𝑆) ≃ 𝐿-TmAlg.

Alternatively, by freely adding exponentials with ⌈−⌉, every object is made exponentiable, leading
to the following result, which demonstrates that every strict 𝑛th-order model is an (𝑛 + 1)th-order
term algebra.

Proposition 5.20. 𝐿/Law𝑛 (𝑆) is a coreflective subcategory of ⌈𝐿⌉-TmAlg, for 𝑛 ∈ N𝜔 .

For finite 𝑛, this is again not an equivalence: the action of a term algebra for ⌈𝐿⌉ on (𝑛+1)th-order
morphisms cannot be recovered from an 𝑛th-order model.

Term algebras play an important role in the subsequent monad–theory correspondence (Section 6
to Section 8) and the two perspectives, as collections of structured substitutes for the theory, or as
the closed terms for some model of the theory, are helpful intuitions to keep in mind.
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Remark 5.3. While we suggest term algebras and models should be considered as fundamentally
different, Garner [2014] proposes a method to extend the monad–theory correspondence to monads on
arbitrary cartesian categories; in our language, this permits term algebras to be taken in categories
other than Set. We leave understanding the precise relationship between models and term algebras in
this enriched setting for future work.

5.5 Theories from arities
We now show that each (𝑛 + 1)th-order arity 𝑋 ∈ L𝑛+1 (𝑆) induces an 𝑛th-order algebraic theory
𝑝 (𝑋 ) ∈ Law𝑛 (𝑆). We use this to demonstrate that Law𝑛 (𝑆) is locally strongly finitely presentable
and to establish the monad–theory correspondence. In particular, the theories 𝑝 (𝑋 ) form a gener-
ating set of “finite objects” in Law𝑛 (𝑆), and the monads induced by higher-order algebraic theories
are determined by their actions on the theories 𝑝 (𝑋 ).
Intuitively, the theories 𝑝 (𝑋 ) are those that are presented by a finite number of operators and

no equations. Let us consider an example. The object (U × U � U) × ((U � U) � U) of L3 ({U})
induces an equation-free second-order algebraic theory with two operators, corresponding to
the abstraction and application operators of the unityped 𝜆-calculus as in Example 3.11. By the
description of L𝑛 (𝑆) in Section 4.1, we may consider this second-order algebraic theory as described
by the second-order 𝜆-calculus with a constant of type (U × U � U) × ((U � U) � U).
To define 𝑝 (𝑋 ) formally, we use simple slices of theories. Simple slices of categories have pre-

viously proven useful in categorical treatments of type theory (e.g. Lambek and Scott [1988,
Section I.7]); we take the name from Jacobs [1999, Definition 1.3.1]. Intuitively, the simple slice of 𝐿
over 𝑋 represents the extension of the theory 𝐿 by a constant of type 𝑋 .

Definition 5.21. Let 𝐿 : L𝑛+1 (𝑆) →ℒ be an (𝑛 + 1)th-order algebraic theory and let 𝑋 ∈ L𝑛+1 (𝑆)
be an arity. We define the category ℒ//𝑋 to be the simple slice of ℒ over 𝑋 : the objects are the
same as L𝑛+1 (𝑆); the hom-sets are defined (ℒ//𝑋 ) (𝑌,𝑌 ′) = ℒ(𝑋 × 𝑌,𝑌 ′); identities are given by
projections; and the composition of 𝑔 ∈ ℒ(𝑋 ×𝑌 ′, 𝑌 ′′) with 𝑓 ∈ ℒ(𝑋 ×𝑌,𝑌 ′) is 𝑔 ◦ ⟨𝜋𝑋 , 𝑓 ⟩. (ℒ//𝑋
is equivalently the Kleisli category for the comonad 𝑋 × (−).) We define 𝐿//𝑋 : L𝑛+1 (𝑆) →ℒ//𝑋 as
the identity-on-objects functor sending 𝑓 ∈ L𝑛+1 (𝑆) (𝑌,𝑌 ′) to 𝐿(𝑓 ) ◦𝜋𝑌 , and call 𝐿//𝑋 ∈ Law𝑛+1 (𝑆)
the simple slice of 𝐿 over 𝑋 . This construction extends to a functor 𝐿//− : ℒop → Law𝑛+1 (𝑆).

We define a functor 𝑝 : L𝑛+1 (𝑆)op → Law𝑛 (𝑆) as the following, using the coreflection of Law𝑛 (𝑆)
in Law𝑛+1 (𝑆) (Theorem 5.3), and the simple slice of the theory of equality IdL𝑛+1 (𝑆) ∈ Law𝑛+1 (𝑆).

𝑝 : L𝑛+1 (𝑆)op Id//−
−−−→ Law𝑛+1 (𝑆)

⌊−⌋
−−−→ Law𝑛 (𝑆)

The counit of the adjunction ⌈−⌉ ⊢ ⌊−⌋ is invertible on Id//𝑋 for each 𝑋 ∈ L𝑛+1 (𝑆) and so
𝜋𝑋 ∈ (Id//𝑋 ) (1, 𝑋 ) induces a morphism 𝜌𝑋 ∈ ⌈𝑝 (𝑋 )⌉ (1, 𝑋 ). We then have the following universal
property, which will be useful in reasoning about 𝑝 .

Lemma 5.22. Let 𝑛 ∈ N𝜔 and 𝑋 ∈ L𝑛+1 (𝑆). For each 𝑛th-order algebraic theory 𝐿 : L𝑛 (𝑆) → ℒ

and 𝑥 ∈ ⌈ℒ⌉ (1, 𝑋 ), there is a unique morphism 𝐹 : 𝑝 (𝑋 ) → 𝐿 in Law𝑛 (𝑆) such that ⌈𝐹 ⌉ (𝜌𝑋 ) = 𝑥 . In
particular, we have the following bijection, natural in 𝑋 and 𝐿.

⌈ℒ⌉ (1, ⌈𝐿⌉ (𝑋 )) � Law𝑛 (𝑆) (𝑝 (𝑋 ), 𝐿)

6 RELATIVE MONADS AND THEORIES
As in the first-order setting [Linton 1969], there is a correspondence between higher-order algebraic
theories and a class of monads; and correspondingly between term algebras and monad algebras.
Before giving the proof, we give some intuition for how the correspondence may be understood.
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Each first-order theory 𝐿 corresponds to a monad 𝑇 on Set𝑆 , which may be thought of as taking
a sorted set of variables 𝑋 , viewed as a context, and producing the sorted set of terms 𝑇 (𝑋 ), in
the context 𝑋 , closed under the rules of the corresponding algebraic theory. The monad 𝑇 is
necessarily determined by its action on the finite sorted sets: formally, it is sifted-cocontinuous,
which corresponds to the fact that terms may only refer to a finite number of variables.

The contexts of higher-order algebraic theories have more structure than those of first-order
algebraic theories, corresponding to metavariables, metametavariables, and so on. Similarly, higher-
order algebraic theories permit new operations, not just constants, to be formed by the rules of
a theory. The structure of the contexts of an (𝑛 + 1)th-order algebraic theory are described by
𝑛th-order algebraic theories, as discussed in Section 5.4. The monads corresponding to (𝑛 + 1)th-
order algebraic theories therefore naturally take values in Law𝑛 (𝑆): we establish a correspondence
between (𝑛 + 1)th-order algebraic theories and monads on the category of 𝑛th-order algebraic
theories. As in the first-order setting, the monads are determined by their action on the finite
contexts, and as such are sifted-cocontinuous. They may be thought of similarly as closing a set of
(higher-order) variables under the operations of the theory.

We obtain a monad–theory correspondence in two stages. In this section we show that higher-
order algebraic theories correspond to a class of relative monads. Relative monads are similar to
monads, but are defined with respect to functor 𝑝 : 𝒞′ → 𝒞, typically a subcategory inclusion
[Altenkirch, Chapman, and Uustalu 2010]. The restricted domain of a relative monad corresponds to
the finite context limitation imposed by sifted-cocontinuity. This allows us to exchange an abstract
property describing certain preservation of colimits with a more direct and conceptual description.
After establishing a correspondence for relative monads, we show that these relative monads
are equivalent to a class of (non-relative) monads: this takes place in Section 8 after developing
prerequisite results regarding the structure of higher-order algebraic theories in Section 7.

6.1 Preliminaries
We begin with some preliminaries on relative monads that we use for the correspondence.

Definition 6.1 (Altenkirch, Chapman, and Uustalu [2010]). A relative monad (𝑇, 𝜂, (−)†) on a
functor 𝑝 : 𝒞′ → 𝒞 consists of an object 𝑇 (𝑋 ) ∈ 𝒞 and morphism 𝜂𝑋 : 𝑝 (𝑋 ) → 𝑇 (𝑋 ) for each
𝑋 ∈ 𝒞′, and a morphism 𝑓 † : 𝑇 (𝑋 ) → 𝑇 (𝑌 ) for each 𝑓 : 𝑝 (𝑋 ) → 𝑇 (𝑌 ), satisfying the following
laws.

𝜂𝑋
† = id𝑇 (𝑋 ) 𝑓 † ◦ 𝜂𝑋 = 𝑓 𝑔† ◦ 𝑓 † = (𝑔† ◦ 𝑓 )†

A morphism𝑚 : (𝑇, 𝜂, (−)†) → (𝑇 ′, 𝜂 ′, (−)†) of relative monads on 𝑝 consists of a morphism
𝑚𝑋 : 𝑇 (𝑋 ) → 𝑇 ′(𝑋 ) for each 𝑋 ∈ 𝒞

′, such that𝑚𝑋 ◦ 𝜂𝑋 = 𝜂 ′
𝑋
and (𝑚𝑌 ◦ 𝑓 )† ◦𝑚𝑋 = 𝑚𝑌 ◦ 𝑓 †.

Relative monads on 𝑝 and their morphisms form a category RMnd(𝑝).

Every relative monad on 𝑝 : 𝒞′ → 𝒞 induces a functor 𝑇 : 𝒞′ → 𝒞 by defining 𝑇 (𝑓 ) def
=

(𝜂 ◦ 𝑝 (𝑓 ))†. This implies naturality of the unit 𝜂 and Kleisli extension (−)†, as well as of any
relative monad morphism. Just as with monads, relative monads have associated notions of Kleisli
and Eilenberg–Moore categories. In the following, let 𝑇 be a relative monad on 𝑝 : 𝒞′→ 𝒞.

Definition 6.2 (Altenkirch, Chapman, and Uustalu [2010]). The Kleisli category Kl(𝑇 ) of 𝑇 has the
same objects as 𝒞′, and hom-sets Kl(𝑇 ) (𝑋,𝑌 ) = 𝒞(𝑝 (𝑋 ),𝑇 (𝑌 )). The identity on 𝑋 is 𝜂𝑋 , and the
composition of 𝑔 ∈ Kl(𝑇 ) (𝑌, 𝑍 ) and 𝑓 ∈ Kl(𝑇 ) (𝑋,𝑌 ) is 𝑔† ◦ 𝑓 .

Definition 6.3 (Altenkirch, Chapman, and Uustalu [2010]). A 𝑇 -algebra (𝐴, (−)‡) consists of an
object 𝐴 ∈ 𝒞, and a morphism 𝑓 ‡ : 𝑇 (𝑋 ) → 𝐴 for each 𝑓 : 𝑝 (𝑋 ) → 𝐴, such that 𝑓 ‡ ◦ 𝜂𝑋 = 𝑓

and 𝑔‡ ◦ 𝑓 † = (𝑔‡ ◦ 𝑓 )‡. A homomorphism ℎ : (𝐴, (−)‡) → (𝐴′, (−)‡) of 𝑇 -algebras is a morphism



Higher-order algebraic theories 1:21

ℎ : 𝐴→ 𝐴′ of 𝒞 such that (ℎ ◦ 𝑓 )‡ = ℎ ◦ 𝑓 ‡. These form a category 𝑇 -Alg, which has a forgetful
functor 𝑇 -Alg→ 𝒞.

Relative monads have a semantics functor analogous to TmAlg for theories (cf. Lemma 5.14).
Lemma 6.4. There is a functor Alg : RMnd(𝑝)op → CAT/𝒞 that assigns to each relative monad 𝑇

on 𝑝 : 𝒞′→ 𝒞 the forgetful functor 𝑇 -Alg→ 𝒞 from its category of algebras. Moreover, Alg is fully
faithful, and in particular reflects isomorphisms.

6.2 Relative monads from theories
Given an (𝑛 + 1)th-order algebraic theory 𝐿 : L𝑛+1 (𝑆) → ℒ for 𝑛 ∈ N𝜔 , we construct a relative
monad 𝑇𝐿 on 𝑝 : L𝑛+1 (𝑆)op → Law𝑛 (𝑆) (where 𝑝 is as defined in Section 5.5). The assignment on
objects maps 𝑋 ∈ L𝑛+1 (𝑆) to the 𝑛th-order algebraic theory 𝑇𝐿 (𝑋 ) = ⌊𝐿//𝑋 ⌋ (using the simple slice
from Definition 5.21). We write𝒯𝐿 (𝑋 ) for the underlying category of 𝑇𝐿 (𝑋 ); explicitly it has the
same objects as L𝑛 (𝑆), and hom-sets𝒯𝐿 (𝑋 ) (𝑌,𝑌 ′) = ℒ(𝑋 ×𝑌,𝑌 ′). The identity-on-objects functor
𝑇𝐿 (𝑋 ) sends 𝑓 ∈ L𝑛 (𝑆) (𝑌,𝑌 ′) to 𝐿(𝑓 ) ◦ 𝜋𝑌 . The crucial property of 𝑇𝐿 is that there are bijections

Kl(𝑇𝐿) (𝑌,𝑋 ) = Law𝑛 (𝑆) (𝑝 (𝑌 ),𝑇𝐿 (𝑋 )) � ℒ(𝑋,𝑌 ) (12)
To make 𝑇𝐿 into a relative monad we define the unit and Kleisli extension from identities and
composition inℒ using these bijections:

id𝑋 : 𝑋 → 𝑋 inℒ

𝜂𝑋 : 𝑝 (𝑋 ) → 𝑇𝐿 (𝑋 ) in Law𝑛 (𝑆)

𝐹 : 𝑝 (𝑌 ) → 𝑇𝐿 (𝑋 ) in Law𝑛 (𝑆)

𝑋 → 𝑌 in ℒ

𝐹 † : 𝑇𝐿 (𝑌 ) → 𝑇𝐿 (𝑋 ) in Law𝑛 (𝑆)
The unit is defined by sending id𝑋 along (12). The Kleisli extension sends 𝐹 along (12) and then
composes inℒ. The bijections (12) form an isomorphism of categories Kl(𝑇𝐿)op � ℒ. Each map
𝐿 → 𝐿′ of (𝑛 + 1)th-order algebraic theories restricts to a relative monad morphism 𝑇𝐿 → 𝑇𝐿′ .

Lemma 6.5. The above defines a functor Law𝑛+1 (𝑆) → RMnd(𝑝 : L𝑛+1 (𝑆)op → Law𝑛 (𝑆)) for each
𝑛 ∈ N𝜔 . For each (𝑛 + 1)th-order algebraic theory 𝐿 : L𝑛+1 (𝑆) → ℒ, there is an isomorphism of
categories 𝑇𝐿-Alg � 𝐿-TmAlg commuting with the forgetful functors into Law𝑛 (𝑆).

6.3 Theories from relative monads
We now go in the reverse direction. As the isomorphisms Kl(𝑇𝐿)op � ℒ in the previous section
suggest, we use the opposite of the Kleisli category to do so. The construction is simple, but it turns
out that we need to impose an extra condition on the relative monad to get an algebraic theory.
Suppose that (𝑇, 𝜂, (−)†) is a relative monad on 𝑝 : L𝑛+1 (𝑆)op → Law𝑛 (𝑆), for 𝑛 ∈ N𝜔 . The

category Kl(𝑇 )op has the same objects as L𝑛+1 (𝑆), and, given a morphism 𝑓 ∈ L𝑛+1 (𝑆) (𝑋,𝑌 ), we
have 𝜂𝑋 ◦ 𝑝 (𝑓 ) ∈ Law𝑛 (𝑆) (𝑝 (𝑌 ),𝑇 (𝑋 )) = Kl(𝑇 )op (𝑋,𝑌 ). This defines a strict cartesian identity-
on-objects functor 𝐿𝑇 : L𝑛+1 (𝑆) → Kl(𝑇 )op.

However, 𝐿𝑇 does not in general preserve exponentials, so may not be an (𝑛+1)th-order algebraic
theory for 𝑛 > 0. More specifically, suppose that 𝑛 > 0 and consider the coproduct 𝐿′ + 𝑝 (𝑌 ) for
an arbitrary 𝐿′ ∈ Law𝑛 (𝑆) and 𝑌 ∈ L𝑛 (𝑆) ã→ L𝑛+1 (𝑆). This coproduct is isomorphic to the simple
slice 𝐿′//𝑌 , and so has an explicit description in which hom-sets have the form ℒ

′(𝑌 × 𝑍, 𝑍 ′). For
𝑇𝐿 to be an (𝑛 + 1)th-order algebraic theory, the first and last sets in the following chain must be
isomorphic.
Kl(𝑇 )op (𝑋,𝑍𝑌 ) � ⌈𝑇 (𝑋 )⌉ (𝑌, 𝑍 ) � ⌈𝑇 (𝑋 ) + 𝑝 (𝑌 )⌉ (1, 𝑍 ) ?

� ⌈𝑇 (𝑋 × 𝑌 )⌉ (1, 𝑍 ) � Kl(𝑇 )op (𝑋 × 𝑌, 𝑍 )
The three unmarked isomorphisms follow from the universal property of 𝑝 (Lemma 5.22), the
description of 𝐿′ + 𝑝 (𝑌 ) above, and because ⌈−⌉ preserves coproducts. However, the marked
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isomorphism does not hold in general, so, to ensure 𝑇𝐿 is an 𝑛th-order algebraic theory, we require
𝑇 (𝑋 × 𝑌 ) to form a coproduct 𝑇 (𝑋 ) + 𝑝 (𝑌 ). This property holds for the relative monads 𝑇𝐿 we
construct from theories 𝐿 in Section 6.2, since, from the above description of the coproducts 𝐿′+𝑝 (𝑌 )
as 𝐿′//𝑌 , we have the following chain of equalities.

(𝑇𝐿 (𝑋 )//𝑌 ) (𝑍, 𝑍 ′) = 𝑇𝐿 (𝑋 ) (𝑌 × 𝑍, 𝑍 ′) = ℒ(𝑋 × 𝑌 × 𝑍, 𝑍 ′) = 𝑇𝐿 (𝑋 × 𝑌 ) (𝑍, 𝑍 ′)

Lemma 6.6. Suppose that (𝑇, 𝜂, (−)†) is a relative monad on 𝑝 : L𝑛+1 (𝑆)op → Law𝑛 (𝑆), where
𝑛 ∈ N𝜔 . If 𝑛 > 0, also assume for each 𝑋 ∈ L𝑛+1 (𝑆) and 𝑌 ∈ L𝑛 (𝑆) that the diagram

𝑇 (𝑋 )
𝑇 (𝜋𝑋 )−−−−−→ 𝑇 (𝑋 × 𝑌 )

𝑇 (𝜋𝑌 )◦𝜂𝑌←−−−−−−−− 𝑝 (𝑌 )
is a coproduct in Law𝑛 (𝑆). Then 𝐿𝑇 as defined above is an (𝑛 + 1)th-order algebraic theory, and
there is an isomorphism of categories 𝑇 -Alg � 𝐿𝑇 -TmAlg commuting with the forgetful functors into
Law𝑛 (𝑆). Moreover, relative monad morphisms 𝑇 → 𝑇 ′ induce morphisms 𝐿𝑇 → 𝐿𝑇 ′ in Law𝑛+1 (𝑆)
functorially.

It follows from Lemma 6.5 and Lemma 6.6 that there is an isomorphism 𝑇 -Alg � 𝑇𝐿𝑇 -Alg over
Law𝑛 (𝑆), and hence, by Lemma 6.4, an isomorphism 𝑇𝐿𝑇 � 𝑇 . Given 𝐿 ∈ Law𝑛 (𝑆), we also have
𝐿 � 𝐿𝑇𝐿 , since Kl(𝑇𝐿)op � ℒ. Hence we obtain a correspondence between relative monads and
higher-order algebraic theories.

Theorem 6.7. For𝑛 ∈ N𝜔 , the category Law𝑛+1 (𝑆) is equivalent to the full subcategory of RMnd(𝑝 :
L𝑛+1 (𝑆)op → Law𝑛 (𝑆)) on relative monads (𝑇, 𝜂, (−)†) such that, if 𝑛 > 0, then, for all 𝑋 ∈ L𝑛+1 (𝑆)
and 𝑌 ∈ L𝑛 (𝑆),

𝑇 (𝑋 )
𝑇 (𝜋𝑋 )−−−−−→ 𝑇 (𝑋 × 𝑌 )

𝑇 (𝜋𝑌 )◦𝜂𝑌←−−−−−−−− 𝑝 (𝑌 )
is a coproduct in Law𝑛 (𝑆). Moreover, there are isomorphisms between the respective categories of
algebras, commuting with the forgetful functors:

𝑇 -Alg 𝐿-TmAlg

Law𝑛 (𝑆)

�

When 𝑛 = 1 and 𝑆 = 1, this theorem specialises to the result that Lawvere theories are equivalent
to (FinSet ã→ Set)-relative monads (cf. Voevodsky [2016]).

7 LOCAL STRONG PRESENTABILITY
We will show that the categories Law𝑛 (𝑆) of 𝑛th-order algebraic theories are well-structured, in
that they are locally strongly presentable [Adámek and Rosický 2001; Lack and Rosický 2011].
This in turn implies several useful properties of Law𝑛 (𝑆), which in particular will be instrumental
in establishing the monad correspondence in Section 8. Local strong presentability is similar to
the notion of local presentability (cf. [Adámek and Rosický 1994]), except that filtered colimits
are replaced by the more general notion of sifted colimits. In the following, all categories will be
assumed locally small.

Definition 7.1 (Adámek and Rosický [2001]). A small category I is sifted if colimits of diagrams of
shape I commute with finite products in Set: explicitly if, for every finite discrete category J and
functor 𝐷 : I × J→ Set, the canonical function

colim𝑖∈I
∏

𝑗 ∈J 𝐷 (𝑖, 𝑗)
[∏𝑗∈J

𝜋

𝑖 ]𝑖∈I
−−−−−−−−−→∏

𝑗 ∈J colim𝑖∈I 𝐷 (𝑖, 𝑗)
is a bijection. A colimit of a diagram 𝐷 : I→ 𝒞 is sifted when I is sifted.
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Definition 7.2 (Adámek and Rosický [2001]). Let 𝒞 be a category with sifted colimits. An object
𝑋 ∈ 𝒞 is strongly finitely presentable if the hom-functor 𝒞(𝑋,−) : 𝒞 → Set is sifted-cocontinuous,
i.e. preserves sifted colimits.

The strongly finitely presentable objects of Set, for instance, are the finite sets, whilst the strongly
finitely presentable objects of Set𝑆 are the indexed sets (𝑋𝑠 )𝑠∈𝑆 such that the coproduct

∐
𝑠∈𝑆 𝑋𝑠 is

finite.

Definition 7.3 ([Adámek and Rosický 2001; Lack and Rosický 2011]). A cocomplete category 𝒞 is
locally strongly finitely presentable if there is a set 𝐺 of strongly finitely presentable objects whose
closure under sifted colimits is 𝒞.

The strongly finitely presentable objects of 𝒞 are given by the (essentially small) closure under
retracts of the full subcategory on 𝐺 . Hence, every locally strongly finitely presentable category
𝒞 has a small full subcategory 𝑝 : 𝒞sf ã→ 𝒞 of strongly finitely presentable objects such that
every strongly finitely presentable object of 𝒞 is isomorphic to one in 𝒞sf . For our purposes, it is
convenient to characterise local strong presentability directly in terms of the subcategory inclusion
𝑝 . For each 𝑋 ∈ 𝒞, the comma category 𝑝 ↓ 𝑋 is sifted and the canonical morphism

colim (𝑝 ↓ 𝑋 → 𝒞sf
𝑝
−→ 𝒞) → 𝑋 (13)

is an isomorphism, which characterises the objects of 𝒞 as canonical sifted colimits of objects
of 𝒞sf . The morphism (13) is invertible exactly when 𝑝 is dense, i.e. when the nerve functor
𝑁𝑝 : 𝒞 → [𝒞op

sf , Set], given by 𝑁𝑝 (𝑋 ) = 𝒞(𝑝 (−), 𝑋 ), is fully faithful. A category 𝒞 is therefore
locally strongly finitely presentable exactly when there exists a small category 𝒞sf and functor
𝑝 : 𝒞sf → 𝒞 with the following property.

Definition 7.4. Let 𝒞 be a cocomplete category and let 𝒞sf be a small category. A functor
𝑝 : 𝒞sf → 𝒞 is locally strongly finitely presentable if 𝑝 is fully faithful and dense, the comma
category 𝑝 ↓ 𝑋 is sifted for every 𝑋 ∈ 𝒞, and every object in the image of 𝑝 is strongly finitely
presentable.

It is known that Law0 (𝑆) = Set𝑆 is locally strongly finitely presentable. Here we show that
Law𝑛 (𝑆) is furthermore locally strongly finitely presentable for 𝑛 > 0 (which in turn implies
Law𝑛 (𝑆) is locally countably presentable, but not necessarily locally finitely presentable [Adámek
and Rosický 2001, Remark 4.8]). Specifically, we show that 𝑝 : L𝑛+1 (𝑆)op → Law𝑛 (𝑆), defined in
Section 5.5, is locally strongly finitely presentable.
Arbitrary colimits in Law𝑛 (𝑆) are difficult to construct directly. We instead describe limits and

sifted colimits in Law𝑛 (𝑆): cocompleteness then follows from the properties of 𝑝 by Adámek and
Rosický [2001, Remark 4.8]. We construct sifted colimits in Law𝑛 (𝑆) on each hom-set separately. Let
I be a sifted category, and consider theories 𝐿𝑖 : L𝑛 (𝑆) →ℒ𝑖 forming a diagram 𝐷 : I→ Law𝑛 (𝑆).
The colimit of 𝐷 is given by an identity-on-objects functor 𝐿 : L𝑛 (𝑆) → ℒ, where ℒ(𝑋,𝑌 ) =
colim𝑖∈I (ℒ𝑖 (𝑋,𝑌 )). Both composition in ℒ, and the action of 𝐿 on morphisms 𝑓 ∈ L𝑛 (𝑆) (𝑋,𝑌 ),
are defined using the commutativity of sifted colimits with products, as follows.

◦ : ℒ(𝑌, 𝑍 ) ×ℒ(𝑋,𝑌 ) �−→ colim𝑖∈I (ℒ𝑖 (𝑌, 𝑍 ) ×ℒ𝑖 (𝑋,𝑌 ))
colim𝑖∈I ( (ℎ,𝑔) ↦→ℎ◦𝑔)
−−−−−−−−−−−−−−−→ℒ(𝑋,𝑍 )

𝐿(𝑓 ) : 1 �−→ colim𝑖∈I 1
colim𝑖∈I 𝐿𝑖 (𝑓 )−−−−−−−−−−→ℒ(𝑋,𝑌 )

The coprojections 𝜋

𝑖 : 𝐿𝑖 → 𝐿 are given on each hom-set by the coprojections in Set. Limits of
small diagrams in Law𝑛 (𝑆) are described similarly, whereℒ(𝑋,𝑌 ) = lim𝑖∈I (ℒ𝑖 (𝑋,𝑌 )), since limits
commute with products.
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The requisite properties of 𝑝 follow from its universal property (Lemma 5.22). In particular, for
density of 𝑝 it suffices to show that the functor 𝐿 ↦→ ⌈ℒ⌉ (1, ⌈𝐿⌉ (−)), which is naturally isomorphic
to the nerve functor 𝑁𝑝 , is fully faithful. This is the case, because given any natural transformation
⌈ℒ⌉ (1, ⌈𝐿⌉ (−)) ⇒ ⌈ℒ′⌉ (1, ⌈𝐿′⌉ (−)) there is a map 𝐿 → 𝐿′ in Law𝑛 (𝑆) given by the following
composite; here we use the fact that all objects of L𝑛 (𝑆) are exponentiable in L𝑛+1 (𝑆).

ℒ(𝑋,𝑌 ) � ⌈ℒ⌉ (𝑋,𝑌 ) � ⌈ℒ⌉ (1, 𝑌𝑋 ) → ⌈ℒ′⌉ (1, 𝑌𝑋 ) � ⌈ℒ′⌉ (𝑋,𝑌 ) � ℒ
′(𝑋,𝑌 )

Theorem 7.5. For all 𝑛 ∈ N𝜔 the category Law𝑛 (𝑆) is cocomplete, and the functor 𝑝 : L𝑛+1 (𝑆)op →
Law𝑛 (𝑆) is locally strongly finitely presentable. Hence Law𝑛 (𝑆) is locally strongly finitely presentable.

Completeness and cocompleteness of Law𝑛 (𝑆) signify that 𝑛th-order algebraic theories may be
combined, for example by taking coproducts and products. This suggests fruitful applications for
algebraic effects. For instance, continuations may be presented alternately by large algebraic theories
Hyland, Levy, Plotkin, and Power [2007], and by third-order algebraic theories (Example 3.18).
However coproducts of large algebraic theories do not exist in general, while coproducts of higher-
order theories always exist. This suggests that it may be more natural to combine continuations
with other effects in their capacity as higher-order algebraic theories.

We note that for each 𝑛th-order algebraic theory 𝐿 : L𝑛 (𝑆) →ℒ, Proposition 5.15 implies that
𝐿-TmAlg is equivalent to the sifted cocompletion of ℒ [Adámek and Rosický 2001, Corollary 2.8].
This in turn implies the following.

Theorem 7.6 (Bicompleteness of term algebras and strict models). Let 𝐿 : L𝑛 (𝑆) → ℒ

be an 𝑛th-order algebraic theory. 𝐿-TmAlg is locally strongly finitely presentable, and in particular
complete and cocomplete. 𝐿/Law𝑛 (𝑆) is therefore also complete and cocomplete.

8 MONAD–THEORY CORRESPONDENCE
We now return to the task of showing that higher-order algebraic theories correspond to a class of
monads. This follows from a general relationship between relative monads and monads.
Let 𝑝 : 𝒞′ → 𝒞 be a functor. Each monad (𝑇, 𝜂, 𝜇) on 𝒞 induces a relative monad on 𝑝 , given

on objects by 𝑇 ◦ 𝑝 : 𝒞′ → 𝒞; the unit is 𝜂, and the Kleisli extension of 𝑓 : 𝑝 (𝑋 ) → 𝑇 (𝑝 (𝑌 )) is
𝑓 † = 𝜇𝑝 (𝑌 ) ◦𝑇 (𝑓 ). We further obtain a functor𝑇 -Alg→ (𝑇 ◦𝑝)-Algmapping (𝐴, 𝑎) to (𝐴, 𝑎◦𝑇 (−)),
where 𝑇 -Alg is the Eilenberg–Moore category of 𝑇 .

Now suppose that 𝑝 : 𝒞sf → 𝒞 is locally strongly finitely presentable (Definition 7.4). Then the
construction of a relative monad 𝑇 ◦ 𝑝 from 𝑇 forms an equivalence between relative monads on
𝑝 and sifted-cocontinuous monads on 𝒞 as follows, where a monad is sifted-cocontinuous if its
underlying endofunctor is. The functor (− ◦ 𝑝) : [𝒞,𝒞] → [𝒞sf ,𝒞] has a left adjoint that sends
each 𝐹 : 𝒞sf → 𝒞 to its left Kan extension Lan𝑝𝐹 : 𝒞 → 𝒞 along 𝑝 . Each Lan𝑝𝐹 preserves sifted
colimits, and this adjunction restricts to an equivalence [𝒞sf ,𝒞] ≃ [𝒞,𝒞]sf , where [𝒞,𝒞]sf is
the full subcategory of [𝒞,𝒞] on the sifted-cocontinuous functors. The construction of a relative
monad from a monad forms a functor (− ◦ 𝑝) : Mnd(𝒞) → RMnd(𝑝), where Mnd(𝒞) is the
category of monads and monad morphisms, which has a left adjoint given by left Kan extension
Lan𝑝 : RMnd(𝑝) → Mnd(𝒞) [Altenkirch, Chapman, and Uustalu 2010, Section 4.3]. Finally, when a
monad𝑇 is sifted-cocontinuous, the functor𝑇 -Alg→ (𝑇 ◦𝑝)-Alg defined above is an isomorphism
of categories. Together, this determines the following equivalence, where Mndsf (𝒞) is the full
subcategory of Mnd(𝒞) on the sifted-cocontinuous monads.
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Theorem 8.1. Suppose that 𝑝 : 𝒞sf → 𝒞 is locally strongly finitely presentable. The construction
above forms an adjunction (on the left), which restricts to an equivalence of categories on the sifted-
cocontinuous monads (on the right).

RMnd(𝑝) Mnd(𝒞)
Lan𝑝

−◦𝑝

⊣ RMnd(𝑝) Mndsf (𝒞)
Lan𝑝

−◦𝑝
≃

Moreover, there are isomorphisms between the corresponding categories of algebras, and these commute
with the forgetful functors, as below, for all 𝑇 ∈ Mndsf (𝒞) and 𝑇 ′ ∈ RMnd(𝑝).

𝑇 -Alg (𝑇 ◦ 𝑝)-Alg

𝒞

� (Lan𝑝𝑇
′)-Alg 𝑇 ′-Alg

𝒞

�

For (𝑛 + 1)th-order algebraic theories, 𝑝 : L𝑛+1 (𝑆)op → Law𝑛 (𝑆) is locally strongly finitely
presentable by Theorem 7.5. The equivalence between (𝑛 + 1)th-order algebraic theories and a class
of relative monads on 𝑝 given by Theorem 6.7 extends to a class of monads by Theorem 8.1, and
we obtain the final monad–theory correspondence.

Theorem 8.2. For 𝑛 ∈ N𝜔 , the following are equivalent.
(1) The category Law𝑛+1 (𝑆) of (𝑛 + 1)th-order algebraic theories.
(2) The full subcategory of RMnd(𝑝 : L𝑛+1 (𝑆)op → Law𝑛 (𝑆)) on relative monads (𝑇, 𝜂, (−)†)

such that, if 𝑛 > 0, then, for all 𝑋 ∈ L𝑛+1 (𝑆) and 𝑌 ∈ L𝑛 (𝑆),

𝑇 (𝑋 )
𝑇 (𝜋𝑋 )−−−−−→ 𝑇 (𝑋 × 𝑌 )

𝑇 (𝜋𝑌 )◦𝜂𝑌←−−−−−−−− 𝑝 (𝑌 )
is a coproduct in Law𝑛 (𝑆).

(3) The full subcategory of Mndsf (Law𝑛 (𝑆)) on monads (𝑇, 𝜂, 𝜇) such that, if 𝑛 > 0, then, for all
𝐿 ∈ Law𝑛 (𝑆) and 𝑌 ∈ L𝑛 (𝑆),

𝑇 (𝐿)
𝑇 ( 𝜋

𝐿)−−−−−→ 𝑇 (𝐿 + 𝑝 (𝑌 ))
𝑇 ( 𝜋

𝑝 (𝑌 ) )◦𝜂𝑝 (𝑌 )←−−−−−−−−−−−− 𝑝 (𝑌 )
is a coproduct in Law𝑛 (𝑆).

Moreover, if an (𝑛 + 1)th-order algebraic theory 𝐿, relative monad𝑇 , and monad𝑇 are related by these
equivalences, then there are isomorphisms between the respective categories of categories of algebras
commuting with the forgetful functors:

𝑇 -Alg 𝑇 -Alg 𝐿-TmAlg

Law𝑛 (𝑆)

� �

Example 8.3. Consider the {U}-sorted second-order algebraic theory of the unityped 𝜆-calculus
(Example 3.11). This theory induces a monad on Law1 ({U}), which sends each first-order algebraic
theory 𝐿 to the first-order algebraic theory 𝐿′ : L1 ({U}) →ℒ

′ underlying the free term algebra
for the unityped 𝜆-calculus on 𝐿. In other words, 𝐿′ is initial amongst first-order algebraic theories
equipped with a map 𝐿 → 𝐿′ interpreting 𝐿 in 𝐿′, and two families of functions,

JabsK𝑋 : ℒ′(𝑋 × U,U) →ℒ
′(𝑋,U) JappK𝑋 : ℒ′(𝑋,U) ×ℒ′(𝑋,U) →ℒ

′(𝑋,U)
as in Example 5.13. In the terminology of Hyland [2017], 𝐿′ is the free 𝜆-theory (with 𝜂) on 𝐿.
For instance, when 𝐿 is the first-order theory of semigroups (which has a single associative

binary operator), the map 𝐿 → 𝐿′ amounts to a natural family of associative functions,
JchooseK𝑋 : ℒ′(𝑋,U) ×ℒ′(𝑋,U) →ℒ

′(𝑋,U)
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which may be thought of as a binary nondeterministic choice operation. The setℒ′(U𝑛,U) is in
bijection with the set of open terms of the unityped 𝜆-calculus with a binary nondeterministic
choice operator choose, with at most 𝑛 free variables, up to 𝛽𝜂-equality and associativity of choose.

8.1 Explicit formulae for monads induced by theories
It is well-known that, for a first-order algebraic theory 𝐿 : L1 (𝑆) →ℒ, the corresponding sifted-
cocontinuous monad𝑇𝐿 on Set𝑆 may be defined as a coend [Hyland and Power 2007, Proposition 4.1].
Using the universal property of 𝑝 (Lemma 5.22), we may present it slightly differently:

𝑇𝐿 (𝐿′) (B) �
∫ Γ∈L1 (𝑆)

ℒ(Γ,B) × ⌈ℒ′⌉ (1, Γ)

An (𝑛 + 1)th-order algebraic theory 𝐿 : L𝑛+1 (𝑆) →ℒ, for 𝑛 > 0, induces a monad 𝑇𝐿 on Law𝑛 (𝑆),
given by the left Kan extension of 𝑇𝐿 along 𝑝 . Since left Kan extensions along 𝑝 are sifted colimits,
which in Law𝑛 (𝑆) are computed componentwise, there is an analogous coend formula for 𝑛 > 0:

𝑇𝐿 (𝐿′) (𝑋,𝑌 ) �
∫ Γ∈L𝑛+1 (𝑆)

ℒ(Γ, 𝑌𝑋 ) × ⌈ℒ′⌉ (1, Γ)

There is an alternate characterisation, making use of the coreflections of Section 5.2, which is
particularly elegant. Since the coreflections are obscured when one considers only first-order
theories, this description is new even in the classical setting.

𝑇𝐿 � ⌊𝐿 + ⌈−⌉⌋
In this form, it is natural to think of higher-order algebraic theories as certain monad transformers
[Liang, Hudak, and Jones 1995]. For instance, for a second-order algebraic theory 𝐿, the underlying
endofunctor of induced monad on Law1 (𝑆) itself induces a functor that, informally, takes a monad
and freely adds the structure of 𝐿 by taking its coproduct with 𝐿:

Mndsf (Set𝑆 )
≃−→ Law1 (𝑆)

⌊𝐿+⌈−⌉⌋
−−−−−−→ Law1 (𝑆)

≃−→ Mndsf (Set𝑆 )

8.2 Related work
General monad–theory correspondences. Though there are several general correspondences be-

tween notions of algebraic theory and classes of monads in the literature, none captures the
correspondence here. On one hand, those of Lack and Rosický [2011]; Lucyshyn-Wright [2016];
Power [1999] are insufficiently general: our setting requires the generality of Berger, Melliès, and
Weber [2012]; Bourke and Garner [2019], for which 𝑝 : L𝑛+1 (𝑆)op → Law𝑛 (𝑆) exhibits L𝑛+1 (𝑆)op

as a small full dense subcategory of the locally presentable Law𝑛 (𝑆). However, the correspondence
they give specialises in our setting to one involving the whole ofMndsf (Law𝑛 (𝑆)) on the monad
side, without the coproduct condition of Theorem 8.2: our correspondence is therefore a restriction,
which is not recovered in their framework.

Monads for binding signatures. There are several existing approaches to generating monads from
signatures of variable-binding operators, e.g. Ahrens, Hirschowitz, Lafont, and Maggesi [2019];
Matthes and Uustalu [2004]. The generated monads in these approaches are analogous to those
constructed in our framework by ⌊−⌋ : Law2 (𝑆) → Law1 (𝑆) ≃ Mndsf (Set𝑆 ), rather than to the
higher-order monads arising from our monad–theory correspondence.

9 ZEROTH-ORDER ALGEBRAIC THEORIES
For 𝑛 > 0, the category of (𝑛 + 1)th-order algebraic theories is formed by taking a class of monads
on the category of 𝑛th-order algebraic theories, while the category of first-order algebraic theories
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is formed by taking a class of monads on Set𝑆 . Accordingly, it is natural to ask whether the category
of 𝑆-indexed sets itself may naturally be considered a “category of 0th-order algebraic theories” in
some sense, which would eliminate the seemingly arbitrary base case for the induction (rather
than declaring Law0 (𝑆) = Set𝑆 , as we have done till now). This is the case: 0th-order algebraic
theories correspond to theories of constants, in which each term resides in an empty context. In
what follows, we redefine Law0 (𝑆) and show it to be isomorphic to Set𝑆 . Our earlier identification
is thus harmless.

Definition 9.1. The category L0 (𝑆) is the free nullary completion of the set 𝑆 . Concretely, 𝑆 is
the full supercategory of the discrete category 𝑆 with object-set 𝑆 + 1, such that there is a unique
morphism from every object in 𝑆 to 1, and every morphism from 1 is the identity.

Definition 9.2. An 𝑆-sorted 0th-order algebraic theory is a category ℒ with a terminal object,
equipped with a strict terminal-object-preserving identity-on-objects functor 𝐿 : L0 (𝑆) → ℒ,
such that every morphism is constant, i.e. factors through the terminal object. A map of 𝑆-sorted
0th-order algebraic theories fromℒ toℒ′ is a functor commuting with 𝐿 and 𝐿′, which necessarily
strictly preserves the terminal object. 𝑆-sorted 0th-order algebraic theories and their maps form a
category Law0 (𝑆).

We note that 0th-order algebraic theories may be more naturally described as generalised multi-
categories [Leinster 2004] for the terminal monad on Set, with underlying object-set 𝑆 .

Lemma 9.3. Law0 (𝑆) � Set𝑆 .

Though this characterisation may seem inconsequential, it is actually helpful in understanding
the syntactic behaviour of the process of taking sifted-cocontinuous monads with the coproduct
condition of Theorem 8.2. TheMndsf (−) construction may be thought of as taking a class of theories
and adding a level of parameterisation by a cartesian context. To begin, one has theories of constants,
whose terms reside in empty contexts; taking sifted-cocontinuous monads results in first-order
algebraic theories, whose terms are parameterised by ordinary contexts; taking sifted-cocontinuous
monads a second time results in second-order algebraic theories, which have metavariables in
addition to ordinary variables; each subsequent iteration adds a further level of parameterisation.
This observation has immediate implications for higher-order theories with different context
structure: for instance, one might suppose that higher-order linear binding structure might be
constructed analogously by analytic monads [Joyal 1986]; we leave this for future work.

10 CONCLUSION
Higher-order algebraic theories generalise the classical notion of algebraic theory to higher-order
multisorted structure, commonly found in mathematics and particularly in the theory of pro-
gramming languages. Our results provide part of a systematic treatment of higher-order theories
analogous to the treatment that first-order theories have received. There are three equivalent, but
complementary, perspectives: those of presentations (Section 3), theories (Section 5), and monads
(Section 8). Higher-order algebraic theories are well-structured (Section 7), as are their categories
of term algebras and models (Theorem 7.6): for instance, we may take products and coproducts of
arbitrary higher-order algebraic theories, notably including those for control operators, which have
previously proven difficult to handle. The higher-order perspective also sheds new light on the clas-
sical, first-order setting, elucidating the relationship between models and term algebras (Section 5.4),
and giving an elegant description of the monad induced by an algebraic theory (Section 8.1). We
hope that this work may serve as a basis for the ongoing study of higher-order structure: some
suggested applications have appeared throughout, but we note also the possibility of carrying out
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similar developments for other notions of algebraic theory, such as enriched algebraic theories
[Power 1999], algebraic 2-theories [Yanofsky 2000] and indexed algebraic theories [Power 2011].
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A PROOFS & ADDITIONAL DEFINITIONS
A.1 Introduction
A.1.3 Preliminaries.
We denote by Cat the large category of small categories and functors, and by CAT the very large
category of locally small categories and functors.

Definition A.1. Given two categories 𝒞 and𝒟 whose object sets are equal, an identity-on-objects
functor 𝐹 : 𝒞 → 𝒟 is one whose object function is the identity.

Definition A.2. A category is cartesian if it has specified finite products. A functor 𝐹 : 𝒞 → 𝒟

between cartesian categories is cartesian if it preserves finite products. Explicitly, this means that
• the canonical morphism ⟨⟩ : 𝐹 (1𝒞) → 1𝒟 is an isomorphism;
• for all objects 𝑋,𝑌 ∈ 𝒞, the canonical morphism ⟨𝐹 (𝜋1), 𝐹 (𝜋2)⟩ : 𝐹 (𝑋 ×𝑌 ) → 𝐹 (𝑋 ) × 𝐹 (𝑌 )
is an isomorphism.

A cartesian functor is strict if the canonical isomorphisms are identities. Cartesian categories,
cartesian functors, and natural transformations form a 2-category Cart.

Definition A.3. A category is cartesian-closed if it is cartesian and has specified exponentials. A
functor 𝐹 : 𝒞 → 𝒟 between cartesian-closed categories is cartesian-closed if it is cartesian and
preserves exponentials. Explicitly, this means that
• for all objects 𝑋,𝑌 ∈ 𝒞, the canonical morphism 𝜆(𝐹 (ev𝒞) ◦ ⟨𝐹 (𝜋1), 𝐹 (𝜋2)⟩−1) : 𝐹 (𝑌𝑋 ) →
𝐹 (𝑌 )𝐹 (𝑋 ) is an isomorphism.

A cartesian-closed functor is strict if it is strict as a cartesian functor, and the canonical isomorphisms
are identities. Cartesian-closed categories, cartesian-closed functors and natural transformations
form a 2-category CCC.

A.3 Presentations of higher-order algebraic theories
A.3.1 The order-limited 𝜆-calculus.
The (𝑛 + 1)th-order simply-typed 𝜆-calculus is presented in Figure A.1.

Proposition A.4. Let 𝑛 ∈ N𝜔 . A product of objects 𝑋1 × · · · × 𝑋𝑚 in a cartesian category is
𝑛-tetrable iff 𝑋𝑖 is 𝑛-tetrable, for each𝑚 ∈ N and 1 ≤ 𝑖 ≤ 𝑚.

Proof. We proceed by induction. When 𝑛 = 𝑘 + 1, we assume that 𝑋1 × · · · × 𝑋𝑚 is 𝑘-tetrable
iff each 𝑋𝑖 is 𝑘-tetrable. Then we have 𝑋1 × · · · × 𝑋𝑚 ↑↑ (𝑘 + 1) = (𝑋1 × · · · × 𝑋𝑚)𝑋1×···×𝑋𝑚↑↑𝑘 �

(𝑋𝑋1×···×𝑋𝑚↑↑𝑘
1 ) × · · · × (𝑋𝑋1×···×𝑋𝑚↑↑𝑘

𝑚 ), by the universal property of the product. By currying, a
product is exponentiable iff each component is exponentiable, and so by the inductive hypothesis
𝑋1 × · · · ×𝑋𝑚 is (𝑘 + 1)-tetrable if each 𝑋𝑖 is. Finally, 𝑋1 × · · · ×𝑋𝑚 is trivially 0-tetrable, and so we
are done. □

Lemma A.5. Λ𝑛 (𝑆) is cartesian, and contains 𝑆 as an 𝑛-tetrable subcategory.

Proof. The unit type 1 is terminal, as for each context 𝑥 : 𝑋 , there is a term 𝑥 : 𝑋 ⊢ ⟨⟩ : 1,
which is unique by the 𝜂-law. The cartesian product of any pair of types 𝑋 and 𝑌 is given by the
product type 𝑋 × 𝑌 , with projections given by variable projections for 𝑋 and 𝑌 , and mediating
morphism given by pairing; satisfaction of the universal property follows from the 𝛽- and 𝜂-laws.
𝑆 is a subcategory by construction. Every 𝐵 ∈ 𝑆 in 𝑛-tetrable: tetrations of B are given by function
types, with the evaluation maps given by application, and the exponential transpose given by
𝜆-abstraction; satisfaction of the universal property follows from the 𝛽- and 𝜂-laws. □
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ord(𝐵) def= 1 (𝐵 ∈ 𝑆)

ord(1) def= 0

ord(𝑋 × 𝑌 ) def= max(ord(𝑋 ), ord(𝑌 ))

ord(𝑋 � 𝑌 ) def= max(ord(𝑋 ) + 1, ord(𝑌 ))

empty· ctx
Γ ctx 𝑋 type

ext
Γ, 𝑥 : 𝑋 ctx

var
Γ, 𝑥 : 𝑋,Δ ⊢ 𝑥 : 𝑋

(𝐵 ∈ 𝑆) base
𝐵 type

1-form
1 type

𝑋 type 𝑌 type
×-form

𝑋 × 𝑌 type

𝑋 type ord(𝑋 ) < 𝑛 𝑌 type
�-form

𝑋 � 𝑌 type

1-intro
Γ ⊢ ⟨⟩ : 1

Γ ⊢ 𝑢 : 1 1-𝜂
Γ ⊢ 𝑢 ≡ ⟨⟩ : 1

Γ ⊢ 𝑎 : 𝑋 Γ ⊢ 𝑏 : 𝑌 ×-intro
Γ ⊢ ⟨𝑎, 𝑏⟩ : 𝑋 × 𝑌

Γ ⊢ 𝑝 : 𝑋 × 𝑌
×-elim1

Γ ⊢ 𝜋1 (𝑝) : 𝑋
Γ ⊢ 𝑝 : 𝑋 × 𝑌

×-elim2
Γ ⊢ 𝜋2 (𝑝) : 𝑌

Γ ⊢ 𝑎 : 𝑋 Γ ⊢ 𝑏 : 𝑌 ×-𝛽1
Γ ⊢ 𝜋1⟨𝑎, 𝑏⟩ ≡ 𝑎 : 𝑋

Γ ⊢ 𝑎 : 𝑋 Γ ⊢ 𝑏 : 𝑌 ×-𝛽2
Γ ⊢ 𝜋2⟨𝑎, 𝑏⟩ ≡ 𝑏 : 𝑌

Γ ⊢ 𝑝 : 𝑋 × 𝑌
×-𝜂

Γ ⊢ ⟨𝜋1𝑝, 𝜋2𝑝⟩ ≡ 𝑝 : 𝑋 × 𝑌
Γ, 𝑥 : 𝑋 ⊢ 𝑡 : 𝑌 ord(𝑋 ) < 𝑛

�-intro
Γ ⊢ 𝜆(𝑥 : 𝑋 . 𝑡) : 𝑋 � 𝑌

Γ ⊢ 𝑓 : 𝑋 � 𝑌 Γ ⊢ 𝑎 : 𝑋
�-elim

Γ ⊢ 𝑓 𝑎 : 𝑌
Γ, 𝑥 : 𝑋 ⊢ 𝑡 : 𝑌 Γ ⊢ 𝑎 : 𝑋

�-𝛽
Γ ⊢ (𝜆(𝑥 : 𝑋 . 𝑡)) 𝑎 ≡ 𝑡 [𝑎/𝑥] : 𝑌

Γ ⊢ 𝑓 : 𝑋 � 𝑌
�-𝜂

Γ ⊢ 𝜆(𝑥 : 𝑋 . 𝑓 𝑥) ≡ 𝑓 : 𝑌

𝑡 [𝑎/𝑥] denotes the substitution of the term 𝑎 for the free variable 𝑥 in the term 𝑡 .
Context extension is defined inductively by repeated variable extension.

Fig. A.1. The (𝑛 + 1)th-order simply-typed 𝜆-calculus on 𝑆 .

Theorem 3.6. Let 𝑛 ∈ N𝜔 . Λ𝑛+1 (𝑆) is the 2-initial cartesian category containing 𝑆 as an 𝑛-tetrable
subcategory. This exhibits Λ𝑛+1 (𝑆) as the free cartesian category with an 𝑛-tetrable subcategory 𝑆 .

Proof. First, note that Λ𝑛 (𝑆) is a cartesian category containing 𝑆 as an 𝑛-tetrable subcategory
by Lemma A.5. Let 𝜄 : 𝑆 ã→ C be a cartesian category containing 𝑆 as an 𝑛-tetrable subcategory. We
define a cartesian functor 𝐹 : Λ𝑛 (𝑆) → C preserving 𝑛-exponentiable objects in 𝑆 by induction on
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the rules of the 𝑛th-order simply-typed 𝜆-calculus.
𝐹 (1) = 1 𝐹 (⟨⟩) = ⟨⟩

𝐹 (𝑋 × 𝑌 ) = 𝐹 (𝑋 ) × 𝐹 (𝑌 ) 𝐹 (⟨𝑥,𝑦⟩) = ⟨𝐹 (𝑥), 𝐹 (𝑦)⟩ 𝐹 (𝜋𝑖 (𝑝)) = 𝜋𝑖𝐹 (𝑝)
𝐹 (𝑋 � 𝑌 ) = 𝐹 (𝑌 )𝐹 (𝑋 ) 𝐹 (𝜆𝑧.𝑡) = 𝜆(𝐹 (𝑡)) 𝐹 (𝑓 𝑥) = ev(𝐹 (𝑓 ), 𝐹 (𝑥))

𝐹 (B) = 𝜄 (𝐵)
Checking this is functorial and structure-preserving is routine. The definition of 𝐹 was entirely

determined, up to isomorphism, by the requirement that 𝐹 be structure-preserving. 2-initiality
follows immediately. □

A.4 Free cartesian-closed categories
A.4.1 Cartesian-closed categories of trees.

Proposition A.6. Tree(−) is canonically a (N, +, 0)-graded monad.

Proof. The unit Id ⇒ Tree0 is given by the right coprojection; the multiplication Tree𝑚 ◦
Tree𝑛 ⇒ Tree𝑚+𝑛 by tree grafting: the maximum number of left-steps is achieved by grafting the
two maximal trees. Monadicity follows from that of Tree. □

Theorem 4.4. L𝑛+1 (𝑆) is the initial strict cartesian category containing 𝑆 as a strictly 𝑛-tetrable
subcategory, for 𝑛 ∈ N𝜔 .

Proof. Each element 𝐵 ∈ 𝑆 forms a singleton tree in a singleton list. Cartesian products are
given in L𝑛 (𝑆) by the empty list and list concatenation, which is strictly associative and unital.
Exponentials are given by appropriately currying and distributing trees of lists according to the
universal properties. Currying is strict by construction. The statement then follows by the same
reasoning as Theorem 3.6, except that the unique functor from L𝑛 (𝑆) is determined uniquely, since
the structure is entirely strict. □

Proposition A.7. Let 0 < 𝑚 ≤ 𝑛 ∈ N𝜔 . L𝑚 (𝑆) is a strictly full subcategory of L𝑛 (𝑆).

Proof. By definition, Col𝑚 (𝑆) ⊂ Col𝑛 (𝑆) and for any Γ,Δ ∈ Col𝑚 (𝑆) the hom-setL𝑚 (𝑆) (Γ,Δ) =
L𝑛 (𝑆) (Γ,Δ). □

Proposition 4.5. The (𝑛 + 1)th-order simply-typed 𝜆-calculus on 𝑆 is a (faithful) conservative
extension of the 𝑛th-order simply-typed 𝜆-calculus on 𝑆 , for 𝑛 ∈ N𝜔 .

Proof. The inclusion L𝑛 (𝑆) ã→ L𝑛+1 (𝑆) is full (and faithful). □

A.5 Higher-order algebraic theories
A.5.1 Equivalence with presentations.

Lemma A.8. Λ (−) : Pre𝑛 (𝑆) → Law𝑛 (𝑆) is left adjoint to Π (−) .

Proof. We define a functor Π (−) : Law𝑛 (𝑆) → Pre𝑛 (𝑆) sending each 𝑛th-order algebraic theory
𝐿 : L𝑛 (𝑆) →ℒ to the presentation (∐(Γ,𝐴) ∈Λ𝑛 (𝑆)×𝑆)ℒ(Γ, 𝐴), 𝜋, 𝐸), where 𝐸 is given by identifying
the formal projections and compositions with the variable projections and substitutions, and each
map 𝐹 : ℒ →ℒ

′ to the transliteration given by the function (Γ, 𝐴, 𝑡) ↦→ (Γ, 𝐴, 𝐹 (𝑡)). This preserves
the equations in Π𝐿 by functoriality.
Let Σ ∈ Pre𝑛 (𝑆) and 𝐿 ∈ Law𝑛 (𝑆). A map 𝐹 : ΛΣ → 𝐿 is specified entirely by the action on the

operators of Σ, as the action on the derived terms is forced by functoriality of 𝐹 ; this may be seen
to be exactly the data of a transliteration 𝑓 : Σ→ Π𝐿 . Thus Law𝑛 (𝑆) (ΛΣ, 𝐿) � Pre𝑛 (𝑆) (Σ,Π𝐿). □
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Lemma A.9. Pres𝑛 (𝑆) � Kl(Π (−) ◦ Λ (−) ).

Proof. Follows directly from the definition of Pres𝑛 (𝑆). □

Theorem 5.2. Law𝑛 (𝑆) ≃ Pres𝑛 (𝑆).

Proof. Λ (−) is essentially surjective: indeed, for every 𝐿 ∈ Law𝑛 (𝑆), we haveΛΠ𝐿
� 𝐿. Therefore

Law𝑛 (𝑆) ≃ Kl(Π (−) ◦ Λ (−) ), which is equivalent to Pres𝑛 (𝑆) by Lemma A.9. □

Lemma A.10. Law𝑛 (𝑆) is a reflective subcategory of Pre𝑛 (𝑆).

Proof. Π (−) is fully faithful and so the result follows from Lemma A.8. □

Proposition A.11. Law𝑛 (𝑆) ≃ (Π (−) ◦ Λ (−) )-Alg.

Proof. Every reflective subcategory is equivalent to the Eilenberg–Moore category of its
associated idempotent monad [Borceux 1994b, Corollary 4.2.4] and so the result follows from
Lemma A.10. □

A.5.2 Coreflections between categories of theories.

Theorem 5.3. For each 𝑛 ∈ N𝜔 , the constructions above form an adjunction,

Law𝑛 (𝑆) Law𝑛+1 (𝑆)
⌈−⌉

⌊−⌋

⊣

with ⌈−⌉ fully faithful. Hence Law𝑛 (𝑆) is a coreflective subcategory of Law𝑛+1 (𝑆).

Proof. We define a functor ⌈−⌉ : Law𝑛 (𝑆) → Law𝑛+1 (𝑆) sending an 𝑛th-order algebraic theory
ℒ to the (𝑛 + 1)th-order algebraic theory given by the trivial embedding of Pres(ℒ) as a (𝑛 + 1)th-
order presentation. This is fully faithful, as the possible structure of a translation is entirely
determined by the operators of the domain and codomain. We define a functor ⌊−⌋ : Law𝑛+1 (𝑆) →
Law𝑛 (𝑆) sending an (𝑛 + 1)th-order algebraic theory ℒ

′ to its full subcategory on L𝑛 (𝑆).
These functors form an adjunction Law𝑛 (𝑆) : ⌈−⌉ ⊣ ⌊−⌋ : Law𝑛+1 (𝑆). For consider an 𝑛th-order

algebraic theory ℒ and (𝑛 + 1)th-order algebraic theory ℒ
′: a map of (𝑛 + 1)th-order algebraic

theories 𝐹 : ⌈ℒ⌉ →ℒ
′ is nontrivial only on objects of L𝑛 (𝑆), as each map is identity-on-objects;

likewise, a map of 𝑛th-order algebraic theories 𝐺 : ℒ → ⌊ℒ′⌋ is entirely determined on objects of
L𝑛 (𝑆), essentially by definition. Thus Law𝑛+1 (𝑆) (⌈ℒ⌉,ℒ′) � Law𝑛 (𝑆) (ℒ, ⌊ℒ′⌋). □

The following property of ⌈−⌉ is needed later.

Lemma A.12. The functor 𝐿 ↦→ ⌈ℒ⌉ (1, ⌈𝐿⌉ (−)) : Law𝑛 (𝑆) → [L𝑛+1 (𝑆), Set] is fully faithful, for
all 𝑛 ∈ N𝜔 .

Proof. We first prove this for the case 𝑛 > 0. Given a natural transformation
𝛼 : ⌈ℒ⌉ (1, ⌈𝐿⌉ (−)) ⇒ ⌈ℒ′⌉ (1, ⌈𝐿′⌉ (−)), we define an identity-on-objects functor
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𝐹𝛼 : ⌊⌈ℒ⌉⌋ → ⌊⌈ℒ′⌉⌋ on morphisms as:
⌊⌈ℒ⌉⌋ (𝑋,𝑌 ) = ⌈ℒ⌉ (𝑋,𝑌 )

𝜆
� ⌈ℒ⌉ (1, 𝑌𝑋 )
= ⌈ℒ⌉ (1, ⌈𝐿⌉ (𝑌𝑋 ))
𝛼−→ ⌈ℒ′⌉ (1, ⌈𝐿′⌉ (𝑌𝑋 ))
= ⌈ℒ′⌉ (1, 𝑌𝑋 )
𝜆−1

� ⌈ℒ′⌉ (𝑋,𝑌 )
= ⌊⌈ℒ′⌉⌋ (𝑋,𝑌 )

Preservation of identities and composition follows by naturality of 𝛼 . Furthermore, naturality of
𝛼 implies the commutativity of the following diagram, so terminality of 1 implies 𝛼𝑍 (⌈𝐿(𝑧)⌉) =
⌈𝐿′(𝑧)⌉, for every 𝑧 ∈ L𝑛+1 (1, 𝑍 ).

⌈ℒ⌉ (1, 1) ⌈ℒ′⌉ (1, 𝑍 )

⌈ℒ′⌉ (1, 1) ⌈ℒ′⌉ (1, 𝑍 )

𝛼1 𝛼𝑍

⌈𝐿 (𝑧) ⌉

⌈𝐿′ (𝑧) ⌉

This implies that ⌊⌈𝐿′⌉⌋ = 𝐹𝛼 ◦ ⌊⌈𝐿⌉⌋, hence 𝐹𝛼 is a morphism ⌊⌈𝐿⌉⌋ → ⌊⌈𝐿′⌉⌋ in Law𝑛 (𝑆), and so
𝜂−1 ◦ 𝐹𝛼 ◦ 𝜂 is a morphism 𝐿 → 𝐿′ in Law𝑛 (𝑆), where 𝜂 is the unit of the coreflection.

Now consider a morphism𝐺 : 𝐿 → 𝐿′ in Law𝑛 (𝑆). The functor maps𝐺 to the natural transforma-
tion 𝛼 defined as the hom-function of ⌈𝐺⌉. Since ⌈𝐺⌉ preserves exponentials, we have 𝐹𝛼 = ⌊⌈𝐺⌉⌋,
which implies 𝜂−1 ◦ 𝐹𝛼 ◦ 𝜂 = 𝐺 .

To show that composing the functions between the hom-sets in the other direction also gives
the identity, consider the following diagram, for 𝑋 ∈ L𝑛+1 (𝑆) and 𝑍 ∈ L𝑛 (𝑆).

⌈ℒ⌉ (𝑍,𝑋 ) ⌈ℒ⌉ (1, 𝑋𝑍 ) ⌈ℒ′⌉ (1, 𝑋𝑍 ) ⌈ℒ′⌉ (𝑍,𝑋 )

⌈⌊⌈ℒ⌉⌋⌉ (𝑍,𝑋 ) ⌈⌊⌈ℒ⌉⌋⌉ (𝑍,𝑋 )

𝜆

⌈𝜂 ⌉

𝛼 𝜆−1

⌈𝜂 ⌉

⌈𝐹𝛼 ⌉

Commutativity of the diagram will then imply the lemma statement when 𝑍 = 1. The diagram can
be shown to commute by induction on 𝑋 : if 𝑋 ∈ L𝑛 (𝑆), commutativity follows from the definition
of 𝐹𝛼 and invertibility of the unit 𝜂; otherwise, we use naturality of 𝛼 and commutativity of ⌈𝜂⌉
with products and exponentials.

For 𝑛 = 0, the proof is similar, except that we construct a morphism 𝑋 → 𝑋 ′ in Set𝑆 :

𝑋𝑠 � ⌈𝑋 ⌉ (1, 𝑠)
𝛼−→ ⌈𝑋 ′⌉ (1, 𝑠) � 𝑋 ′𝑠 □

Corollary A.13. Let 0 < 𝑚 ≤ 𝑛 ∈ N𝜔 . Law𝑚 (𝑆) is a coreflective subcategory of Law𝑛 (𝑆).
Proof. Proof proceeds as in Theorem 5.3 using Proposition A.7. □

Corollary A.14. Let 𝐷 = ⌈−⌉ ◦ ⌊−⌋ be the comonad induced by the adjunction

Law𝑛 (𝑆) Law𝑛+1 (𝑆)
⌈−⌉

⌊−⌋

⊣

There is an equivalence Law𝑛 (𝑆) ≃ 𝐷-Coalg.
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Proof. Every coreflective subcategory is equivalent to the Eilenberg–Moore category of its
associated idempotent comonad [Borceux 1994b, Corollary 4.2.4] and so the result follows from
Theorem 5.3. □

A.5.3 Models and strict models.

Proposition 5.7. Let 𝐿 : L𝑛 (𝑆) → ℒ be an 𝑛th-order algebraic theory, and let 𝑈 : Law𝑛 (𝑆) →
Cart be the functor forgetting the generating sorts and specified structure. The coslice category
𝐿/Law𝑛 (𝑆) is a non-full subcategory of

∫
Mod(𝐿,𝑈 (−)).

Proof. Explicitly, the category
∫
Mod(𝐿,𝑈 (−)) has

• objects, pairs (𝐿′ ∈ Law𝑛 (𝑆), 𝑀 : ℒ → 𝑈 (𝐿′));
• morphisms, pairs (𝐹 : 𝐿′→ 𝐿′′, 𝜇 : ℒ 𝑀−→ 𝑈 (𝐿′)

𝑈 (𝐹 )
−−−−→ 𝑈 (𝐿′′) ⇒ 𝑀 ′).

It is evident that the coslice category 𝐿/Law𝑛 (𝑆) is contained inside this one, precisely as that for
which𝑀 ◦ 𝐿 = 𝐿′ and 𝜇 is the identity. □

Proposition 5.8.
∫
Mod(𝐿,−) is equivalent to the subcategory of the lax coslice ℒ//Cart for

which the coslices preserve exponentials.

Proof. Explicitly, the category
∫
Mod(𝐿,−) has

• objects, pairs (𝒞 ∈ Cart, 𝑀 : ℒ → 𝒞);
• morphisms, pairs (𝐹 : 𝒞 → 𝒞

′, 𝜇 : ℒ 𝑀−→ 𝒞
𝐹−→ 𝒞

′⇒ 𝑀 ′),
which is seen to be exactly the data of the lax coslice when𝑀 is restricted to functors preserving the
exponentiable objects in ℒ. One may describe this subcategory more elegantly by a generalisation
of a comma category in which morphisms between objects are taken in another category, though
we shall not spell this out here. □

Proposition A.15. Let 𝒞 be a category with finite colimits and let 𝑓 : 𝑋 → 𝑌 be a morphism
in 𝒞. The pushout functor 𝑌 +𝑋 (−) : 𝑋/𝒞 → 𝑌/𝒞 is left adjoint to the precomposition functor
(−) ◦ 𝑓 : 𝑌/𝒞 → 𝑋/𝒞.

Proof. Let 𝑎 : 𝑌 → 𝐴 and 𝑏 : 𝑋 → 𝐵 in 𝒞. 𝑌/𝒞(𝑌 +𝑋 𝑏, 𝑎) � 𝑋/𝒞(𝑏, 𝑎 ◦ 𝑓 ), directly by the
universal property of colimits. □

Corollary A.16. Let 𝒞 be a category with binary coproducts and let 𝑋 ∈ 𝒞. The forgetful functor
𝑈 : 𝑋/𝒞 → 𝒞 has a left adjoint given by 𝜋

1 : 𝑋 → 𝑋 + (−). □

Theorem 5.9. Let𝑛 ∈ N𝜔 . The forgetful functor ⌊−⌋◦𝑈 : 𝐿/Law𝑛+1 (𝑆) → Law𝑛+1 (𝑆) → Law𝑛 (𝑆)
has a left adjoint, sending 𝐿′ to 𝐿 + ⌈𝐿′⌉.

Proof. Law𝑛 (𝑆) has binary coproducts by Theorem 7.5 and so 𝑈 has a left adjoint by Corol-
lary A.16. The result then follows from Corollary A.13. □

Theorem 5.10. Let 𝐹 : 𝐿 → 𝐿′ be a map of 𝑆-sorted 𝑛th-order algebraic theories. The functor
𝐿′/Law𝑛 (𝑆) → 𝐿/Law𝑛 (𝑆) taking a strict model for 𝐿′ to its precomposition by 𝐹 has a left adjoint.

Proof. Direct by Proposition A.15. □

Proposition 5.11. Let 𝐿 : L𝑛 (𝑆) → ℒ be an 𝑛th-order algebraic theory. For every model 𝑀 :
ℒ → 𝒞, there exists an 𝑛th-order algebraic theory 𝐿𝑀 : L𝑛 (𝑆) → ℒ𝑀 , a map 𝐹𝑀 : 𝐿 → 𝐿𝑀 and a
fully faithful functor𝑀 ′ : ℒ𝑀 → 𝒞 such that𝑀 ′ ◦ 𝐹𝑀 � 𝑀 .

Proof. The identity-on-objects/fully-faithful factorisation system on Cat lifts to CCC, and so
𝑀 factorises as𝑀 ′ ◦ 𝐹𝑀 . □
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A.5.4 Term algebras.

Lemma 5.14. For each 𝑛 ∈ N𝜔 , the semantics functor TmAlg : Law𝑛+1 (𝑆)op → CAT/Law𝑛 (𝑆) is
fully faithful. In particular, it reflects isomorphisms.

Proof. Lemma 6.4 defines a fully faithful functor Alg : RMnd(𝑝)op → CAT/Law𝑛 (𝑆). As part
of the monad correspondence (Theorem 8.2) we also have a fully faithful functor Law𝑛+1 (𝑆) →
RMnd(𝑝). Since this preserves algebras, the composition

Law𝑛+1 (𝑆)op → RMnd(𝑝)op Alg
−−→ CAT/Law𝑛 (𝑆)

is naturally isomorphic to the semantics functor TmAlg, which is therefore fully faithful. □

Lemma A.17. If 𝐿 : L𝑛+1 (𝑆) → ℒ is an (𝑛 + 1)th-order algebraic theory and 𝐴 : ℒ → Set is
cartesian, then 𝐿𝐴 : L𝑛 (𝑆) →ℒ𝐴 (defined in Section 5.4) is an 𝑛th-order algebraic theory. Moreover,
𝐿𝐴 is unique (up to isomorphism in Law𝑛 (𝑆) such that there exists a natural isomorphism 𝐴 ◦ 𝐿 �
⌈ℒ𝐴⌉ (1, ⌈𝐿𝐴⌉ (−))).

Proof. First note that if 𝐴 ◦ 𝐿 � ⌈ℒ𝐴⌉ (1, ⌈𝐿𝐴⌉ (−)), then since 𝐿′ ↦→ ⌈ℒ′⌉ (1, ⌈𝐿⌉ (−)) is fully
faithful (Lemma A.12), 𝐿𝐴 is the unique functor with this property. It remains for us to show that
𝐿𝐴 is an 𝑛th-order algebraic theory, and that this natural isomorphism exists.

For 𝑛 = 0, we trivially have 𝐿𝐴 = 𝑠 ↦→ 𝐴(𝑠) ∈ Set𝑆 . Each first-order arity has the form
∏

𝑖 𝑠𝑖 , and
we have isomorphisms,

𝐴(𝐿(∏𝑖 𝑠𝑖 )) = 𝐴(∏𝑖 𝑠𝑖 ) (𝐿 is identity-on-objects)
�

∏
𝑖 𝐴(𝑠𝑖 ) (𝐴 preserves products)

=
∏

𝑖 𝐿𝐴 (𝑠𝑖 ) (definition of 𝐿𝐴)
�

∏
𝑖 ⌈ℒ𝐴⌉ (1, 𝑠𝑖 ) (coreflection)

� ⌈ℒ𝐴⌉ (1,
∏

𝑖 𝑠𝑖 ) (products in ⌈ℒ𝐴⌉)
= ⌈ℒ𝐴⌉ (1, ⌈𝐿𝐴⌉ (

∏
𝑖 𝑠𝑖 )) (⌈𝐿𝐴⌉ is identity-on-objects)

which are natural.
For 𝑛 > 0, the universal properties of products and exponentials imply thatℒ𝐴 is a category and

that 𝐿𝐴 is an identity-on-objects functor. ℒ𝐴 has finite products, since:

ℒ𝐴 (𝑋,
∏

𝑖 𝑌𝑖 ) = 𝐴((∏𝑖 𝑌𝑖 )𝑋 ) (definition ofℒ𝐴)
� 𝐴(∏𝑖 (𝑌𝑖𝑋 )) ((−)𝑋 preserves products)
�

∏
𝑖 𝐴(𝑌𝑖𝑋 ) (𝐴 preserves products)

�
∏

𝑖 ℒ𝐴 (𝑋,𝑌𝑖 ) (definition ofℒ𝐴)

and this sends the identity on
∏

𝑖 𝑌𝑖 to (𝐿𝐴 (𝜋𝑖 ))𝑖 . Exponentials are trivial, and so 𝐿𝐴 is an 𝑛th-order
algebraic theory.
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To construct the required family of isomorphisms we note that every (𝑛 + 1)th-order arity has
the form

∏
𝑖 𝑠𝑖

𝑋𝑖 for 𝑋𝑖 ∈ L𝑛 (𝑆) (𝑆), and we have isomorphisms,
𝐴(𝐿(∏𝑖 𝑠𝑖

𝑋𝑖 )) = 𝐴(∏𝑖 𝑠𝑖
𝑋𝑖 ) (𝐿 is identity-on-objects)

�
∏

𝑖 𝐴(𝑠𝑖𝑋𝑖 ) (𝐴 preserves products)
�

∏
𝑖 ℒ𝐴 (𝑋𝑖 , 𝑠𝑖 ) (definition of 𝐿𝐴)

�
∏

𝑖 ⌈ℒ𝐴⌉ (𝑋𝑖 , 𝑠𝑖 ) (coreflection)
� ⌈ℒ𝐴⌉ (1,

∏
𝑖 𝑠𝑖

𝑋𝑖 ) (products and exponentials in ⌈ℒ𝐴⌉)
= ⌈ℒ𝐴⌉ (1, ⌈𝐿𝐴⌉ (

∏
𝑖 𝑠𝑖

𝑋𝑖 )) (⌈𝐿𝐴⌉ is identity-on-objects)
which are natural. □

Below we explicate the relationship between term algebras and cartesian functors. Recall that
Cart(ℒ, Set) is the category of cartesian functorsℒ → Set and natural transformations between
them (Definition A.2).

Lemma A.18. Suppose that 𝐿 : L𝑛+1 (𝑆) →ℒ is an (𝑛 + 1)th-order algebraic theory, where 𝑛 ∈ N𝜔 .
Using the natural isomorphisms 𝐴 ◦ 𝐿 � ⌈ℒ𝐴⌉ (1, ⌈𝐿𝐴⌉ (−)) from Lemma A.17, the following square
forms a 2-pullback in CAT.

Cart(ℒ, Set) [ℒ, Set]

Law𝑛 (𝑆) [L𝑛+1 (𝑆), Set]

𝐿(−) −◦𝐿

𝐿′ ↦→⌈ℒ′⌉ (1, ⌈𝐿′⌉ (−))

�

Proof. The construction of an 𝑛th-order algebraic theory 𝐿𝐴 from a cartesian functor 𝐴 is
functorial by sending a natural transformation 𝛼 : 𝐴⇒ 𝐴′ to 𝐿𝛼 : 𝐿𝐴 → 𝐿𝐴′ in Law𝑛 (𝑆) given on
morphisms by

𝐿𝐴 (𝑋,𝑌 ) = 𝐴(𝑌𝑋 )
𝛼
𝑌𝑋

−−−→ 𝐴′(𝑌𝑋 ) = 𝐿′𝐴 (𝑋,𝑌 )
This is a morphism in Law𝑛 (𝑆) by naturality of 𝛼 .

To verify that we have a 2-pullback, we use the universal property described in Saville [2019,
Lemma 7.3.6]. Supposewe have a category𝒞 and functors 𝐹 : 𝒞 → Law𝑛 (𝑆) and𝐺 : 𝒞 → [ℒ, Set],
together with natural isomorphisms 𝐺 (𝑉 ) ◦ 𝐿 � cod(⌈𝐹 (𝑉 )⌉)(1, ⌈𝐹 (𝑉 )⌉ (−)), natural in 𝑉 ∈ 𝒞.
𝐺 (𝑉 ) is a cartesian functor, since cod(⌈𝐹 (𝑉 )⌉)(1, ⌈𝐹 (𝑉 )⌉ (−)) is cartesian, and𝐺 (𝑉 ) together with 𝐿
forms the identity-on-objects/fully-faithful factorisation in Cart, so𝐺 factors through Cart(ℒ, Set).
It now remains to show that the compositions of 𝐺 with the projections are naturally isomorphic
to 𝐹 and 𝐺 respectively, as in the following diagram, and that this choice is unique.

𝒞

Cart(ℒ, Set) [ℒ, Set]

Law𝑛 (𝑆) [L𝑛+1, Set]

𝐺

𝐺

𝐹

=

𝐿(−) −◦𝐿�

𝐿′ ↦→⌈ℒ′⌉ (1, ⌈𝐿′⌉ (−))

�

Since 𝐿′ ↦→ ⌈ℒ′⌉ (1, ⌈𝐿′⌉ (−)) is fully faithful (Lemma A.12), to define a natural isomorphism as on
the left in the diagram above, it suffices to find natural isomorphisms ⌈ℒ𝐺 (𝑉 )⌉ (1, ⌈𝐿𝐺 (𝑉 )⌉ (−)) �
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cod(⌈𝐹 (𝑉 )⌉)(1, ⌈𝐹 (𝑉 )⌉ (−)): these are given by
⌈ℒ𝐺 (𝑉 )⌉ (1, ⌈𝐿𝐺 (𝑉 )⌉ (−)) � 𝐺 (𝑉 ) ◦ 𝐿 � cod(⌈𝐹 (𝑉 )⌉)(1, ⌈𝐹 (𝑉 )⌉ (−))

where the first isomorphism follows from Lemma A.17.
For uniqueness, suppose we have a functor 𝐻 : 𝒞 → Cart(ℒ, Set) and natural transformations

𝜁1 and 𝜁2 as in the following diagram.

𝒞

Cart(ℒ, Set) [ℒ, Set]

Law𝑛 (𝑆) [L𝑛+1, Set]

𝐺

𝐻

𝐹

𝜁1

𝐿(−) −◦𝐿𝜁2

𝐿′ ↦→⌈ℒ′⌉ (1, ⌈𝐿⌉ (−))

�

𝜁1 forms a natural transformation 𝐻 ⇒ 𝐺 , which we use as the unique 2-cell exhibiting 𝐺 as
satisfying the universal property. To show that

𝐿𝐻 (𝑉 ) 𝐿𝐺 (𝑉 )

𝐹 (𝑉 )

𝐿𝜁1

𝜁2 �

commutes, it suffices for the following to commute, because 𝐿′ ↦→ ⌈ℒ′⌉ (1, ⌈𝐿′⌉ (−)) is faithful
(Lemma A.12).

⌈ℒ𝐻 (𝑉 )⌉ (1, ⌈𝐿𝐻 (𝑉 )⌉ (−)) ⌈ℒ𝐺 (𝑉 )⌉ (1, ⌈𝐿𝐺 (𝑉 )⌉ (−))

⌈𝐹 (𝑉 )⌉ (1,−) 𝐺 (𝑉 ) ◦ 𝐿

𝐿⌈𝜁1⌉

⌈𝜁2 ⌉ �

�

This holds because 𝜁1 and 𝜁2 form a fill-in. Finally, applying the universal property to the fill-in
given by 𝐺 clearly yields a natural isomorphism. □

Proposition 5.15. Let 𝐿 : L𝑛+1 (𝑆) →ℒ be an (𝑛+1)th-order algebraic theory, where𝑛 ∈ N𝜔 . Then
𝐿-TmAlg is equivalent to Cart(ℒ, Set), and this equivalence commutes up to natural isomorphism
with the forgetful functors into Law𝑛 (𝑆).

Proof. The functor −◦𝐿 is a discrete isofibration by Bourke and Garner [2019, Example 3], so the
pullback defining 𝐿-TmAlg forms a 2-pullback by Joyal and Street [1993, Corollary 1]. The required
equivalence then exists because the cartesian functors also form a 2-pullback (Lemma A.18). □

Proposition 5.16. Let 𝐿 : L𝑛 (𝑆) →ℒ be an 𝑛th-order algebraic theory. Up to the equivalence of
Proposition 5.15, the hom-functor ℒ(1,−) : ℒ → Set is the initial term algebra.

Proof. Let 𝑇 : ℒ → Set be a term algebra. [ℒ, Set] (ℒ(1,−),𝑇 ) � 𝑇 (1) � 1 by the Yoneda
lemma and that 𝑇 is cartesian, so there is a unique morphism from ℒ(1,−) to 𝑇 . □

Lemma 5.17. Let 𝐿 : L𝑛 (𝑆) →ℒ be an 𝑛th-order algebraic theory. For every term algebra𝐴 : ℒ →
Set, there exists an 𝑛th-order algebraic theory 𝐿𝐴 : L𝑛 (𝑆) → ℒ𝐴 and a map 𝐹𝐴 : 𝐿 → 𝐿𝐴 such that
ℒ𝐴 (1, 𝐹𝐴 (−)) � 𝐴.

Proof. We prove this as an intermediate result of Proposition 5.18. □
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Proposition 5.18. 𝐿-TmAlg is a coreflective subcategory of 𝐿/Law𝑛+1 (𝑆), for 𝑛 ∈ N𝜔 .

Proof. We define a functor 𝐿/Law𝑛+1 (𝑆) → 𝐿-TmAlg. Given a coslice (𝐿′, 𝐹 : 𝐿 → 𝐿′), the
following diagram commutes up to a natural isomorphism given by the counit 𝜀ℒ′ of the coreflection.

Set

ℒ
′ ⌈⌊ℒ′⌋⌉

ℒ

L𝑛+1 (𝑆) L𝑛+1 (𝑆)

⌈ ⌊ℒ′⌋ ⌉ (1,−)

𝐿

𝐹

𝜀ℒ′

ℒ
′ (1,−)

⌈ ⌊𝐿′⌋ ⌉
𝐿′

Since − ◦ 𝐿 is an discrete isofibration, there therefore exists a term algebra (⌊𝐿′⌋, 𝐴) with 𝐴 �
ℒ
′(1, 𝐹 (−)), which we take to be the image of (𝐿′, 𝐹 : 𝐿 → 𝐿′) under the functor 𝐿/Law𝑛+1 (𝑆) →

𝐿-TmAlg.
In the other direction, we define a functor 𝐿-TmAlg → 𝐿/Law𝑛+1 (𝑆) as follows. Consider a

term algebra (𝐿′, 𝐴). For all 𝑋 ∈ L𝑛+1 (𝑆), we have ⌈ℒ′⌉ (1, 𝑋 ) = 𝐴(𝑋 ) by the pullback condition.
Hence, for all 𝑋,𝑌 ∈ L𝑛 (𝑆), we have ℒ

′(𝑋,𝑌 ) = 𝐴(𝑌𝑋 ), because ⌈ℒ′⌉ (1,−) is fully faithful
(Lemma A.12) and ℒ

′ has strict exponentials. We define an (𝑛 + 1)th-order algebraic theory
𝐿′′ : L𝑛+1 (𝑆) →ℒ

′′, for whichℒ′′ is a full supercategory ofℒ and such that, for every 𝑓 : 𝑋 → 𝑌

for 𝑋 ∈ L𝑛+1 (𝑆), 𝑌 ∈ L𝑛+1 (𝑆), where 𝑋 ∉ L𝑛 (𝑆), we have a unique morphism 𝑓 ∈ ℒ
′′(𝑋,𝑌 )

satisfying 𝑓 ◦ 𝑥 = 𝐴(𝑓 ) (𝑥) for every 𝑥 ∈ 𝐴(𝑋 ). We also define a map of (𝑛 + 1)th-order algebraic
theories 𝐿 → 𝐿′′ sending each 𝑓 : 𝑋 → 𝑌 in ⌊ℒ⌋ to 𝐹 (𝜆𝑓 )◦⟨⟩−1 : 1→ 𝐹 (1) → 𝐹 (𝑌𝑋 ) = ℒ

′′(𝑋,𝑌 ),
and each 𝑓 : 𝑋 → 𝑌 inℒ for 𝑋 ∉ L𝑛+1 (𝑆) to 𝑓 .

Consider a term algebra (𝐿′, 𝐴). The image of both 𝐿′ and 𝐴 under the composite ⌈𝐿⌉-TmAlg→
𝐿/Law𝑛+1 (𝑆) → ⌈𝐿⌉-TmAlg is naturally isomorphic to the identity, the former because ⌊ℒ′′⌋ = ℒ

′

and the latter becausemaps of theories are identity-on-objects, soℒ′′(1, 𝐹 (𝑋 )) = ℒ
′′(1, 𝑋 ) = 𝐴(𝑋 ),

with the image of morphisms 𝑓 : 𝑋 → 𝑌 coinciding by construction.
Functoriality is straightforward. Hence the functor ⌈𝐿⌉-TmAlg→ 𝐿/Law𝑛+1 (𝑆) is a section up

to isomorphism, and so ⌈𝐿⌉-TmAlg is a coreflective subcategory of 𝐿/Law𝑛+1 (𝑆). □

Proposition 5.20. 𝐿/Law𝑛 (𝑆) is a coreflective subcategory of ⌈𝐿⌉-TmAlg, for 𝑛 ∈ N𝜔 .

Proof. The proof is similar to that of Proposition 5.18, though somewhat simpler.
We define a functor 𝐿/Law𝑛 (𝑆) → ⌈𝐿⌉-TmAlg mapping a coslice (𝐿′, 𝐹 : 𝐿 → 𝐿′) to the pair
(𝐿′, ⌈ℒ′⌉ (1, ⌈𝐹 ⌉ (−))), which is straightforwardly a term algebra for ⌈𝐿⌉.
In the other direction, we define a functor ⌈𝐿⌉-TmAlg→ 𝐿/Law𝑛 (𝑆) as follows. Consider a term

algebra (𝐿′, 𝐴). For all 𝑋 ∈ L𝑛+1 (𝑆), we have ⌈ℒ′⌉ (1, 𝑋 ) = 𝐴(𝑋 ) by the pullback condition. Hence,
for all 𝑋,𝑌 ∈ L𝑛 (𝑆), we haveℒ′(𝑋,𝑌 ) = 𝐴(𝑌𝑋 ), because ⌈ℒ′⌉ (1,−) is fully faithful (Lemma A.12)
and ℒ

′ has strict exponentials. We define a map of 𝑛th-order algebraic theories 𝐿 → 𝐿′ sending
each 𝑓 : 𝑋 → 𝑌 in ℒ to 𝐴(𝜆𝑓 ) ◦ ⟨⟩−1 : 1→ 𝐴(1) → 𝐴(𝑌𝑋 ) = ℒ

′(𝑋,𝑌 ).
Consider a coslice 𝐹 : 𝐿 → 𝐿′. The image under the composite 𝐿/Law𝑛 (𝑆) → ⌈𝐿⌉-TmAlg →

𝐿/Law𝑛 (𝑆) on 𝐿′ is the identity. Consider a morphism 𝑓 : 𝑋 → 𝑌 in ℒ. It is mapped under the
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image on the map 𝐹 to

⌈ℒ′⌉ (1, ⌈𝐹 ⌉ (𝜆𝑓 )) = ⌈ℒ′⌉ (1, 𝜆(⌈𝐹 ⌉ (𝑓 ))) maps strictly preserve exponentials
� ⌈ℒ′⌉ (1, 𝜆(𝐹 (𝑓 ))) counit of coreflection is invertible
� 𝐹 (𝑓 ) uncurrying

Functoriality is straightforward. Hence the functor 𝐿/Law𝑛 (𝑆) → ⌈𝐿⌉-TmAlg is a section up to
isomorphism, and so 𝐿/Law𝑛 (𝑆) is a coreflective subcategory of ⌈𝐿⌉-TmAlg. □

Corollary A.19. For every 𝐿 : L𝜔 (𝑆) →ℒ, there is an equivalence 𝐿/Law𝜔 (𝑆) ≃ 𝐿-TmAlg.

Proof. It suffices to show that the counit of the coreflective adjunction of Proposition 5.18, in the
case 𝑛 = 𝜔 , is an isomorphism. Let 𝐿′ : L𝜔 (𝑆) →ℒ

′ with 𝐹 : 𝐿 → 𝐿′ be a coslice under 𝐿. The term
algebra𝐴𝐿 : ℒ → Set is given byℒ′(1, 𝐹 (−)). For all𝑋 ∈ L𝜔 (𝑆), we haveℒ𝐴𝐿

(1, 𝑋 ) def= 𝐴𝐿′ (𝑋 )
def
=

ℒ
′(1, 𝐹 (𝑋 )) = ℒ

′(1, 𝑋 ) as 𝐹 is identity-on-objects. As every object in L𝜔 (𝑆) is exponentiable,
it follows that, for all 𝑋,𝑌 ∈ L𝜔 (𝑆), we have ℒ𝐴𝐿

(𝑋,𝑌 ) � ℒ𝐴𝐿
(1, 𝑌𝑋 ) = ℒ(1, 𝑌𝑋 ) � ℒ(𝑋,𝑌 ).

Thus, as maps of 𝜔-order algebraic theories are identity-on-objects, ℒ𝐴𝐿
� 𝐿, from which the

equivalence follows. □

A.5.5 Theories from arities.

Lemma A.20. Suppose that 𝐿 : L𝑛+1 (𝑆) →ℒ is an (𝑛 + 1)th-order algebraic theory, where 𝑛 ∈ N𝜔 .
The simple slices of 𝐿 form a functor 𝐿//− : ℒop → Law𝑛+1 (𝑆).

Proof. Thatℒ//𝑋 is a category follows from its characterisation as a Kleisli category; functo-
riality of 𝐿//𝑋 : L𝑛+1 (𝑆) → ℒ//𝑋 is clear. The projection and evaluation morphisms in L𝑛+1 (𝑆)
under 𝐿//𝑋

(𝐿//𝑋 ) (𝜋 𝑗 ) ∈ (ℒ//𝑋 ) (
∏

𝑖 𝑌𝑖 , 𝑌𝑗 )
(𝐿//𝑋 ) (ev𝑌 ′,𝑌 ) ∈ (ℒ//𝑋 ) (𝑌𝑌 ′ × 𝑌 ′, 𝑌 )

satisfy the universal properties of projections and evaluations in ℒ//𝑋 . Hence 𝐿//𝑋 is an (𝑛 + 1)th-
order algebraic theory.

For each 𝑓 : 𝑋 ′→ 𝑋 in ℒ, the identity-on-objects functor (𝐿//𝑓 ) : (𝐿//𝑋 ) → (𝐿//𝑋 ′) is defined
on morphisms by

(ℒ//𝑋 ) (𝑌,𝑌 ′) = ℒ(𝑋 × 𝑌,𝑌 ′)
−◦(𝑓 ×𝑌 )
−−−−−−−→ ℒ(𝑋 ′ × 𝑌,𝑌 ′) = (ℒ//𝑋 ′) (𝑌,𝑌 ′)

For each 𝑔 : 𝑌 → 𝑌 ′ in L𝑛+1 (𝑆), we have (𝐿//𝑓 ) ((𝐿//𝑋 ′) (𝑔)) = (𝐿//𝑋 ) (𝑔), so 𝐿//𝑓 is a map of
algebraic theories. Finally, it is clear that 𝐿//− preserves identities and composition, so is a functor
ℒ

op → Law𝑛 (𝑆). □

To exhibit the universal property of 𝑝 , we first show that the simple slices 𝐿//− satisfy a similar
universal property. For each 𝑋 ∈ L𝑛+1 (𝑆), we write 𝑋 ∗ : 𝐿 → 𝐿//𝑋 for the canonical morphism of
(𝑛 + 1)th-order algebraic theories sending 𝑓 : 𝑌 → 𝑌 ′ to 𝑓 ◦ 𝜋𝑌 : 𝑋 × 𝑌 → 𝑌 ′.

Lemma A.21. Suppose that 𝑋 ∈ L𝑛+1 (𝑆), where 𝑛 ∈ N𝜔 , and that 𝐿 : L𝑛+1 (𝑆) →ℒ is an (𝑛 + 1)th-
order algebraic theory. For each 𝑛th-order algebraic theory 𝐿′ : L𝑛 (𝑆) →ℒ

′, morphism 𝐹 : 𝐿 → 𝐿′ in
Law𝑛 (𝑆), and 𝑥 ∈ ℒ′(1, 𝑋 ), there is a unique morphism �(𝐹, 𝑥) : 𝐿//𝑋 → 𝐿′ in Law𝑛 (𝑆) such that�(𝐹, 𝑥) ◦ 𝑋 ∗ = 𝐹 and �(𝐹, 𝑥) (𝜋𝑋 ) = 𝑥 ∈ ℒ′(1, 𝑋 ).
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Proof. We first show uniqueness. If �(𝐹, 𝑥) (𝜋𝑋 ) = 𝑥 then�(𝐹, 𝑥) (⟨𝜋𝑋 , 𝜋𝑌 ⟩) = ⟨�(𝐹, 𝑥) (𝜋𝑋 ), �(𝐹, 𝑥) (𝜋𝑌 )⟩ = ⟨𝑥, id𝑌 ⟩ ∈ ℒ
′(𝑌,𝑋 × 𝑌 )

where the first equality uses that �(𝐹, 𝑥) preserves products (tupling in ℒ//𝑋 is the same as tupling
inℒ), and the second equality uses that �(𝐹, 𝑥) preserves identities (the identity on 𝑌 inℒ//𝑋 is
𝜋𝑌 ). Now, if �(𝐹, 𝑥) ◦ 𝑋 ∗ = 𝐹 , then, for all 𝑓 ∈ ℒ(𝑋 × 𝑌,𝑌 ′),�(𝐹, 𝑥) (𝑓 ) = �(𝐹, 𝑥) (𝑋 ∗ (𝑓 ) ◦ ⟨𝜋𝑋 , ⟨𝜋𝑋 , 𝜋𝑌 ⟩⟩) (definition of 𝑋 ∗, products inℒ)

= �(𝐹, 𝑥) (𝑋 ∗ (𝑓 )) ◦ �(𝐹, 𝑥) ⟨𝜋𝑋 , 𝜋𝑌 ⟩ (�(𝐹, 𝑥) preserves composition)

= �(𝐹, 𝑥) (𝑋 ∗ (𝑓 )) ◦ ⟨𝑥, id𝑌 ⟩ (above)

= 𝐹 (𝑓 ) ◦ ⟨𝑥, id𝑌 ⟩ (�(𝐹, 𝑥) ◦ 𝑋 ∗ = 𝐹 )

which implies uniqueness.
It remains to show existence. Define the identity-on-objects functor �(𝐹, 𝑥) by �(𝐹, 𝑥) (𝑓 ) def

=

𝐹 (𝑓 ) ◦ ⟨𝑥, id𝑌 ⟩. We have �(𝐹, 𝑥)𝜋𝑋 = 𝑥 and �(𝐹, 𝑥) ◦𝑋 ∗ = 𝐹 because 𝐹 preserves products. The latter
implies �(𝐹, 𝑥) ◦ (𝐿//𝑋 ) = �(𝐹, 𝑥) ◦ 𝑋 ∗ ◦ 𝐿 = 𝐹 ◦ 𝐿 = 𝐿′

and this implies preservation of identities. Preservation of composition holds because�(𝐹, 𝑥) (𝑔 ◦ ⟨𝜋𝑋 , 𝑓 ⟩) = 𝐹 (𝑔 ◦ ⟨𝜋𝑋 , 𝑓 ⟩) ◦ ⟨𝑥, id𝑌 ⟩ (definition of �(𝐹, 𝑥))
= 𝐹𝑔 ◦ ⟨𝜋𝑋 , 𝐹 𝑓 ⟩ ◦ ⟨𝑥, id𝑌 ⟩ (𝐹 preserves composition and products)
= 𝐹𝑔 ◦ ⟨𝑥, id𝑌 ′⟩ ◦ 𝐹 𝑓 ◦ ⟨𝑥, id𝑌 ⟩ (products inℒ

′)

= �(𝐹, 𝑥)𝑔 ◦ �(𝐹, 𝑥) 𝑓 (definition of �(𝐹, 𝑥))
So �(𝐹, 𝑥) is a map of algebraic theories. □

We specialise this universal property to 𝐿 = Id.

Corollary A.22. Suppose that 𝑋 ∈ L𝑛+1 (𝑆), where 𝑛 ∈ N𝜔 . For each (𝑛 + 1)th-order algebraic
theory 𝐿 : L𝑛+1 (𝑆) →ℒ and 𝑥 ∈ ℒ(1, 𝑋 ), there is a unique morphism 𝑥 : Id//𝑋 → 𝐿 in Law𝑛+1 (𝑆)
such that 𝑥 (𝜋𝑋 ) = 𝑥 . In particular, we have bijections

ℒ(1, 𝑋 ) � Law𝑛+1 (𝑆) (Id//𝑋, 𝐿)

natural in 𝑋 and 𝐿.

Proof. Since Id ∈ Law𝑛+1 (𝑆) is initial, it follows from Lemma A.21 that we have 𝑥 = �(𝐿, 𝑥).
Naturality is simple to check. □

Lemma A.23. The component of the counit ⌈⌊Id//𝑋 ⌋⌉ → Id//𝑋 of the adjunction ⌈−⌉ ⊣ ⌊−⌋ on
Id//𝑋 is an isomorphism for each 𝑛 ∈ N𝜔 and 𝑋 ∈ L𝑛+1 (𝑆).

Proof. We first consider 𝑛 > 0. Morphisms 𝑌 → 𝑍 , for 𝑌, 𝑍 ∈ L𝑛 (𝑆), in ⌈⌊Id//𝑋 ⌋⌉ are given
by morphisms 𝑌 → 𝑍 in Id//𝑋 , so we shall only have to consider the case 𝑌, 𝑍 ∉ L𝑛 (𝑆). In fact, it
suffices to show that projections of 𝑋 from 𝑌 can be recovered in ⌈⌊Id//𝑋 ⌋⌉, as per the definition
of L𝑛+1 (𝑆) in Definition 4.2; these are the only morphisms in Id//𝑋 that are not automatically
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preserved by forgetting the (𝑛 + 1)th-order structure. The following diagram commutes in Id//𝑋 .

𝑌 𝑋

1

𝜋𝑋

! 𝜋𝑋

When 𝑋 ∈ L𝑛 (𝑆), we can therefore recover every projection of 𝑋 from 𝑌 by a corresponding global
element 1→ 𝑋 given by 𝜋𝑋 in Id//𝑋 . However, if 𝑋 ∉ L𝑛 (𝑆), these global elements do not exist in
⌊Id//𝑋 ⌋. Let 𝑋 = 𝑋2

𝑋1 for some 𝑋1, 𝑋2 ∈ L𝑛 (𝑆). A projection of 𝑋 from 𝑌 in Id//𝑋 is given by the
evaluation 𝑌 ×𝑋 ×𝑋1 = 𝑌 ×𝑋𝑋1

2 ×𝑋1 → 𝑋2 in L𝑛+1 (𝑆): this is a morphism 𝑌 ×𝑋1 → 𝑋2 in ⌊Id//𝑋 ⌋.
Therefore, after applying ⌈−⌉, the global element 1→ 𝑋 is recovered, and so every projection of 𝑋
in Id//𝑋 exists in ⌈⌊Id//𝑋 ⌋⌉. Hence ⌈⌊Id//𝑋 ⌋⌉ � Id//𝑋 , which is trivially given by the counit.
Finally, we consider 𝑛 = 0. We only have to consider the morphisms 𝑌1 × · · · × 𝑌𝑘 → 𝑋 , as

the others are clearly preserved by the counit. By the universal property of cartesian products, it
suffices to consider 𝑋 = 𝐴 for some 𝐴 ∈ 𝑆 . However, as 𝐴 ∈ L0 (𝑆), such a morphism is equivalently
given by a corresponding global element 1 → 𝑋 in Id//𝑋 , which is preserved by ⌊−⌋. Hence
⌈⌊Id//𝑋 ⌋⌉ � Id//𝑋 , which again is trivially given by the counit. □

Lemma 5.22. Let 𝑛 ∈ N𝜔 and 𝑋 ∈ L𝑛+1 (𝑆). For each 𝑛th-order algebraic theory 𝐿 : L𝑛 (𝑆) → ℒ

and 𝑥 ∈ ⌈ℒ⌉ (1, 𝑋 ), there is a unique morphism 𝐹 : 𝑝 (𝑋 ) → 𝐿 in Law𝑛 (𝑆) such that ⌈𝐹 ⌉ (𝜌𝑋 ) = 𝑥 . In
particular, we have the following bijection, natural in 𝑋 and 𝐿.

⌈ℒ⌉ (1, ⌈𝐿⌉ (𝑋 )) � Law𝑛 (𝑆) (𝑝 (𝑋 ), 𝐿)

Proof. By Corollary A.22, there is a unique morphism 𝑥 : Id//𝑋 → ⌈𝐿⌉ in Law𝑛+1 (𝑆) such that
𝑥 (𝜋𝑋 ) = 𝑥 . We write 𝜀 : ⌈⌊−⌋⌉ ⇒ Id for the counit of the coreflection. Then 𝜀Id//𝑋 has an inverse
𝜀−1

Id//𝑋 by Lemma A.23, and 𝜌𝑋 = 𝜀−1
Id//𝑋 (𝜋𝑋 ). We have

⌈𝐹 ⌉ (𝜌𝑋 ) = 𝑥 ⇔ ⌈𝐹 ⌉ ◦ 𝜀−1
Id//𝑋 = 𝑥 (uniqueness of 𝑥 )

⇔ ⌈𝐹 ⌉ = 𝑥 ◦ 𝜀Id//𝑋 (𝜀Id//𝑋 is invertible)
⇔ ⌈𝐹 ⌉ = 𝜀 ⌈𝐿⌉ ◦ ⌈⌊𝑥⌋⌉ (𝜀 is natural)
⇔ ⌈𝐹 ⌉ = ⌈𝜂−1

𝐿 ⌉ ◦ ⌈⌊𝑥⌋⌉ (triangle law, 𝜂𝐿 is invertible)
⇔ 𝐹 = 𝜂−1

𝐿 ◦ ⌊𝑥⌋ (⌈−⌉ is fully faithful)

so 𝐹
def
= 𝜂−1

𝐿
◦ ⌊𝑥⌋ is the required unique morphism. Naturality follows from naturality of (̂−) and

of 𝜂−1. □

The following property of 𝑝 is needed later.

Lemma A.24. For each 𝑛 ∈ N𝜔 , the functor 𝑝op : L𝑛+1 (𝑆) → Law𝑛 (𝑆)op preserves products.

Proof. We have

Law𝑛 (𝑆) (𝑝 (
∏

𝑖 𝑋𝑖 ), 𝐿) � ⌈ℒ⌉ (1,
∏

𝑖 𝑋𝑖 ) (Lemma 5.22, ⌈𝐿⌉ is identity-on-objects)
�

∏
𝑖 ⌈ℒ⌉ (1, 𝑋𝑖 ) (products in ⌈ℒ⌉)

�
∏

𝑖 Law𝑛 (𝑆) (𝑝 (𝑋𝑖 ), 𝐿) (⌈𝐿⌉ is identity-on-objects, Lemma 5.22)

and the composition sends 𝐹 to (𝐹 ◦ 𝑝 (𝜋𝑖 ))𝑖 , using the universal property of 𝑝 . □
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A.6 Relative monads and theories
A.6.1 Preliminaries.

Lemma 6.4. There is a functor Alg : RMnd(𝑝)op → CAT/𝒞 that assigns to each relative monad 𝑇
on 𝑝 : 𝒞′→ 𝒞 the forgetful functor 𝑇 -Alg→ 𝒞 from its category of algebras. Moreover, Alg is fully
faithful, and in particular reflects isomorphisms.

Proof. Suppose that𝑚 : 𝑇 ⇒ 𝑇 ′ is a relative monad morphism and (𝐴, (−)‡) is a 𝑇 ′-algebra.
Then (𝐴, (−)‡◦𝑚) is an𝑇 -algebra because 𝑓 ‡◦𝑚◦𝜂 = 𝑓 ‡◦𝜂 ′ = 𝑓 and 𝑓 ‡◦𝑚◦𝑔† = 𝑓 ‡◦(𝑚 ◦ 𝑔)†◦𝑚 =

(𝑓 ‡ ◦𝑚 ◦ 𝑔)‡ ◦𝑚. Any 𝑇 ′-algebra homomorphism becomes a 𝑇 -algebra homomorphism trivially,
hence we have a functor RMnd(𝑝)op → CAT/𝒞.
To show it is fully faithful, let 𝐹 : 𝑇 ′-Alg → 𝑇 -Alg be a functor over 𝒞. For each 𝑋 ∈ 𝒞

′ we
have a free 𝑇 ′-algebra (𝑇 ′(𝑋 ), (−)†): this is sent by 𝐹 to a 𝑇 -algebra of the form (𝑇 ′(𝑋 ), (−)‡),
hence we have𝑚𝑋

def
= 𝜂 ′

𝑋
‡ : 𝑇 (𝑋 ) → 𝑇 ′(𝑋 ). This is a relative monad morphism because the Kleisli

extension of any morphism 𝑝 (𝑋 ) → 𝑇 ′(𝑌 ) is a homomorphism between free 𝑇 ′-algebras, hence a
homomorphism between the induced 𝑇 -algebras. So we have

(𝑚𝑌 ◦ 𝑓 )† ◦𝑚𝑋 = ((𝑚𝑌 ◦ 𝑓 )† ◦ 𝜂 ′𝑋 )
‡ ((𝑚𝑌 ◦ 𝑓 )† is an algebra homomorphism)

= (𝑚𝑌 ◦ 𝑓 )‡ (left unit law)
=𝑚𝑌 ◦ 𝑓 † (algebra law)

and𝑚𝑋 ◦ 𝜂𝑋 = 𝜂 ′
𝑋
because of the left unit law.

The functor 𝑇 ′-Alg → 𝑇 -Alg induced by this 𝑚 sends (𝐴, (−)‡) to (𝐴, (−)‡ ◦𝑚). Given any
𝑓 : 𝑝 (𝑋 ) → 𝐴, the extension 𝑓 ‡ : 𝑇 ′(𝑋 ) → 𝐴 is a homomorphism from the free 𝑇 ′-algebra, hence
a homomorphism from the induced 𝑇 -algebra. So

𝑓 ‡ ◦𝑚𝑋 = (𝑓 ‡ ◦ 𝜂 ′𝑋 )
‡ (𝑓 ‡ is an algebra homomorphism)

= 𝑓 ‡ (algebra law)

and hence the induced functor is the same as 𝐹 .
Given a relative monad morphism 𝑚 : 𝑇 ⇒ 𝑇 ′, the induced functor between categories of

algebras is given by (𝐴, (−)‡) ↦→ (𝐴, (−)‡ ◦𝑚), and the relative monad morphism induced by
this induced functor is 𝜂 ′

𝑋
† ◦𝑚𝑋 , which is𝑚𝑋 by the right unit law. Hence the constructions of

morphisms are inverses, and Alg is fully faithful. □

A.6.2 Relative monads from theories.
The bijections (12) in Section 6.2 are given by

Law𝑛 (𝑆) (𝑝 (𝑌 ),𝑇𝐿 (𝑋 )) � Law𝑛+1 (𝑆) (⌈𝑝 (𝑌 )⌉, 𝐿//𝑋 ) (transposing)
� Law𝑛+1 (𝑆) (Id//𝑌, 𝐿//𝑋 ) (Lemma A.23)
� (ℒ//𝑋 ) (1, 𝑌 ) (Corollary A.22)
= ℒ(𝑋,𝑌 ) (simple slice)

These are natural in 𝑋 ∈ ℒ and 𝑌 ∈ L𝑛+1 (𝑆) because each isomorphism is. They are also natural in
𝐿, i.e. for each 𝐹 : 𝐿 → 𝐿′ and𝐺 ∈ Law𝑛 (𝑆) (𝑝 (𝑌 ),𝑇𝐿 (𝑋 )), if the bijection sends𝐺 to 𝑔, then it sends
⌊𝐹//𝑋 ⌋ ◦𝐺 to 𝐹 (𝑔), where ⌊𝐹//𝑋 ⌋ is the restriction of 𝐹 to 𝑇𝐿 → 𝑇𝐿′ . Since the universal property
of 𝑝 is natural in the algebraic theory, the bijections are equivalently given on 𝐹 : 𝑝 (𝑌 ) → 𝑇𝐿 (𝑋 )
by sending ⌈𝐹 ⌉ (𝜌𝑌 ) ∈ ⌈𝑇𝐿 (𝑋 )⌉ (1, 𝑌 ) along the counit of the coreflection.
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Lemma 6.5. The above defines a functor Law𝑛+1 (𝑆) → RMnd(𝑝 : L𝑛+1 (𝑆)op → Law𝑛 (𝑆)) for each
𝑛 ∈ N𝜔 . For each (𝑛 + 1)th-order algebraic theory 𝐿 : L𝑛+1 (𝑆) → ℒ, there is an isomorphism of
categories 𝑇𝐿-Alg � 𝐿-TmAlg commuting with the forgetful functors into Law𝑛 (𝑆).

Proof. We show that 𝑇𝐿 satisfies the three monad laws. As expected, these use unitality and
associativity of composition inℒ. The left unit law 𝐹 † ◦ 𝜂 = 𝐹 holds because the bijections (12) are
natural in 𝑌 . The right unit law 𝜂𝑋

† = id𝑇𝐿 (𝑋 ) is immediate from the definitions. For associativity,
consider the following diagram, for 𝑋,𝑋 ′, 𝑌 ∈ L𝑛+1 (𝑆).

Law𝑛 (𝑆) (𝑝 (𝑌 ),𝑇𝐿 (𝑋 )) ×ℒ(𝑋 ′, 𝑋 ) Law𝑛 (𝑆) (𝑝 (𝑌 ),𝑇𝐿 (𝑋 )) × Law𝑛 (𝑆) (𝑇𝐿 (𝑋 ),𝑇𝐿 (𝑋 ′))

Law𝑛 (𝑆) (𝑝 (𝑌 ),𝑇𝐿 (𝑋 ′))

ℒ(𝑋,𝑌 ) ×ℒ(𝑋 ′, 𝑋 ) ℒ(𝑋 ′, 𝑌 )

Law𝑛 (𝑆) (𝑇𝐿 (𝑌 ),𝑇𝐿 (𝑋 )) × Law𝑛 (𝑆) (𝑇𝐿 (𝑋 ),𝑇𝐿 (𝑋 ′)) Law𝑛 (𝑆) (𝑇𝐿 (𝑌 ),𝑇𝐿 (𝑋 ))

Law𝑛 (𝑆) (𝑝 (𝑌 ),𝑇𝐿 (𝑋 ))×⌊𝐿//−⌋

�×ℒ (𝑋 ′,𝑋 )

◦

�

⌊𝐿//−⌋×⌊𝐿//−⌋

◦

⌊𝐿//−⌋

◦

The top commutes by naturality of the bijections (12) in 𝑋 ; the bottom by associativity of composi-
tion. After composing with Law𝑛 (𝑆) (𝑝 (𝑋 ),𝑇𝐿 (𝑋 ′))

�−→ℒ(𝑋 ′, 𝑋 ) and applying to (𝐹,𝐺), it follows
that 𝐺† ◦ 𝐹 † = (𝐺† ◦ 𝐹 )†.
Given 𝐹 : 𝐿 → 𝐿′, let ⌊𝐹//−⌋ be the restriction of 𝐹 to 𝑇𝐿 → 𝑇𝐿′ . Then ⌊𝐹//−⌋ commutes with 𝜂

by naturality of the bijections (12) in 𝐿. Commutativity with (−)† is expressed by the following
diagram.

Law𝑛 (𝑆) (𝑝 (𝑌 ),𝑇𝐿 (𝑋 )) Law𝑛 (𝑆) (𝑝 (𝑌 ),𝑇𝐿′ (𝑋 ))

ℒ(𝑋,𝑌 ) ℒ
′(𝑋,𝑌 )

Law𝑛 (𝑆) (𝑇𝐿 (𝑌 ),𝑇𝐿 (𝑋 )) Law𝑛 (𝑆) (𝑇𝐿′ (𝑌 ),𝑇𝐿′ (𝑋 ))

Law𝑛 (𝑆) (𝑇𝐿 (𝑌 ),𝑇𝐿′ (𝑋 ))

⌊𝐹//𝑋 ⌋◦−

� �

𝐹

⌊𝐿//−⌋ ⌊𝐿′//−⌋

⌊𝐹//𝑋 ⌋◦− −◦⌊𝐹//𝑌 ⌋

The square commutes by naturality; the pentagon because 𝐹 is strictly cartesian.
To get the required isomorphism between the categories of algebras, we show that 𝑇𝐿-Alg is the

vertex of the following pullback.

𝑇𝐿-Alg [ℒ, Set]

Law𝑛 (𝑆) [L𝑛+1 (𝑆), Set]

𝑃𝐿

−◦𝐿

𝐿′ ↦→⌈ℒ′⌉ (1, ⌈𝐿′⌉ (−))

The unlabelled arrow is the forgetful functor. To define 𝑃𝐿 , we note that, for any algebra (𝐴 :
L𝑛 (𝑆) → 𝒜, (−)‡), the map 𝑋 ↦→ ⌈𝒜⌉ (1, ⌈𝐴⌉ (−)) extends to a functor 𝑃𝐿 (𝐴(−)‡) : ℒ → Set by
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sending 𝑒 ∈ ℒ(𝑋,𝑌 ) to

⌈𝒜⌉ (1, 𝑋 ) �−→ Law𝑛 (𝑆) (𝑝 (𝑋 ), 𝐴)
(−)‡
−−−→ Law𝑛 (𝑆) (𝑇𝐿 (𝑋 ), 𝐴)

−◦⌊𝐿//𝑒 ⌋◦𝜂𝑌−−−−−−−−−−→ Law𝑛 (𝑆) (𝑝 (𝑌 ), 𝐴)
�−→ ⌈𝒜⌉ (1, 𝑌 )

Preservation of identities is immediate from 𝐹 ‡ ◦ 𝜂 = 𝐹 . For preservation of composition, naturality
implies that (12) sends ⌊𝐿//𝑒⌋ ◦ 𝜂 to 𝑒 , so (⌊𝐿//𝑒⌋ ◦ 𝜂)† = ⌊𝐿//𝑒⌋. Hence

(𝐹 ‡ ◦ ⌊𝐿//𝑒⌋ ◦ 𝜂)‡ ◦ ⌊𝐿//𝑒 ′⌋ ◦ 𝜂 = 𝐹 ‡ ◦ (⌊𝐿//𝑒⌋ ◦ 𝜂)† ◦ ⌊𝐿//𝑒 ′⌋ ◦ 𝜂 (algebra)
= 𝐹 ‡ ◦ ⌊𝐿//𝑒⌋ ◦ ⌊𝐿//𝑒 ′⌋ ◦ 𝜂 (above)
= 𝐹 ‡ ◦ ⌊𝐿//(𝑒 ◦ 𝑒 ′)⌋ ◦ 𝜂 (definition of ⌊𝐿//−⌋)

On algebra homomorphisms ℎ : (𝐴, (−)‡) → (𝐴′, (−)‡′), the natural transformation 𝑃𝐿 (ℎ) sends
𝑥 ∈ ⌈𝒜⌉ (1, 𝑋 ) to ⌈ℎ⌉ (𝑥) ∈ ⌈𝒜′⌉ (1, 𝑋 ). This completes the definition of the functor 𝑃𝐿 .

For commutativity of the pullback square, the only interesting case is for morphisms 𝑒 ∈
L𝑛+1 (𝑆) (𝑋,𝑌 ). We have

(−)‡ ◦ ⌊𝐿//𝐿(𝑒)⌋ ◦ 𝜂 = (−)‡ ◦ 𝜂 ◦ 𝑝 (𝑒) (naturality of (12) on both sides)
= − ◦ 𝑝 (𝑒) (algebra law)

which implies 𝑃𝐿 (𝐴, (−)‡) (𝐿(𝑒)) = − ◦ ⌈𝐴⌉ (𝑒), by naturality of (12).
We now show the square is a pullback. Let 𝐹 : 𝒞 → [ℒ, Set] and𝐺 : 𝒞 → Law𝑛 (𝑆) be functors

making the square commute. We show that there is a unique functor 𝒞 → 𝑇𝐿-Alg such that the
required diagram commutes. Given𝑉 ∈ 𝒞, the underlying 𝑛th-order algebraic theory of the algebra
is necessarily 𝐹 (𝑉 ). To define (−)‡, note that, for𝑋,𝑌 ∈ L𝑛+1 (𝑆), we have𝐺 (𝑉 ) (𝑋 ) = ⌈𝐹 (𝑉 )⌉ (1, 𝑋 ),
and hence 𝐺 (𝑉 ) sends each element ofℒ(𝑋,𝑌 ) to a function ⌈𝐹 (𝑉 )⌉ (1, 𝑋 ) → ⌈𝐹 (𝑉 )⌉ (1, 𝑌 ); this
is natural in 𝑌 because 𝐺 (𝑉 ) (𝐿(𝑒)) = ⌈𝐹 (𝑉 )⌉. Since 𝐺 (𝑉 ) (𝑒) must be equal to

⌈𝐹 (𝑉 )⌉ (1, 𝑋 ) �−→ Law𝑛 (𝑆) (𝑝 (𝑋 ), 𝐹 (𝑉 ))
(−)‡
−−−→ Law𝑛 (𝑆) (𝑇𝐿 (𝑋 ), 𝐹 (𝑉 ))

−◦⌊𝐿//𝑒 ⌋◦𝜂
−−−−−−−−→ Law𝑛 (𝑆) (𝑝 (𝑌 ), 𝐹 (𝑉 ))

�−→ ⌈𝐹 (𝑉 )⌉ (1, 𝑌 )

and ⌊𝐿//𝑒⌋ ◦ 𝜂 is the result of sending 𝑒 along (12), (−)‡ is necessarily given by

Law𝑛 (𝑆) (𝑝 (𝑋 ), 𝐹 (𝑉 ))
� ⌈𝐹 (𝑉 )⌉ (1, 𝑋 ) (Lemma 5.22)
→ [L𝑛+1 (𝑆), Set] (ℒ(𝑋, 𝐿(−)), ⌈𝐹 (𝑉 )⌉ (1,−)) (𝐺 (𝑉 ) on morphisms)
� [L𝑛+1 (𝑆), Set] (Law𝑛 (𝑆) (𝑝 (−), ⌊𝐿//𝑋 ⌋), Law𝑛 (𝑆) (𝑝 (−), 𝐹 (𝑉 ))) ((12), Lemma 5.22)
� Law𝑛 (𝑆) (⌊𝐿//𝑋 ⌋, 𝐹 (𝑉 )) (Lemma A.34)
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We have 𝑓 ‡ ◦ 𝜂 = 𝑓 because 𝜂 is given by applying (12) to the identity. For the other algebra law,
the function

Law𝑛 (𝑆) (𝑝 (𝑌 ),𝑇𝐿 (𝑋 )) × Law𝑛 (𝑆) (𝑝 (𝑋 ), 𝐹 (𝑉 ))
�ℒ(𝑋,𝑌 ) × ⌈𝐹 (𝑉 )⌉ (1, 𝑋 ) ((12), Lemma 5.22)
→ℒ(𝑋,𝑌 ) × [L𝑛+1 (𝑆), Set] (ℒ(𝑋, 𝐿(−)), ⌈𝐹 (𝑉 )⌉ (1,−)) (𝐺 (𝑉 ) on morphisms)
→ [L𝑛+1 (𝑆), Set] (ℒ(𝑌, 𝐿(−)), ⌈𝐹 (𝑉 )⌉ (1,−)) (composition)
� [L𝑛+1 (𝑆), Set] (Law𝑛 (𝑆) (𝑝 (−),𝑇𝐿 (𝑌 )), Law𝑛 (𝑆) (𝑝 (−), 𝐹 (𝑉 ))) ((12), Lemma 5.22)
� Law𝑛 (𝑆) (𝑇𝐿 (𝑌 ), 𝐹 (𝑉 )) (Lemma A.34)

is equal to (𝑓 , 𝑔) ↦→ 𝑔‡ ◦ 𝑓 † and to (𝑓 , 𝑔) ↦→ (𝑔‡ ◦ 𝑓 )‡ by naturality of (12) in 𝑋 .
This defines and establishes uniqueness of 𝒞 → 𝑇𝐿-Alg on objects. Each morphism 𝑣 : 𝑉 → 𝑉 ′

in𝒞 is necessarily sent to 𝐹 (𝑣) in order to commute with the forgetful functor into Law𝑛 (𝑆). Since
𝐺 (𝑣)𝐿 = cod(⌈𝐹 (𝑉 )⌉)(1, ⌈𝐹 (𝑉 )⌉ (−)), this also commutes with 𝑃𝐿 . It is easy to see that this is an
algebra homomorphism, using naturality of the universal property of 𝑝 . □

Lemma A.25. Suppose that 𝐿 : L𝑛+1 (𝑆) → ℒ is an (𝑛 + 1)th-order algebraic theory for 𝑛 ∈ N𝜔 .
The bijections (12) form an isomorphism of categories Kl(𝑇𝐿)op � ℒ.

Proof. Immediate from the definitions of the unit and Kleisli extension. □

A.6.3 Theories from relative monads.

Lemma A.26. If (𝑇, 𝜂, (−)†) is a relative monad on 𝑝 : L𝑛+1 (𝑆)op → Law𝑛 (𝑆), where 𝑛 ∈ N𝜔 , then
𝐿𝑇 : L𝑛+1 (𝑆) → Kl(𝑇 )op is a strict cartesian identity-on-objects functor.

Proof. It is clear that 𝐿𝑇 is an identity-on-objects functor. For preservation of products we have

Kl(𝑇 )op (𝑋,∏𝑖 𝑌𝑖 ) = Law𝑛 (𝑆) (𝑝 (
∏

𝑖 𝑌𝑖 ),𝑇 (𝑋 ))
�

∏
𝑖 Law𝑛 (𝑆) (𝑝 (𝑌𝑖 ),𝑇 (𝑋 )) (Lemma A.24)

=
∏

𝑖 Kl(𝑇 )op (𝑋,𝑌𝑖 )

and this sends 𝐹 to (𝐹 ◦ 𝑝 (𝜋𝑖 ))𝑖 = (𝐹 † ◦ 𝐿𝑇 (𝜋𝑖 ))𝑖 . □

Lemma A.27. Suppose for 𝑛 ∈ N𝜔 that 𝐿 : L𝑛+1 (𝑆) →ℒ is an (𝑛 + 1)th-order algebraic theory. For
all 𝑋 ∈ L𝑛+1 (𝑆), the algebraic theory 𝐿//𝑋 , together with 𝑋 ∗ : 𝐿 → 𝐿//𝑋 and the restriction of 𝐿 to
Id//𝑋 → 𝐿//𝑋 , forms the coproduct of 𝐿 and Id//𝑋 in Law𝑛+1 (𝑆).

Proof. Suppose that 𝐿′ : L𝑛 (𝑆) →ℒ
′ is an (𝑛 + 1)th-order algebraic theory and that 𝐹 : 𝐿 → 𝐿′

and 𝐹 ′ : Id//𝑋 → 𝐿′ are morphisms in Law𝑛+1 (𝑆). Define 𝑥
def
= 𝐹 ′(𝜋𝑋 ) ∈ ℒ′(1, 𝑋 ). Consider the

following diagram:

ℒ

L𝑛+1 (𝑆) ℒ//𝑋 ℒ
′

L𝑛+1 (𝑆)//𝑋

𝑋 ∗

𝐹

𝐿//𝑋

𝑋 ∗

𝐿

[𝐹,𝐹 ′ ]

𝐿

𝐹 ′
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The two triangles on the left commute because 𝐿 strictly preserves products. By Lemma A.21,
there is a unique morphism [𝐹, 𝐹 ′] def

= �(𝐹, 𝑥) : 𝐿//𝑋 → 𝐿′ such that the top right commutes and
[𝐹, 𝐹 ′] (𝜋𝑋 ) = 𝑥 . The bottom right commutes because 𝐹 ′ ◦𝑋 ∗ = 𝐿′ (as 𝐹 ′ is a morphism of algebraic
theories), [𝐹, 𝐹 ′] (𝐿(𝜋𝑋 )) = [𝐹, 𝐹 ′] (𝜋𝑋 ) = 𝑥 (since 𝐿 strictly preserves products), and

[𝐹, 𝐹 ′] ◦ 𝐿 ◦ 𝑋 ∗ = [𝐹, 𝐹 ′] ◦ 𝑋 ∗ ◦ 𝐿 = 𝐹 ◦ 𝐿 = 𝐿′

so both 𝐹 ′ and [𝐹, 𝐹 ′] ◦ 𝐿 are the morphism �(𝐿′, 𝑥) : Id//𝑋 → 𝐿′ from Lemma A.21.
It remains to show that [𝐹, 𝐹 ′] is unique. By the universal property of [𝐹, 𝐹 ′], it suffices to

show that if 𝐺 : 𝐿//𝑋 → 𝐿′ satisfies 𝐺 ◦ 𝐿 = 𝐹 ′ then 𝐺 (𝜋𝑋 ) = 𝑥 , and this is the case because
𝐺 (𝜋𝑋 ) = 𝐺 (𝐿(𝜋𝑋 )) = 𝐹 ′(𝜋𝑋 ) = 𝑥 . □

To obtain the coproduct in the form mentioned in the paper, note, for 0 < 𝑛 ∈ N𝜔 and 𝑌 ∈ L𝑛 (𝑆),
that Id//𝑌 ∈ Law𝑛 (𝑆), and 𝑝 (𝑌 ) ∈ Law𝑛 (𝑆), where 𝑌 is viewed as an object of L𝑛+1 (𝑆), are equal
by definition of ⌊−⌋.

Corollary A.28. Let 𝐿′ : L𝑛 (𝑆) → ℒ be an 𝑛th-order algebraic theory, for 0 < 𝑛 ∈ N𝜔 . For all
𝑌 ∈ L𝑛 (𝑆) ⊆ L𝑛+1 (𝑆), the algebraic theory 𝐿′//𝑌 , together with 𝑌 ∗ : 𝐿′→ 𝐿′//𝑌 and the restriction of
𝐿′ to Id//𝑌 = 𝑝 (𝑌 ) → 𝐿′//𝑌 form the coproduct of 𝐿′ and 𝑝 (𝑌 ) in Law𝑛 (𝑆).

Proof. Immediate from Lemma A.27. □

The relativemonadswe construct from algebraic theories satisfy the required coproduct condition,
by the following lemma.

Lemma A.29. Let 𝐿 : L𝑛+1 (𝑆) →ℒ be an (𝑛 + 1)th-order algebraic theory, for 0 < 𝑛 ∈ N𝜔 . For all
𝑋 ∈ L𝑛+1 (𝑆) and 𝑌 ∈ L𝑛 (𝑆), the diagram

𝑇𝐿 (𝑋 )
𝑇𝐿 (𝜋𝑋 )−−−−−→ 𝑇𝐿 (𝑋 × 𝑌 )

𝑇𝐿 (𝜋𝑌 )◦𝜂𝑌←−−−−−−−− 𝑝 (𝑌 )
is a coproduct in Law𝑛 (𝑆).

Proof. By Corollary A.28, the diagram

𝑇𝐿 (𝑋 )
𝑌 ∗−−→ 𝑇𝐿 (𝑋 )//𝑌 ← 𝑝 (𝑌 )

is a coproduct, where the morphism on the right sends 𝑓 to 𝑇𝐿 (𝑋 ) (𝑓 ). This diagram is equal to the
diagram in the statement of the lemma, by the definition of the simple slice. □

Lemma 6.6. Suppose that (𝑇, 𝜂, (−)†) is a relative monad on 𝑝 : L𝑛+1 (𝑆)op → Law𝑛 (𝑆), where
𝑛 ∈ N𝜔 . If 𝑛 > 0, also assume for each 𝑋 ∈ L𝑛+1 (𝑆) and 𝑌 ∈ L𝑛 (𝑆) that the diagram

𝑇 (𝑋 )
𝑇 (𝜋𝑋 )−−−−−→ 𝑇 (𝑋 × 𝑌 )

𝑇 (𝜋𝑌 )◦𝜂𝑌←−−−−−−−− 𝑝 (𝑌 )
is a coproduct in Law𝑛 (𝑆). Then 𝐿𝑇 as defined above is an (𝑛 + 1)th-order algebraic theory, and
there is an isomorphism of categories 𝑇 -Alg � 𝐿𝑇 -TmAlg commuting with the forgetful functors into
Law𝑛 (𝑆). Moreover, relative monad morphisms 𝑇 → 𝑇 ′ induce morphisms 𝐿𝑇 → 𝐿𝑇 ′ in Law𝑛+1 (𝑆)
functorially.

Proof. By Lemma A.26, 𝐿𝑇 : L𝑛+1 (𝑆)op → Law𝑛 (𝑆) is a strict cartesian identity-on-objects
functor. For exponentials, note that if 𝑌 ∈ L𝑛 (𝑆) ⊆ L𝑛+1 (𝑆) then

⌈𝑇 (𝑋 )⌉
⌈𝑇 (𝜋𝑋 ) ⌉−−−−−−−→ ⌈𝑇 (𝑋 × 𝑌 )⌉

⌈𝑇 (𝜋𝑌 )◦𝜂𝑌 ⌉←−−−−−−−−− ⌈𝑝 (𝑌 )⌉
is a coproduct in Law𝑛+1 (𝑆) for each𝑋 ∈ L𝑛+1 (𝑆) because ⌈−⌉ is a left adjoint. Now since ⌈𝑇 (𝑋 )⌉//𝑌
forms the coproduct of ⌈𝑇 (𝑋 )⌉ and Id//𝑌 (Lemma A.27) and the counit ⌈⌊Id//𝑌 ⌋⌉ → Id//𝑌 is an
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isomorphism (Lemma A.23), we have an isomorphism ⌈𝑇 (𝑋 ×𝑌 )⌉ � ⌈𝑇 (𝑋 )⌉//𝑌 for each 𝑋 , making
the following diagram commute, where 𝜀−1 is the inverse of the counit of the coreflection.

Id//𝑋 Id//(𝑋 × 𝑌 )

⌈𝑇 (𝑋 )⌉ ⌈𝑇 (𝑋 × 𝑌 )⌉

Id//𝑋//𝑌 Id//𝑌

⌈𝑇 (𝑋 )⌉//𝑌 ⌈𝑝 (𝑌 )⌉

Id//𝜋𝑌

𝑋 ∗//𝑌

⌈𝜂 ⌉◦𝜀−1

𝑌 ∗ ⌈𝑇 (𝜋𝑋 )◦𝜂 ⌉

⌈𝑇 (𝜋𝑋 ) ⌉

�

𝜀−1
( ⌈𝜂 ⌉◦𝜀−1)//𝑌

𝑌 ∗

Id//𝜋𝑋

⌈𝜂 ⌉◦𝜀−1

This induces isomorphisms
𝐿𝑇 (𝑋 × 𝑌 ′, 𝑌 ) = Law𝑛 (𝑆) (𝑝 (𝑌 ),𝑇 (𝑋 × 𝑌 ′))

� ⌈𝑇 (𝑋 × 𝑌 ′)⌉ (1, 𝑌 ) (Lemma 5.22)
� (⌈𝑇 (𝑋 )⌉//𝑌 ′) (1, 𝑌 ) (above)

� ⌈𝑇 (𝑋 )⌉ (1, 𝑌𝑌 ′) (exponentials in ⌈𝑇 (𝑋 )⌉)
� Law𝑛 (𝑆) (𝑝 (𝑌𝑌 ′),𝑇 (𝑋 )) (Lemma 5.22)

= 𝐿𝑇 (𝑋,𝑌𝑌 ′)

natural in 𝑋 and 𝑌 . Now consider 𝑋 = 𝑌𝑌 ′ , and
ev𝑌 ′,𝑌 ∈ (Id//(𝑋 × 𝑌 ′)) (1, 𝑌 ) = (Id//𝑋//𝑌 ′) (1, 𝑌 )

By the diagram above, ⌈𝜂𝑋×𝑌 ′⌉ (𝜀−1 (ev𝑌 ′,𝑌 )) ∈ ⌈𝑇 (𝑋 × 𝑌 ′⌉)(1, 𝑌 ) is sent by the isomorphism
induced by the coproduct to ((⌈𝜂𝑋 ⌉ ◦ 𝜀−1)//𝑌 ′) (ev𝑌 ′,𝑌 ) ∈ (⌈𝑇 (𝑋 )⌉//𝑌 ′) (1, 𝑌 ). Using Lemma 5.22
and preservation of exponentials by ⌈𝜂⌉, this implies that 𝐿𝑇 (ev𝑌 ′,𝑌 ) ∈ 𝐿𝑇 (𝑋 ×𝑌 ′, 𝑌 ) is sent to 𝜂𝑌𝑌 ′ ,
which is the identity on 𝑌𝑌 ′ in 𝐿𝑇 , by the chain of isomorphisms above. This implies that Kl(𝑇 )op

has exponentials strictly preserved by 𝐿𝑇 , and hence that 𝐿𝑇 is an (𝑛 + 1)th-order algebraic theory.
For the algebras, we show that 𝑇 -Alg is the vertex of the following pullback.

𝑇 -Alg [Kl(𝑇 )op, Set]

Law𝑛 (𝑆) [L𝑛+1 (𝑆), Set]

𝑃𝑇

−◦𝐿𝑇

𝐿′ ↦→⌈ℒ′⌉ (1, ⌈𝐿′⌉ (−))

The unlabelled arrow is the forgetful functor. On algebras (𝐴 : L𝑛 (𝑆) → 𝒜, (−)‡) the functor
𝑃𝑇 (𝐴, (−)‡) sends 𝑋 to ⌈𝒜⌉ (1, 𝑋 ) and 𝑒 ∈ Kl(𝑇 )op (𝑋,𝑌 ) = Law𝑛 (𝑆) (𝑝 (𝑌 ),𝑇 (𝑋 )) to

⌈𝒜⌉ (1, 𝑋 ) �−→ Law𝑛 (𝑆) (𝑝 (𝑋 ), 𝐴)
(−)‡
−−−→ Law𝑛 (𝑆) (𝑇 (𝑋 ), 𝐴)

−◦𝑒−−−→ Law𝑛 (𝑆) (𝑝 (𝑌 ), 𝐴)
�−→ ⌈𝒜⌉ (1, 𝑌 )

Preservation of identities and composition are immediate from the algebra laws. On algebra
homomorphisms ℎ, we define 𝑃𝑇 (ℎ) (𝑥) = ⌈ℎ(𝑥)⌉. The square above commutes because

(−)‡ ◦ 𝐿𝑇 (𝑒) = (−)‡ ◦ 𝜂 ◦ 𝑝 (𝑒) = − ◦ 𝑝 (𝑒)
implies 𝑃𝑇 (𝐴, (−)‡) (𝐿𝑇 (𝑒)) = ⌈𝐴⌉ (1, ⌈𝐴⌉ (𝑒)) by naturality of the universal property of 𝑝 .
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To show that the square is a pullback, let 𝐹 : 𝒞 → Law𝑛 (𝑆) and 𝐺 : 𝒞 → [Kl(𝑇 )op, Set] be
functors such that the square formed with the cospan in the diagram above commutes. We define
a functor 𝒞 → 𝑇 -Alg. Given 𝑉 ∈ 𝒞, the underlying 𝑛th-order algebraic theory of the algebra is
necessarily 𝐹 (𝑉 ). Commutativity of the square implies𝐺 (𝑉 ) (𝑋 ) = cod(⌈𝐹 (𝑉 )⌉)(1, 𝑋 ), hence the
hom-function of 𝐺 (𝑉 ) defines a function

⌈𝐹 (𝑉 )⌉ (1, 𝑋 ) × Law𝑛 (𝑆) (𝑝 (𝑌 ),𝑇 (𝑋 )) → ⌈𝐹 (𝑉 )⌉ (1, 𝑌 )
This is natural in 𝑌 ∈ L𝑛+1 (𝑆): given 𝑒 ∈ Kl(𝑇 )op (𝑋,𝑌 ) and 𝑒 ′ ∈ L𝑛+1 (𝑆) (𝑌, 𝑍 ), we have

𝐺 (𝑉 ) (𝑒 ◦ 𝑝 (𝑒 ′)) = 𝐺 (𝑉 ) (𝑒† ◦ 𝐿𝑇 (𝑒 ′)) (monad law)
= 𝐺 (𝑉 ) (𝐿𝑇 (𝑒 ′)) ◦𝐺 (𝑉 ) (𝑒) (𝐺 (𝑉 ) preserves composition in Kl(𝑇 )op)
= cod(⌈𝐹 (𝑉 )⌉)(1, ⌈𝐹 (𝑉 )⌉ (𝑒 ′)) ◦𝐺 (𝑉 ) (𝑒) (square commutes)

Hence we have
Law𝑛 (𝑆) (𝑝 (𝑋 ), 𝐹 (𝑉 ))
� cod(⌈𝐹 (𝑉 )⌉)(1, 𝑋 ) (Lemma 5.22)
→ [L𝑛+1 (𝑆), Set] (Law𝑛 (𝑆) (𝑝 (−),𝑇 (𝑋 )), ⌈𝐹 (𝑉 )⌉ (1,−)) (𝐺 (𝑉 ) on morphisms)
� [L𝑛+1 (𝑆), Set] (Law𝑛 (𝑆) (𝑝 (−),𝑇 (𝑋 )), Law𝑛 (𝑆) (𝑝 (−), 𝐹 (𝑉 ))) (Lemma 5.22)
� Law𝑛 (𝑆) (𝑇 (𝑋 ), 𝐹 (𝑉 )) (Lemma A.34)

which we use as the definition of (−)‡. This is the unique morphism such that the required diagram
commutes, by density of 𝑝 . The two algebra laws follow from 𝐺 (𝑉 ) ◦ 𝜂 = id and 𝐺 (𝑉 ) (𝑔† ◦ 𝑓 ) =
𝐺 (𝑉 ) (𝑓 ) ◦𝐺 (𝑉 ) (𝑔) because 𝑝 is dense (Lemma A.34).

Hence we have defined and shown uniqueness of𝒞 → 𝑇 -Alg on objects. This functor necessarily
sends 𝑣 : 𝑉 → 𝑉 ′ in𝒞 to 𝐹 (𝑣) : 𝐹 (𝑉 ) → 𝐹 (𝑉 ′). Since the square commutes,𝐺 (𝑉 ) on morphisms is
composition with ⌈𝐹 (𝑣)⌉, which implies that𝐺 is the postcomposition of 𝒞 → 𝑇 -Alg by 𝑃𝑇 . It also
implies, using density of 𝑝 (Lemma A.34), and naturality of 𝐺 (𝑉 ) and of the universal property of
𝑝 , that𝐺 (𝑉 ) is an algebra homomorphism. Hence, the square above satisfies the universal property
of a pullback, and we have the required isomorphisms between categories of algebras.
Given a morphism 𝑚 : 𝑇 → 𝑇 ′ of relative monads, the induced morphism 𝐿𝑀 : Kl(𝑇 )op →

Kl(𝑇 ′)op is given by composition with𝑚. This satisfies 𝐿𝑀 ◦𝐿𝑇 = 𝐿𝑇 ′ because𝑚 preserves the units.
We therefore have a functor from the full subcategory of RMnd(𝑝) on relative monads satisfying
the coproduct condition to Law𝑛 (𝑆). □

Theorem 6.7. For𝑛 ∈ N𝜔 , the category Law𝑛+1 (𝑆) is equivalent to the full subcategory of RMnd(𝑝 :
L𝑛+1 (𝑆)op → Law𝑛 (𝑆)) on relative monads (𝑇, 𝜂, (−)†) such that, if 𝑛 > 0, then, for all 𝑋 ∈ L𝑛+1 (𝑆)
and 𝑌 ∈ L𝑛 (𝑆),

𝑇 (𝑋 )
𝑇 (𝜋𝑋 )−−−−−→ 𝑇 (𝑋 × 𝑌 )

𝑇 (𝜋𝑌 )◦𝜂𝑌←−−−−−−−− 𝑝 (𝑌 )
is a coproduct in Law𝑛 (𝑆). Moreover, there are isomorphisms between the respective categories of
algebras, commuting with the forgetful functors:

𝑇 -Alg 𝐿-TmAlg

Law𝑛 (𝑆)

�

Proof. For this proof we write Ψ for the functor from Law𝑛+1 (𝑆) to the subcategory of relative
monads from Lemma 6.5, and Φ for the functor from the subcategory of relative monads to
Law𝑛+1 (𝑆) from Lemma 6.6. We construct an adjunction Ψ ⊣ Φ, with invertible unit and counit.
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Given 𝐿 : L𝑛+1 (𝑆) → ℒ in Law𝑛+1 (𝑆), the unit 𝜁𝐿 : 𝐿 � ΦΨ(𝐿) of the adjunction is the
identity-on-objects functor given on morphisms by the bijections (12),

ℒ(𝑋,𝑌 ) �−→ Law𝑛 (𝑆) (𝑝 (𝑌 ),𝑇𝐿 (𝑋 ))

which are natural in the theory 𝐿. This is a morphism of (𝑛 + 1)th-order algebraic theories because
it is natural in 𝑌 and the unit of 𝑇𝐿 is given by sending the identity along these isomorphisms. This
implies the inverse is also a morphism of (𝑛 + 1)th-order algebraic theories.
For the counit, suppose we have a relative monad 𝑇 ∈ RMnd(𝑝) satisfying the coproduct

condition. By Lemma 6.6 and Lemma 6.5, we have isomorphisms

𝑇 -Alg Φ(𝑇 )-TmAlg ΨΦ(𝑇 )-Alg

Law𝑛 (𝑆)

� �

Since Alg, the semantics functor for relative monads, reflects isomorphisms (Lemma 6.4), we
therefore have an isomorphism𝜛𝑇 : ΨΦ(𝑇 ) � 𝑇 of relative monads. This is the counit of the adjoint
equivalence.
It remains to show that the triangle laws hold (which imply naturality of the counit). To show

that
Ψ(𝐿)

Ψ(𝜁𝐿)−−−−→ ΨΦΨ(𝐿)
𝜛Ψ(𝐿)−−−−→ Ψ(𝐿)

is the identity is equivalent, by Lemma 6.4, to showing that

Ψ(𝐿)-Alg
Alg (𝜛Ψ(𝐿) )−−−−−−−−−→ ΨΦΨ(𝐿)-Alg

Alg (Ψ(𝜁𝐿))−−−−−−−−−→ Ψ(𝐿)-Alg

over Law𝑛 (𝑆) is the identity.
For each 𝐿, we have a pullback

Ψ(𝐿)-Alg [ℒ, Set]

Law𝑛 (𝑆) [L𝑛+1 (𝑆), Set]

𝑃𝐿

−◦𝐿

𝐿′ ↦→⌈ℒ′⌉ (1, ⌈𝐿′⌉ (−))

as in the proof of Lemma 6.5, so it suffices to show that

Ψ(𝐿)-Alg
Alg (𝜛Ψ(𝐿) )−−−−−−−−−→ ΨΦΨ(𝐿)-Alg

Alg (Ψ(𝜁𝐿))−−−−−−−−−→ Ψ(𝐿)-Alg 𝑃𝐿−−→ [ℒ, Set]

is equal to 𝑃𝐿 . For this we use the following diagram,

Ψ(𝐿)-Alg

ΨΦΨ(𝐿)-Alg [ΦΨ(ℒ), Set] [ℒ, Set]

Ψ(𝐿)-Alg

Alg (𝜛Ψ(𝐿) )

𝑃Ψ(𝐿)

𝑃𝐿

𝑃ΦΨ(𝐿)

Alg (Ψ(𝜁𝐿))

−◦𝜁𝐿

𝑃Ψ(𝐿)

𝑃𝐿

(14)

where the functors 𝑃 are defined as in the proofs of Lemmas 6.5 and 6.6. The top left follows from
the definition of the counit, specifically, using the fact that the isomorphisms defining 𝜛Ψ(𝐿) also
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satisfy
Ψ(𝐿)-Alg ΦΨ(𝐿)-TmAlg ΨΦΨ(𝐿)-Alg

[ΦΨ(ℒ), Set]

�

𝑃Ψ(𝐿)

�

𝑃ΨΦ(𝐿)

where the unlabelled functor is from the definition of term algebra. The two triangles on the right
of (14) commute by the definitions of 𝑃𝐿 and 𝑃Ψ(𝐿) . The only non-trivial part is

𝑃Φ(𝐿) (𝐴, (−)‡) (𝜁𝐿 (𝑒)) = 𝑃Φ(𝐿) (𝐴, (−)‡) (⌊𝐿//𝑒⌋ ◦ 𝜂) (naturality of (12), definition of 𝜂)
= 𝑃𝐿 (𝑒) (definitions of 𝑃𝐿 and 𝑃Φ(𝐿) )

where 𝜂 is the unit of the relative monad Ψ(𝐿). For the bottom left of (14), the only non-trivial part
is showing

𝑃Ψ(𝐿) (Alg(Ψ(𝜁𝐿)) (𝐴, (−)‡) (𝑒)) = 𝑃ΦΨ(𝐿) (𝐴, (−)‡) (𝑒)
for ΨΦΨ(𝐿)-algebras (𝐴, (−)‡). To do this, note that the induced Ψ(𝐿)-algebra has (−)‡ ◦ Ψ(𝜁𝐿) as
its extension operator. This case then follows from the definitions of 𝑃Ψ(𝐿) and 𝑃ΦΨ(𝐿) and the fact
that the unit of the relative monad ΨΦΨ(𝐿) factors through 𝑇𝐿 (𝑌 ):

𝑝 (𝑌 )
𝜂𝑌−−→ 𝑇𝐿𝑌 → 𝑇ΦΨ𝐿𝑌

For the other triangle law

Φ(𝑇 )
𝜁Φ(𝑇 )−−−−→ ΦΨΦ(𝑇 )

Φ(𝜛𝑇 )−−−−−→ Φ(𝑇 )

we calculate 𝜛𝑇 . Consider the free 𝑇 -algebra (𝑇 (𝑋 ), (−)†). From their definitions, we determine
that the isomorphisms defining 𝜛𝑇 send the free algebra to a ΨΦ(𝑇 )-algebra (𝑇 (𝑋 ), (−)‡), with
(−)‡ given by

Law𝑛 (𝑆) (𝑝 (𝑌 ),𝑇 (𝑋 ))
(−)†−→ Law𝑛 (𝑆) (𝑇 (𝑌 ),𝑇 (𝑋 ))
� [L𝑛+1 (𝑆)op, Set] (Kl(𝑇 )op (𝑌,−), Law𝑛 (𝑆) (𝑝 (−),𝑇 (𝑋 ))) (Lemma A.34)
� [L𝑛+1 (𝑆)op, Set] (Kl(ΨΦ(𝑇 ))op (𝑌,−), Law𝑛 (𝑆) (𝑝 (−),𝑇 (𝑋 ))) ((12))
� Law𝑛 (𝑆) (⌊Φ(𝑇 )//𝑌 ⌋,𝑇 (𝑋 )) (Lemma A.34)

On morphisms 𝐹 ∈ Law𝑛 (𝑆) (𝑝 (𝑍 ),ΨΦ𝑇 (𝑌 )) = Kl(ΨΦ(𝑇 ))op (𝑌, 𝑍 ), the map Φ(𝜛𝑇 ) is given by

Φ(𝜛𝑇 ) (𝐹 ) = 𝜛𝑇 ◦ 𝐹 = 𝜂𝑌
‡ ◦ 𝐹 ∈ Kl(𝑇 )op (𝑌, 𝑍 )

which is therefore just the action of sending 𝐹 along the bijections (12). By definition, this is the
inverse of the action of 𝜁Φ(𝑇 ) on morphisms, proving the triangle law. □

A.7 Local strong presentability
Lemma A.30. A cocomplete category𝒞 is locally strongly finitely presentable exactly when there ex-

ists a small category𝒞sf and locally strongly finitely presentable (Definition 7.4) functor 𝑝 : 𝒞sf → 𝒞.

Proof. If 𝒞 is strongly finitely presentable, we obtain such a functor by Adámek and Rosický
[2001, Lemma 3.8]. On the other hand, given 𝑝 , density implies that each object𝑋 ∈ 𝒞 is a canonical
colimit and, since 𝑝 ↓ 𝑋 is sifted, this colimit is sifted. Hence we can take the image of 𝑝 as the
required set of strongly finitely presentable objects. □
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We show that each 𝑝 : L𝑛+1 (𝑆)op → Law𝑛 (𝑆) is locally strongly finitely presentable. Limits and
(sifted) colimits in the functor category Law0 (𝑆) = Set𝑆 are computed pointwise; we show that for
𝑛 > 0 they are given as described in Section 7.

Lemma A.31. Let 𝐷 : I → Law𝑛 (𝑆) be a diagram, where I is sifted and 𝑛 > 0, and denote by 𝐿𝑖
the theory 𝐷 (𝑖). Define 𝐿 : L𝑛 (𝑆) → ℒ as in Section 7, with ℒ(𝑋,𝑌 ) = colim𝑖∈I (ℒ𝑖 (𝑋,𝑌 )). Then
𝐿 : L𝑛 (𝑆) → ℒ forms an 𝑛th-order algebraic theory, and the family of functors ( 𝜋

𝑖 : ℒ𝑖 → ℒ)𝑖∈I,
given by coprojections on each hom-set, is a colimiting cocone in Law𝑛 (𝑆).

Proof. It is trivial to show thatℒ is a category and that 𝜋

𝑖 and 𝐿 are identity-on-objects functors.
The category ℒ has finite products because

colim𝑖∈I (ℒ𝑖 (𝑋,
∏

𝑗 𝑌𝑗 )) � colim𝑖∈I (
∏

𝑗 ℒ𝑖 (𝑋,𝑌𝑗 )) (products in ℒ𝑖 )
�

∏
𝑗 colim𝑖 (ℒ𝑖 (𝑋,𝑌𝑗 )) (I is sifted)

and 𝐿 strictly preserves them as it sends the identity on
∏

𝑗 𝑋 𝑗 to (𝐿(𝜋 𝑗 )) 𝑗 . Exponentials inℒ are
given by

colim𝑖∈I (ℒ𝑖 (𝑋 × 𝑌, 𝑍 )) � colim𝑖∈I (ℒ𝑖 (𝑋,𝑍𝑌 )) (exponentials inℒ𝑖 )
and this sends ev𝑌,𝑍 to the identity on 𝑍𝑌 .

Hence 𝐿 is an𝑛th-order algebraic theory, and the functors 𝜋

𝑖 : ℒ𝑖 →ℒ form a cocone in Law𝑛 (𝑆).
To show this cocone is colimiting, suppose that 𝐿′ : L𝑛 (𝑆) →ℒ

′ is an 𝑛th-order algebraic theory,
and that the functors 𝐹𝑖 : ℒ𝑖 →ℒ

′ form a cocone. The functions [𝐹𝑖 ]𝑖∈I : ℒ(𝑋,𝑌 ) →ℒ
′(𝑋,𝑌 )

form an identity-on-objects functor ℒ → ℒ
′. Is is easy to see that this is the unique universal

morphism in Law𝑛 (𝑆). □

Lemma A.32. Law𝑛 (𝑆) is complete for all 𝑛 > 0.

Proof. Limits of diagrams 𝐿 : I→ Law𝑛 (𝑆) are constructed as in Lemma A.31, except with lim
instead of colim and projections instead of coprojections. The proof is then similar, using the fact
that small limits in Set commute with products. □

Next, we show the required properties of 𝑝 .

Lemma A.33. The functor 𝑝 : L𝑛+1 (𝑆)op → Law𝑛 (𝑆) is fully faithful for all 𝑛 ∈ N𝜔 .

Proof. Let 𝑋,𝑌 ∈ L𝑛 (𝑆)op. The action of 𝑝 on morphisms is given by
L𝑛+1 (𝑆)op (𝑋,𝑌 ) = L𝑛+1 (𝑆) (𝑌,𝑋 )

= (Id//𝑌 ) (1, 𝑋 ) (definition of Id//𝑌 )
� cod(⌈𝑝 (𝑌 )⌉)(1, 𝑋 ) (Lemma A.23)
� Law𝑛 (𝑆) (𝑝 (𝑋 ), 𝑝 (𝑌 )) (Lemma 5.22)

□

Lemma A.34. The functor 𝑝 : L𝑛+1 (𝑆)op → Law𝑛 (𝑆) is dense for all 𝑛 ∈ N𝜔 .

Proof. Lemma 5.22 implies the nerve functor𝑁𝑝 is naturally isomorphic to 𝐿 ↦→ ⌈ℒ⌉ (1, ⌈𝐿⌉ (−)),
so it suffices that the latter is fully faithful (Lemma A.12). □

Lemma A.35. The comma category 𝑝 ↓ 𝐿 is sifted for each 𝑛 ∈ N𝜔 and 𝐿 ∈ Law𝑛 (𝑆).

Proof. Since L𝑛+1 (𝑆)op has finite coproducts and these are preserved by 𝑝 : L𝑛+1 (𝑆)op →
Law𝑛 (𝑆) (Lemma A.24), the comma category 𝑝 ↓ 𝐿 has finite coproducts. It is therefore sifted by
Adámek and Rosický [2001, Remark 1.2(d)]. □
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Finally, we show that the image of 𝑝 contains only strongly finitely presentable objects.
Lemma A.36. The 𝑛th-order algebraic theory 𝑝 (𝑋 ) is strongly finitely presentable for each 𝑛 ∈ N𝜔

and 𝑋 ∈ L𝑛+1 (𝑆).
Proof. For each diagram 𝐿 : I→ Law𝑛 (𝑆) with I sifted we have

colim𝑖∈I (Law𝑛 (𝑆) (𝑝 (𝑋 ), 𝐿(𝑖))) � colim𝑖∈I (cod(⌈𝐿(𝑖)⌉)(1, 𝑋 )) (Lemma 5.22)
= (colim𝑖∈I cod(⌈𝐿(𝑖)⌉))(1, 𝑋 )

(construction of sifted colimits in Law𝑛+1 (𝑆))
� cod(⌈colim𝐿⌉)(1, 𝑋 ) (left adjoints preserve colimits)
� Law𝑛 (𝑆) (𝑝 (𝑋 ), colim𝐿) (Lemma 5.22)

and the composition of these isomorphisms is the canonical function. □

Theorem 7.5. For all 𝑛 ∈ N𝜔 the category Law𝑛 (𝑆) is cocomplete, and the functor 𝑝 : L𝑛+1 (𝑆)op →
Law𝑛 (𝑆) is locally strongly finitely presentable. Hence Law𝑛 (𝑆) is locally strongly finitely presentable.

Proof. The category Law𝑛 (𝑆) has sifted colimits (Lemma A.31), and 𝑝 : L𝑛+1 (𝑆)op → Law𝑛 (𝑆)
provides a small, full (LemmaA.33), dense (LemmaA.34) subcategory of strongly finitely presentable
objects (Lemma A.36). Furthermore, the comma category 𝑝 ↓ 𝐿 is sifted for every 𝐿 ∈ Law𝑛 (𝑆)
(LemmaA.35). Hence it is a generalised variety in the sense of Adámek and Rosický [2001]. Complete-
ness (Lemma A.32) therefore implies cocompleteness by [Adámek and Rosický 2001, Remark 4.8],
and hence that 𝑝 : L𝑛+1 (𝑆)op → Law𝑛 (𝑆) and Law𝑛 (𝑆) are locally strongly finitely presentable. □

Theorem 7.6 (Bicompleteness of term algebras and strict models). Let 𝐿 : L𝑛 (𝑆) → ℒ

be an 𝑛th-order algebraic theory. 𝐿-TmAlg is locally strongly finitely presentable, and in particular
complete and cocomplete. 𝐿/Law𝑛 (𝑆) is therefore also complete and cocomplete.

Proof. Follows immediately from Proposition 5.15 and the fact that Cart(ℒ, Set) ≃ Sind(ℒop),
the sifted cocompletion of ℒop, by Corollary 2.8 of Adámek and Rosický [2001]. Note that this
also implies that every theory is equivalent to the opposite of the subcategory of strongly finitely
presentable objects of its category of term algebras. The category of strict models is a coreflective
subcategory of the category of term algebras (Proposition 5.20), and so inherits limits and colimits
from 𝐿-TmAlg [Riehl 2017, Proposition 4.5.15]. □

A.8 Monad–theory correspondence
The following lemma is essentially Corollary 2.7 of Adámek, Milius, Sousa, and Wissmann [2019].

Lemma A.37. Suppose that 𝑝 : 𝒞sf → 𝒞 is locally strongly finitely presentable. A functor 𝐹 :
𝒞 → 𝒟 preserves sifted colimits iff the functions that send morphisms 𝑓 ∈ 𝒟(𝐹 (𝑋 ), 𝑋 ′) to natural
transformations 𝑓 ◦ 𝐹 (−) : 𝒞(𝑝 (−), 𝑋 ) ⇒ 𝒟(𝐹 (𝑝 (−)), 𝑋 ′) are bijections.

Proof. Let 𝐷 : I → 𝒞 be a sifted diagram. The functor 𝐹 preserves sifted colimits iff the
function sending each morphism 𝑓 ∈ 𝒟(𝐹 (colim𝐷), 𝑋 ) to the natural transformation 𝑓 ◦ 𝐹 ( 𝜋

𝑖∈I) :
𝐹 (𝐷𝑖∈I) → 𝑋 is invertible for each sifted diagram 𝐷 .
Suppose that the function in the statement of the lemma is a bijection. Then

𝒟(𝐹 (colim𝐷), 𝑋 ) � [𝒞op
sf , Set] (𝒞(𝑝 (−), colim𝐷),𝒟(𝐹 (𝑝 (−)), 𝑋 )) (bijection)

� [𝒞op
sf , Set] (colim𝑖 (𝒞(𝑝 (−), 𝐷𝑖 )),𝒟(𝐹 (𝑝 (−)), 𝑋 ))

(𝑝 is locally strongly finitely presentable, 𝐷 is sifted)
� [I, [𝒞op

sf , Set]] (𝒞(𝑝 (=), 𝐷 (−) ),𝒟(𝐹 (𝑝 (=)), 𝑋 )) (colimits)
� [I,𝒟] (𝐹 ◦ 𝐷,𝑋 ) (bijection)
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and this sends 𝑓 to 𝑓 ◦ 𝐹 ( 𝜋

𝑖 ). Conversely, if 𝐹 preserves sifted colimits then

𝒟(𝐹 (𝑋 ), 𝑋 ′) � 𝒟(𝐹 (colim(𝑝 ↓ 𝑋 → 𝒞sf → 𝒞)), 𝑋 ′)
(𝑝 is locally strongly finitely presentable)

� [𝑝 ↓ 𝑋,𝒟] (𝐹 (𝑝 (dom (−))), 𝑋 ′) (𝐹 preserves sifted colimits)
� [𝒞op

sf , Set] (𝒞(𝑝 (−), 𝑋 ),𝒟(𝐹 (𝑝 (−)), 𝑋
′)) (comma categories)

and this sends 𝑓 to 𝑓 ◦ 𝐹 (−). □

We show that for any locally strongly finitely presentable 𝑝 : 𝒞sf → 𝒞 there is an equivalence
[𝒞sf ,𝒞] ≃ [𝒞,𝒞]sf , where [𝒞,𝒞]sf ã→ [𝒞,𝒞] is the full subcategory on the sifted-cocontinuous
functors. To do so, we need the universal property of a pointwise left Kan extension.

Definition A.38. A pair (Lan𝑝𝐹, 𝜆) of a functor Lan𝑝𝐹 : 𝒞 → 𝒟 and natural transformation
𝜆 : 𝐹 ⇒ Lan𝑝𝐹 ◦ 𝑝 is the pointwise left Kan extension of 𝐹 : 𝒞sf → 𝒟 along 𝑝 : 𝒞sf → 𝒞

if, for each natural transformation 𝜎 : 𝒞(𝑝 (−), 𝑋 ) ⇒ 𝒟(𝐹 (−), 𝑌 ), there is a unique morphism
[𝜎] : Lan𝑝𝐹 (𝑋 ) → 𝑌 such that, for all 𝛼 : 𝑝 (𝑋 ′) → 𝑋 , the following diagram commutes.

𝐹 (𝑋 ′) Lan𝑝𝐹 (𝑝 (𝑋 ′))

𝑌 Lan𝑝𝐹 (𝑋 )

𝜆𝑋 ′

𝜎𝑋 ′ (𝛼) Lan𝑝𝐹 (𝛼)

[𝜎 ]

This definition is equivalent to asking each (Lan𝑝𝐹 (𝑋 ), 𝜆𝑋 ) to be the colimit of 𝑝 ↓ 𝑋 → 𝒞
𝐹−→ 𝒟,

which is the usual formula for the left Kan extension as an (ordinary) colimit (see, for example,
Borceux [1994a, Theorem 3.7.2]).
Pointwise left Kan extensions along 𝑝 exist for any locally strongly finitely presentable 𝑝: the

natural transformation 𝜆𝑋 : 𝐹 (𝑋 ) → Lan𝑝𝐹 (𝑝 (𝑋 )) is given by the coprojection of the identity
on 𝑝 (𝑋 ); and the action of Lan𝑝𝐹 on a morphism 𝑓 : 𝑋 → 𝑌 is given by composing the diagram
𝑝 ↓ 𝑌 → 𝒞sf

𝐹−→ 𝒟 with the functor 𝑝 ↓ 𝑓 : 𝑝 ↓ 𝑋 → 𝑝 ↓ 𝑌 .
Pointwise Kan extensions are in particular Kan extensions: given any functor 𝐺 : 𝒞 → 𝒟

and natural transformation 𝜎 : 𝐹 ⇒ 𝐺 ◦ 𝑝 , the universal arrow 𝜎 : Lan𝑝𝐹 ⇒ 𝐺 is given by
𝜎𝑋

def
= [𝛼 ↦→ 𝐺 (𝛼) ◦ 𝜎].

Lemma A.39. Suppose that 𝑝 : 𝒞sf → 𝒞 is locally strongly finitely presentable, and that 𝒟 has
sifted colimits. Pointwise left Kan extensions form an adjunction Lan𝑝 ⊣ (− ◦ 𝑝). Moreover, the image
of Lan𝑝 contains only sifted-cocontinuous functors, and hence the adjunction restricts to an adjoint
equivalence [𝒞sf ,𝒟] ≃ [𝒞,𝒟]sf .

Proof. We note that the equivalence follows abstractly from Adámek, Borceux, Lack, and
Rosickỳ [2002, Theorem 5.5], but we will give a more direct proof.
It is well-known that pointwise left Kan extensions form an adjunction [Mac Lane 1978, Chap-

ter X]. We show that Lan𝑝𝐹 is sifted-cocontinuous. Since 𝑝 is fully faithful, 𝜆 : 𝐹 ⇒ Lan𝑝𝐹 ◦ 𝑝 is a
natural isomorphism: the inverse of 𝜆𝑋 is the unique 𝜆−1

𝑋
: Lan𝑝𝐹 (𝑝 (𝑋 )) → 𝐹 (𝑋 ) corresponding

to the natural transformation

𝒞(𝑝 (−), 𝑝 (𝑋 )) �−→ 𝒞sf (−, 𝑋 )
𝐹−→ 𝒟(𝐹 (−), 𝐹 (𝑋 ))
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Hence,

𝒟(Lan𝑝𝐹 (𝑋 ), 𝑌 ) � [𝒞op
sf , Set] (𝒞(𝑝 (−), 𝑋 ),𝒟(𝐹 (−), 𝑌 )) (pointwise Kan extension)

� [𝒞op
sf , Set] (𝒞(𝑝 (−), 𝑋 ),𝒟(Lan𝑝𝐹 (𝑝 (−)), 𝑌 )) (𝜆 is invertible)

and this sends 𝑓 ∈ 𝒟(Lan𝑝𝐹 (𝑋 ), 𝑌 ) to 𝑓 ◦ Lan𝑝𝐹 (−), so Lan𝑝𝐹 is sifted-cocontinuous by
Lemma A.37.

Finally, we show that the restriction of the adjunction to sifted-cocontinuous functors is an adjoint
equivalence. For this it suffices to show that if𝐺 : 𝒞 → 𝒟 is sifted-cocontinuous then the counit
𝜀𝑋

def
= �id𝐺◦𝑝 : Lan𝑝 (𝐺 ◦ 𝑝) ⇒ 𝐺 on 𝐺 is invertible. The inverse 𝜀−1

𝑋
: 𝐺 (𝑋 ) → Lan𝑝 (𝐺 ◦ 𝑝) (𝑋 ) is

the unique morphism such that the natural transformation

𝒞(𝑝 (−), 𝑋 )
𝛼 ↦→Lan𝑝 (𝐺◦𝑝) (𝛼)◦𝜆𝑋−−−−−−−−−−−−−−−−−→ 𝒟(𝐺 (𝑝 (−)), Lan𝑝 (𝐺 ◦ 𝑝) (𝑋 ))

is equal to 𝜀−1
𝑋
◦ 𝐺 (−); this exists by Lemma A.37 because 𝐺 is sifted-cocontinuous. To show

𝜀𝑋 ◦ 𝜀−1
𝑋

= id𝐺 (𝑋 ) , it suffices, by Lemma A.37, to show that, for each 𝛼 : 𝑝 (𝑋 ′) → 𝑋 , we have
𝜀𝑋 ◦ 𝜀−1

𝑋
◦𝐺 (𝛼) = 𝐺 (𝛼). This is the case because

𝜀𝑋 ◦ 𝜀−1
𝑋 ◦𝐺 (𝛼) = 𝜀𝑋 ◦ Lan𝑝 (𝐺 ◦ 𝑝) (𝛼) ◦ 𝜆𝐴 (definition of 𝜀−1)

= 𝐺 (𝛼) ◦ 𝜀𝑝 (𝐴) ◦ 𝜆𝐴 (naturality of 𝜀)
= 𝐺 (𝛼) (definition of 𝜀)

Finally, to show 𝜀−1
𝑋
◦ 𝜀𝑋 = idLan𝑝 (𝐺◦𝑝)𝑋 , given any 𝛼 : 𝑝 (𝑋 ′) → 𝑋 we have

𝜀−1
𝑋 ◦ 𝜀𝑋 ◦ Lan𝑝 (𝐺 ◦ 𝑝) (𝛼) ◦ 𝜆𝑋 ′ = 𝜀−1

𝑋 ◦𝐺 (𝛼) (definition of 𝜀)
= Lan𝑝 (𝐺 ◦ 𝑝) (𝛼) ◦ 𝜆𝑋 ′ (definition of 𝜀−1)

which suffices by the definition of pointwise left Kan extension. □

Lemma A.40. If 𝑝 : 𝒞sf → 𝒞 is strongly finitely accessible and (𝑇, 𝜂, 𝜇) is a sifted-cocontinuous
monad on 𝒞, then then the functor 𝑇 -Alg→ (𝑇 ◦ 𝑝)-Alg defined in Section 8 is an isomorphism.

Proof. Since𝑇 preserves sifted colimits, Lemma A.37 induces a unique morphism 𝑎 : 𝑇 (𝐴) → 𝐴

such that 𝑎◦𝑇 (−) = (−)‡. Then (𝐴, 𝑎) is a𝑇 -algebra because 𝑝 is dense and, given any𝛼 : 𝑝 (𝑋 ) → 𝐴,
we have

𝑎 ◦ 𝜂𝐴 ◦ 𝛼 = 𝑎 ◦𝑇 (𝛼) ◦ 𝜂𝑝 (𝑋 ) (naturality of 𝜂)
= 𝛼‡ ◦ 𝜂𝑝 (𝑋 ) (definition of 𝑎)
= 𝛼 (algebra)

and, given any 𝛼 ′ : 𝑝 (𝑋 ′) → 𝑇 (𝑝 (𝑋 )),

𝑎 ◦𝑇 (𝑎) ◦𝑇 (𝑇 (𝛼)) ◦𝑇 (𝛼 ′) = 𝑎 ◦𝑇 (𝛼‡) ◦𝑇 (𝛼 ′) (definition of 𝑎)

= (𝛼‡ ◦ 𝛼 ′)‡ (definition of 𝑎)

= 𝛼‡ ◦ 𝛼 ′† (algebra)

= 𝑎 ◦𝑇 (𝛼) ◦ 𝜇 ◦𝑇 (𝛼 ′) (definitions of 𝑎 and (−)†)
= 𝑎 ◦ 𝜇 ◦𝑇 (𝑇 (𝛼)) ◦𝑇 (𝛼 ′) (naturality of 𝜇)
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If ℎ : (𝐴, (−)‡) → (𝐴′, (−)‡) is a (𝑇 ◦ 𝑝)-algebra homomorphism, then it is a 𝑇 -algebra homomor-
phism, because 𝑇 is sifted-cocontinuous, and, for all 𝛼 : 𝑝 (𝑋 ) → 𝐴,

𝑎′ ◦𝑇 (ℎ) ◦𝑇 (𝛼) = (ℎ ◦ 𝛼)‡ (definition of 𝑎′)
= ℎ ◦ 𝛼‡ (algebra homomorphism)
= ℎ ◦ 𝑎 ◦𝑇 (𝛼) (definition of 𝑎)

Hence we have a functor (𝑇 ◦ 𝑝)-Alg → 𝑇 -Alg. Preservation of sifted colimits immediately
implies that it is the inverse of 𝑇 -Alg→ (𝑇 ◦ 𝑝)-Alg. □

Theorem 8.1. Suppose that 𝑝 : 𝒞sf → 𝒞 is locally strongly finitely presentable. The construction
above forms an adjunction (on the left), which restricts to an equivalence of categories on the sifted-
cocontinuous monads (on the right).

RMnd(𝑝) Mnd(𝒞)
Lan𝑝

−◦𝑝

⊣ RMnd(𝑝) Mndsf (𝒞)
Lan𝑝

−◦𝑝
≃

Moreover, there are isomorphisms between the corresponding categories of algebras, and these commute
with the forgetful functors, as below, for all 𝑇 ∈ Mndsf (𝒞) and 𝑇 ′ ∈ RMnd(𝑝).

𝑇 -Alg (𝑇 ◦ 𝑝)-Alg

𝒞

� (Lan𝑝𝑇
′)-Alg 𝑇 ′-Alg

𝒞

�

Proof. The well-behavedness conditions given by Altenkirch, Chapman, and Uustalu [2010,
Definition 4.1] all hold for 𝑝 . In particular, the condition that the canonical morphism

Lan𝑝 (𝒞(𝑝 (𝑋 ), 𝐹 (−)))(𝑌 ) → 𝒞(𝑝 (𝑋 ), Lan𝑝𝐹 (𝑌 ))

is invertible, for all 𝐹 : 𝒞sf → 𝒞 and𝑋,𝑌 ∈ 𝒞sf , holds because𝒞(𝑝 (𝑋 ),−) preserves sifted colimits,
and hence pointwise Kan extensions along 𝑝 ; Theorem 4.8 ibid. then gives us the adjunction in the
theorem statement. Lemma A.39 implies this adjunction restricts to an equivalence, since (relative)
monad morphisms are closed under taking inverses.

For the algebras, the triangle on the left above comes from Lemma A.40. The other is then

(Lan𝑝𝑇 )-Alg � (Lan𝑝𝑇 ◦ 𝑝)-Alg � 𝑇 -Alg

using (Lan𝑝𝑇 ) ◦ 𝑝 � 𝑇 . □

Theorem 8.2. For 𝑛 ∈ N𝜔 , the following are equivalent.
(1) The category Law𝑛+1 (𝑆) of (𝑛 + 1)th-order algebraic theories.
(2) The full subcategory of RMnd(𝑝 : L𝑛+1 (𝑆)op → Law𝑛 (𝑆)) on relative monads (𝑇, 𝜂, (−)†)

such that, if 𝑛 > 0, then, for all 𝑋 ∈ L𝑛+1 (𝑆) and 𝑌 ∈ L𝑛 (𝑆),

𝑇 (𝑋 )
𝑇 (𝜋𝑋 )−−−−−→ 𝑇 (𝑋 × 𝑌 )

𝑇 (𝜋𝑌 )◦𝜂𝑌←−−−−−−−− 𝑝 (𝑌 )

is a coproduct in Law𝑛 (𝑆).
(3) The full subcategory of Mndsf (Law𝑛 (𝑆)) on monads (𝑇, 𝜂, 𝜇) such that, if 𝑛 > 0, then, for all

𝐿 ∈ Law𝑛 (𝑆) and 𝑌 ∈ L𝑛 (𝑆),

𝑇 (𝐿)
𝑇 ( 𝜋

𝐿)−−−−−→ 𝑇 (𝐿 + 𝑝 (𝑌 ))
𝑇 ( 𝜋

𝑝 (𝑌 ) )◦𝜂𝑝 (𝑌 )←−−−−−−−−−−−− 𝑝 (𝑌 )

is a coproduct in Law𝑛 (𝑆).
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Moreover, if an (𝑛 + 1)th-order algebraic theory 𝐿, relative monad𝑇 , and monad𝑇 are related by these
equivalences, then there are isomorphisms between the respective categories of categories of algebras
commuting with the forgetful functors:

𝑇 -Alg 𝑇 -Alg 𝐿-TmAlg

Law𝑛 (𝑆)

� �

Proof. The equivalence between (1) and (2) is covered in Theorem 6.7.
For (2) ≃ (3), it suffices to show that the equivalence in Theorem 8.1 restricts to one involving the

coproduct conditions. Let 𝑇 be a monad as in (3). Since 𝑝 sends products in L𝑛+1 (𝑆) to coproducts
in Law𝑛 (𝑆) (Lemma A.24), we have

𝑇 (𝑝 (𝑋 )) 𝑇 (𝑝 (𝑋 ) + 𝑝 (𝑌 )) 𝑝 (𝑌 )

𝑇 (𝑝 (𝑋 × 𝑌 ))

𝑇 𝜋

𝑝 (𝑋 )

𝑇 (𝑝 (𝜋𝑋 ))

�
𝑇 𝜋

𝑝 (𝑌 )◦𝜂𝑝 (𝑌 )

𝑇 (𝑝 (𝜋𝑋 ))◦𝜂𝑝 (𝑌 )

The top is a coproduct diagram, hence so is the bottom, and the induced relative monad𝑇 ◦𝑝 is as in
(2). In the other direction, since each monad 𝑇 as in (3) preserves sifted colimits, colimits commute,
and each 𝐿 ∈ Law𝑛 (𝑆) is a canonical sifted colimit (Theorem 7.5), the canonical morphism

colim(𝛼 :𝑝 (𝑋 )→𝐿) ∈𝑝↓𝐿 (𝑇 (𝑝 (𝑋 ) + 𝑝 (𝑌 ))) → 𝑇 (𝐿 + 𝑝 (𝑌 ))

is invertible. The canonical morphism 𝑝 (𝑋 ) + 𝑝 (𝑌 ) → 𝑝 (𝑋 ×𝑌 ) is also invertible (Lemma A.24), so

colim(𝛼 :𝑝 (𝑋 )→𝐿) ∈𝑝↓𝐿 (𝑇 (𝑝 (𝑋 × 𝑌 ))) � 𝑇 (𝐿 + 𝑝 (𝑌 ))

If 𝑇 came from a relative monad as in (2), then, up to natural isomorphism, the relative monad is
given by 𝑇 ◦ 𝑝 , and each 𝑇 (𝑝 (𝑋 × 𝑌 )) is a coproduct. Hence 𝑇 (𝐿 + 𝑝 (𝑌 )) forms the coproduct as
required.

The isomorphisms between categories of algebras follow from Theorem 8.1 and Lemma 6.6. □

Proposition A.41. Suppose that 𝐿 : L𝑛+1 (𝑆) → ℒ is a (𝑛 + 1)th-order algebraic theory, where
𝑛 ∈ N𝜔 . The monad induced by the monad correspondence is isomorphic to the monad induced by the
adjunction

Law𝑛 (𝑆) Law𝑛+1 (𝑆) 𝐿/Law𝑛+1 (𝑆)
⌈−⌉

⌊−⌋

𝐿+(−)

𝑈

⊣ ⊣

Proof. The monad ⌊𝐿 + ⌈−⌉⌋ induced by the adjunction is sifted-cocontinuous, because each of
the functors ⌈−⌉, 𝐿 + (−) and ⌊−⌋ are (the latter due to the explicit construction of sifted colimits
in Law𝑛+1 (𝑆)). By Theorem 8.1, it therefore suffices to show that the induced relative monad
⌊𝐿 + ⌈𝑝 (−)⌉⌋ is the same as the relative monad 𝑇𝐿 constructed from 𝐿.
For each 𝑋 ∈ L𝑛+1 (𝑆)op we have an isomorphism

⌊𝐿 + ⌈𝑝 (𝑋 )⌉⌋ �−→ ⌊𝐿 + (Id//𝑋 )⌋ �−→ ⌊𝐿//𝑋 ⌋ = 𝑇𝐿 (𝑋 )

by Lemmas A.23 and A.27. It suffices to show this forms amorphism of relative monads. Preservation
of the unit follows from one of the triangle laws of the coreflection. For preservation of the Kleisli
extension, given 𝐹 : 𝑝 (𝑋 ) → ⌊𝐿 + ⌈𝑝 (𝑌 )⌉⌋, we have to show that the two morphisms

𝐻 : ⌊𝐿 + ⌈𝑝 (𝑋 )⌉⌋ → ⌊𝐿//𝑌 ⌋
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obtained using the Kleisli extensions of the two relative monads, are equal. To do this, note that by
the adjunction

Law𝑛 (𝑆) Law𝑛+1 (𝑆) 𝐿/Law𝑛+1 (𝑆)
⌈−⌉

⌊−⌋

𝐿+(−)

𝑈

⊣ ⊣

there is exactly one 𝐺 : 𝐿 + ⌈𝑝 (𝑋 )⌉ → 𝐿//𝑌 in 𝐿/Law𝑛+1 (𝑆) such that the following square
commutes, where 𝜂 is the unit of the adjunction.

𝑝 (𝑋 ) ⌊𝐿 + ⌈𝑝 (𝑋 )⌉⌋

⌊𝐿 + ⌈𝑝 (𝑌 )⌉⌋ ⌊𝐿//𝑌 ⌋
𝐹

𝜂𝑝 (𝑋 )

⌊𝐺 ⌋

�

Let𝐺 ′ : 𝐿 + ⌈𝑝 (𝑋 )⌉ → 𝐿 + ⌈𝑝 (𝑌 )⌉ be the unique morphism of 𝐿/Law𝑛+1 (𝑆) such that the following
triangle commutes.

𝑝 (𝑋 ) ⌊𝐿 + ⌈𝑝 (𝑋 )⌉⌋

⌊𝐿 + ⌈𝑝 (𝑌 )⌉⌋

𝜂𝑝 (𝑋 )

⌊𝐺′⌋
𝐹

The image of the composite 𝐿 + ⌈𝑝 (𝑋 )⌉
⌊𝐺′⌋
−−−→ 𝐿 + ⌈𝑝 (𝑌 )⌉

⌊�⌋
−−−→ 𝐿//𝑌 under ⌊−⌋ makes the preceding

square commute, so the composite is a candidate for𝐺 , and thus ⌊𝐺⌋ is by definition the 𝐻 induced
by the relative monad constructed from the coslice adjunction.

On the other hand, the morphism

𝑝 (𝑋 ) 𝐹−→ ⌊𝐿 + ⌈𝑝 (𝑌 )⌉⌋
⌊�⌋
−−−→ ⌊𝐿//𝑌 ⌋

is sent by the bijections (12) to some morphism 𝑓 ∈ ℒ(𝑌,𝑋 ). Then

𝐿 + ⌈𝑝 (𝑋 )⌉ �−→ 𝐿//𝑋
𝐿//𝑓
−−−→ 𝐿//𝑌

is also a candidate for𝐺 , so is necessarily equal to the previous candidate. In this case, ⌊𝐺⌋ is the 𝐻
induced by the relative monad 𝑇𝐿 , and so the two morphisms 𝐻 are equal. □

A.9 Zeroth-order algebraic theories
0th-order presentations are treated here for completeness, though they are devoid of any real
insight. Their associated equational logic is the 0th-order simply-typed 𝜆-calculus (Figure A.2),
whose classifying category Λ0 (𝑆) is defined in Definition 3.2.

Proposition A.42. Λ0 (𝑆) � L0 (𝑆). □

empty· ctx
𝑋 type

singleton
𝑥 : 𝑋 ctx

var
𝑥 : 𝑋 ⊢ 𝑥 : 𝑋

(𝐵 ∈ 𝑆) base
𝐵 type

Fig. A.2. The 0th-order simply-typed 𝜆-calculus on 𝑆 .
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Definition A.43. An 𝑆-sorted 0th-order signature consists of a set 𝑂 of operators and an arity
function |−| : 𝑂 → 𝑆 . A signature gives rise to a syntactic category Λ𝑂 defined as the classifying
category in Definition 3.2 with the following additional axiom schema.

(𝑜 ∈ 𝑂, |𝑜 | = 𝐵) op
⊢ 𝑜 : B

Definition A.44. An 𝑆-sorted 0th-order presentation consists of a signature (𝑂, |−|), a set 𝐸 ⊆∑
𝐵∈𝑆 Λ𝑂 (1, 𝐵) × Λ𝑂 (1, 𝐵). Every presentation Σ = (𝑂, |−|, 𝐸) similarly gives rise to a syntactic

category ΛΣ defined as the syntactic category for the underlying signature with the following
additional axiom schema. We denote by 𝑄Σ : Λ𝑂 ↠ ΛΣ the quotient of Λ𝑂 by the equations of Σ.

((𝐵, 𝑙, 𝑟 ) ∈ 𝐸) eq
⊢ 𝑙 ≡ 𝑟 : B

Transliterations and translations coincide for 0th-order algebraic theories, as it is not possible to
form nontrivial compound terms.

Definition A.45. Let Σ = (𝑂, |−|, 𝐸) and Σ′ = (𝑂 ′, |−|′, 𝐸 ′) be 0th-order presentations. An 0th-order
transliteration/translation from Σ to Σ′ consists of a function 𝑓 : 𝑂 → 𝑂 ′ such that |𝑓 (𝑜) |′ = |𝑜 |
for all 𝑜 ∈ 𝑂 , and such that, for all 𝐵 ∈ 𝑆 and (𝑙, 𝑟 ) ∈ Λ𝑂 (1,B), we have 𝑄Σ′ (𝑓 (𝑙)) = 𝑄Σ′ (𝑓 (𝑟 )) if
𝑄Σ (𝑙) = 𝑄Σ (𝑟 ).

𝑆-sorted 0th-order presentations and transliterations/translations form a category Pre0 (𝑆) =
Pres0 (𝑆), with composition and identities inherited from Set.

Proposition A.46. Pres0 (𝑆) ≃ Law0 (𝑆).

Proof. Pres0 (𝑆) is elementarily equivalent to the category of 𝑆-indexed setoids, which in turn
is equivalent to the category of 𝑆-indexed sets, which by Lemma 9.3 is equivalent to Law0 (𝑆). □

Lemma 9.3. Law0 (𝑆) � Set𝑆 .

Proof. Follows trivially by considering the co-Yoneda embedding of the terminal object. □

Definition A.47. A model for an 𝑆-sorted 0th-order algebraic theory 𝐿 : L0 (𝑆) →ℒ in a category
𝒞 with a terminal object is a terminal-object-preserving functor 𝑀 : ℒ → 𝒞. A map of models
from𝑀 to𝑀 ′ is a natural transformation𝑀 ⇒ 𝑀 ′. Models for ℒ and their maps form a category
Mod(𝐿,𝒞), functorial contravariantly in the first argument and covariantly in the second.

Remark A.1. The notion of term algebra is trivial for 0th-order algebraic theories, because every
context in a 0th-order algebraic theory is empty.

Proposition A.48. Law0 (𝑆) is a coreflective subcategory of Law1 (𝑆).

Proof. The functor ⌈−⌉ : Law0 (𝑆) → Law1 (𝑆) sending a 0th-order algebraic theory to its
conservative cartesian completion is fully faithful, by the universal property of free cartesian
completion. The functor ⌊−⌋ : Law1 (𝑆) → Law0 (𝑆) sending a first-order algebraic theory to its
full subcategory on 𝑆 + 1 is right adjoint to ⌈−⌉, which follows directly from maps of theories being
identity-on-objects. □

Corollary A.49. Let 𝐿 : L𝑛 (𝑆) → ℒ be an 𝑛th-order algebraic theory. The forgetful functor
𝐿/Law𝑛 (𝑆) → Set𝑆 has a left adjoint.

Proof. Direct by Theorem 5.9. □
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