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Abstract
We give a formal treatment of simple type theories, such as the simply-typed λ-calculus, using
the framework of abstract clones. Abstract clones traditionally describe first-order structures, but
by equipping them with additional algebraic structure, one can further axiomatize second-order,
variable-binding operators. This provides a syntax-independent representation of simple type theories.
We describe multisorted second-order presentations, such as the presentation of the simply-typed
λ-calculus, and their clone-theoretic algebras; free algebras on clones abstractly describe the syntax
of simple type theories quotiented by equations such as β- and η-equality. We give a construction of
free algebras and derive a corresponding induction principle, which facilitates syntax-independent
proofs of properties such as adequacy and normalization for simple type theories. Working only with
clones avoids some of the complexities inherent in presheaf-based frameworks for abstract syntax.
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1 Introduction

The abstract concept of type theory is crucial in the study of programming languages.
However, while it is generally appreciated that the concrete syntax associated to a type
theory is peripheral to its fundamental structure, conventional techniques for working with
type theories and proving properties thereof are predominantly syntactic. The primary
reason for this incongruity is that, though abstract frameworks for defining and reasoning
about general classes of type theories have been developed (e.g. [14, 13, 5, 12, 21, 2, 3, 19],
there called second-order abstract syntax), the mathematical prerequisites are significant and
often appear unapproachable to those without a firm category theoretic background. This is
regrettable, because these general techniques alleviate much of the rote associated to syntactic
proofs, such as those for adequacy, normalization, and the admissibility of substitution.

It so happens that there exists in the mathematical folklore an approach that is particularly
well-suited to capturing the essential structure of simple type theories and yet requires
essentially no experience with category theory to employ fruitfully: this is the formalism of
abstract clones (often simply called clones) with algebraic structure. The structure of an
abstract clone captures the notion of a context-indexed family of terms, closed under variable
projection and substitution; equipping clones with algebraic structure permits the expression
of variable-binding operators, like the λ-abstraction operator familiar from λ-calculi. It
is known amongst cognoscenti that abstract clones might be employed for this purpose:
for instance, Fiore, Plotkin, and Turi [16] proved that abstract clones are equivalent to
their notion of substitution monoids, which represent families of (unityped) terms with an
associated capture-avoiding substitution operation; later, Fiore and Mahmoud [32, 15] proved
that abstract clones with algebraic structure are equivalent to the Σ-monoids of Fiore et
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2 Abstract clones for abstract syntax

al., which extend substitution monoids with second-order (i.e. variable binding) algebraic
structure. In a separate line of inquiry, Hyland [24] uses abstract clones with algebraic
structure to give a modern treatment of the unityped λ-calculus. However, it does not appear
that abstract clones have previously been expressly proposed for the study of simple type
theories (in fact, the definition of a typed abstract clone with algebraic structure is absent
from the literature).

Here, we give an exposition of the use of abstract clones with algebraic structure in
defining simple type theories and proving various of their properties. After setting up the
relevant definitions (Section 2), we describe how simple type theories can be modelled by
algebras of second-order presentations (Section 3). We then show that free algebras exist,
giving an abstract description of the syntax of the type theory (Section 4). We derive
an induction principle [30] that enables abstract reasoning about the syntax (Section 5),
and show that this is powerful enough to prove non-trivial properties of type theories, in
particular using logical relations (Section 6). We also compare the clone-theoretic framework
to other approaches (Section 7). Though we do not expect our treatment to be surprising to
experts familiar with prior categorical developments, it is an important perspective in the
understanding of simple type theories and deserves explication.

Though we occasionally make reference to category theory throughout the paper, know-
ledge of category theory is not necessary to understand the content.

2 Abstract clones and first-order presentations

A typed (or multisorted) abstract clone [36], henceforth simply clone, encapsulates the
structure of terms in simple contexts, closed under variables and substitution. Informally, for
each context x1 : A1, . . . , xn : An and type B, where A1 to An are types (or sorts), a clone X
specifies a set of terms X(A1, . . . , An; B), each element of which is considered a term of type
B in the context x1 : A1, . . . , xn : An. It also specifies terms vari representing the projection
of the variable xi from the context, and functions substΓ;An,...,An;B : X(A1, . . . , An; B) ×
X(Γ; A1) × · · · × X(Γ; An) → X(Γ; B) representing simultaneous substitution:

t ∈ X(A1, . . . , An; B) represents x1 : A1, . . . , xn : An ⊢ t : B

var(A1,...,An)
i ∈ X(A1, . . . , An; Ai) represents x1 : A1, . . . , xn : An ⊢ xi : Ai

substΓ;A1,...,An;B(t, u1, . . . , un) represents Γ ⊢ t{x1 7→ u1, . . . , xn 7→ un} : B

The clone X is required to satisfy laws expressing that (1) substituting variables for themselves
does nothing; (2) applying a substitution to a variable results in the term corresponding to
that variable in the substitution; and (3) substitution is associative.

▶ Notation 1. We fix a set S of types (sorts). We denote by S∗ the free monoid on S, i.e.
lists of elements of S. Conceptually, contexts x1 : A1, . . . , xn : An are given by elements
[A1, . . . , An] ∈ S∗, since variable names carry no information. We write ⋄ ∈ S∗ for the empty
context, and Γ, Ξ for the concatenation of Γ ∈ S∗ and Ξ ∈ S∗. For contexts Γ, ∆ ∈ S∗, where
∆ = [A1, . . . , An], we define X(Γ; ∆) =

∏
i≤n X(Γ; Ai). We call the elements σ ∈ X(Γ; ∆)

substitutions; a substitution is therefore a tuple σ = (σ1, . . . , σn) of terms σi ∈ X(Γ; Ai).

▶ Definition 2. An S-sorted clone X = (X, var, subst) consists of
for each context Γ ∈ S∗ and sort A ∈ S, a set X(Γ; A) of terms;
for each context Γ ∈ S∗, a tuple var(Γ) ∈ X(Γ; Γ) of variables;
for each pair of contexts Γ, ∆ ∈ S∗ and sort A ∈ S, a substitution function substΓ;∆;A :
X(∆; A) × X(Γ; ∆) → X(Γ; A), which we write as t[σ] = substΓ;∆;A(t, σ);
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such that

var(A1,...,An)
i [σ] = σi for each σ ∈ X(Γ; A1, . . . , An) and i ≤ n (1)

t[var(Γ)] = t for each t ∈ X(Γ; A) (2)
t[σ′

1[σ], . . . , σ′
m[σ]] = (t[σ′])[σ] for each t ∈ X(Ξ; A), σ′ ∈ X(∆; Ξ), σ ∈ X(Γ; ∆) (3)

A clone homomorphism f : X → X′ consists of a function fΓ;B : X(Γ; B) → X ′(Γ; B) for each
context Γ ∈ S∗ and sort B ∈ S, such that the following hold, where ∆ = [A1, . . . , An] ∈ S∗:

f∆;Ai
(var(∆)

i ) = var(∆)
i

′
for each i ≤ n

fΓ;B(t[σ]) = (f∆;B(t))[fΓ;A1(σ1), . . . , fΓ;An
(σn)]′ for each t ∈ X(∆; B), σ ∈ X(Γ; ∆)

We write Clone(S) for the category of S-sorted clones and homomorphisms.

We extend every clone homomorphism f : X → X′ to act on substitutions as follows,
where ∆ = [A1, . . . , An] ∈ S∗:

fΓ;∆ : X(Γ; ∆) → X ′(Γ; ∆) fΓ;∆(σ) = (fΓ;A1(σ1), . . . , fΓ;An(σn))

▶ Example 3. We denote by VarS the S-sorted clone of variables, whose family of terms is
given by VarS(A1, . . . , An; B) = {i | Ai = B}; whose variables are given by var(Γ)

i = i; and
whose substitution is given by i[σ] = σi. VarS is the initial object in Clone(S): for any
S-sorted clone X, there is a unique homomorphism ▷ : VarS → X given by ▷Γ;B(i) = var(Γ)

i .

▶ Example 4. The terms of any universal algebra [8] form a monosorted clone (i.e. an
S-sorted clone for which S is a singleton {∗}). The sets of terms, along with the variables
and substitution function, exactly match the classical notions. For instance, monoids form a
clone Mon, where Mon(∗, . . . , ∗︸ ︷︷ ︸

n

; ∗) is the free monoid on n elements.

▶ Example 5. Let Ty be the set of sorts freely generated by a base type b ∈ Ty and function
types (A ⇒ B) ∈ Ty for A, B ∈ Ty (precisely, Ty is the free magma on {b}). The terms of
the simply typed λ-calculus (STLC) form a Ty-sorted clone Λ. Consider terms generated by
the following rules:

Γ, x : A, ∆ ⊢ x : A

Γ ⊢ f : A ⇒ B Γ ⊢ a : A

Γ ⊢ app f a : B

Γ, x : A ⊢ t : B

Γ ⊢ λx : A. t : A ⇒ B

(We write app to distinguish application of λ-terms from application of mathematical functions.
We also use named variables for readability, identifying α-equivalent terms.) Capture-avoiding
simultaneous substitution t{xi 7→ ui}i of terms is defined in the usual way by recursion on t:

xj{xi 7→ ui}i = uj (app f a){xi 7→ ui}i = app (f{xi 7→ ui}i) (a{xi 7→ ui}i)
(λx : A. t){xi 7→ ui}i = λy : A. (t{x1 7→ u1, . . . , xn 7→ un, x 7→ y})

The clone Λ has sets of terms Λ(A1, . . . , An; B) = {x1 : A1, . . . , xn : An ⊢ t : B}, variables
var(Γ)

i = xi, and substitution t[σ] = t{xi 7→ σi}i.
There is a related Ty-sorted clone Λβη of STLC terms up to βη-equality, defined by

quotienting the sets of terms associated to Λ by the equivalence relation ≈βη, where Γ ⊢
t ≈βη t′ : A is the congruence relation generated by the following rules:

Γ, x : A ⊢ t : B Γ ⊢ u : A
(β)

Γ ⊢ app (λx : A. t) u ≈βη t{x 7→ u} : B

Γ ⊢ t : A ⇒ B (η)
Γ ⊢ t ≈βη λx : A. app t x : A ⇒ B
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▶ Remark 6. We shall only consider abstract clones with sets of types. However, as illustrated
by the previous example, the types in a simple type theory often have algebraic structure
themselves. By considering only the underlying set of types, the algebraic structure is
forgotten. This simplifies the development, at the cost of some loss of expressivity. By
specifying a (monosorted) clone of types, rather than a set, one recovers exactly the simple
type theories of Arkor and Fiore [5].

Clone(S) is a cartesian category, permitting us to combine clones pointwise. The terminal
object 1 is the unique clone in which every set of terms is a singleton. The binary product X1×
X2 has sets of terms given by products of sets (X1×X2)(Γ; A) = X1(Γ; A)×X2(Γ; A), variables
var(Γ)

i = (var(Γ)
i , var(Γ)

i ), and substitution (t1, t2)[(σ11, σ21), . . . , (σ1n, σ2n)] = (t1[σ1], t2[σ2]).
▶ Remark 7. S-sorted abstract clones form a variety in the sense of universal algebra; this
means that Clone(S) is the category of models for a (multisorted) algebraic theory. Such
categories are well-behaved, and several of the properties we mention throughout the paper
(such as being cartesian) follow abstractly from this observation. We often choose to be more
explicit for ease of comprehension, but make note where this abstract perspective is helpful.

2.1 Substitution and context extension
We briefly consider the structure of substitutions σ in S-sorted clones X, in particular to
define various substitutions that we use below, and to characterize context extension in clones.
If σ ∈ X(Γ; ∆) and σ′ ∈ X(∆; Ξ) are substitutions, then their composition (σ′ ◦σ) ∈ X(Γ; Ξ)
is the substitution (σ′

1[σ], . . . , σ′
m[σ]), where m is the length of Ξ. The three equations in

the definition of a clone (Definition 2) equivalently state (1 & 2) that var is the (left- and
right-) unit for composition (var(∆) ◦ σ = σ = σ ◦ var(Γ)); and (3) that composition is
associative (σ′′ ◦ (σ′ ◦ σ) = (σ′′ ◦ σ′) ◦ σ). In fact, this perspective underlies the connection
between abstract clones and cartesian multicategories (which may be considered categories
whose morphisms have multiple inputs, corresponding to each of the variables in a context):
we elaborate on this connection in Section 7.

We call the substitutions ρ ∈ VarS(Γ; ∆) variable renamings. This is justified by observing
that ρ selects a variable in the context ∆ for each variable in Γ. If t ∈ X(∆; A) is
a term in some clone X, then t[▷ρ] ∈ X(Γ; A) corresponds to the term in which the
variables in t have been renamed according to ρ. A special case of renaming is weakening
wk(Γ)

Ξ = (1, . . . , n) ∈ VarS(Γ, Ξ; Γ). Using weakening and composition, we may define the
lifting of a substitution σ ∈ X(Γ; ∆) to a larger context:

liftΞ(σ) = (σ ◦ (▷wk(Γ)
Ξ ), ▷(n + 1, . . . , n + m)) ∈ X(Γ, Ξ; ∆, Ξ)

where n is the length of Γ and m is the length of Ξ.
Context extension induces the following operation on clones. Given an S-sorted clone X

and context Ξ ∈ S∗, we let ⇑ΞX be the S-sorted clone with terms (⇑ΞX)(Γ; A) = X(Γ, Ξ; A),
variables (var(Γ,Ξ)

i )i≤n ∈ X(Γ, Ξ; Γ), and substitution t[σ, ▷(n + 1, . . . , n + m)] ∈ X(Γ, Ξ; A)
for t ∈ X(∆, Ξ; A) and σ ∈ X(Γ, Ξ; ∆), where n is the length of Γ and m is the length
of Ξ. This satisfies a universal property as follows. Weakening forms a homomorphism
weaken(Ξ)

X : X → ⇑ΞX that sends t ∈ X(Γ; A) to t[▷wk(Γ)
Ξ ] ∈ X(Γ, Ξ; A). Then, for every

homomorphism g : ⇑ΞX → Y, we obtain a homomorphism g ◦ weaken(Ξ)
X : X → Y and

a substitution g⋄;Ξ(var(Ξ)) ∈ Y (⋄; Ξ). Together, these uniquely determine g: to give a
homomorphism g is just to give a homomorphism X → Y and a closed term σi for each
extra variable from Ξ. (From the perspective of algebraic theories, context extension ⇑ΞX
corresponds to the construction of the polynomial [28] or simple slice category [26] over Ξ.)
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▶ Lemma 8. For each clone homomorphism f : X → Y and substitution σ ∈ Y (⋄; Ξ), there
is a unique homomorphism g : ⇑ΞX → Y such that g ◦ weaken(Ξ)

X = f and g⋄;Ξ(var(Ξ)) = σ.
Proof. Suppose g is such a homomorphism. Then, for each t ∈ X(Γ, Ξ; A), we have
gΓ;A(t) = (gΓ,Ξ;A(weaken(Ξ)

X (t)))[var(Γ), (g⋄;Ξ(var(Ξ)))◦▷wk(⋄)
Γ ] = (fΓ,Ξ;A(t))[var(Γ), σ◦▷wk(⋄)

Γ ],
where the first equality uses preservation of variables and substitution by g, and the second
uses the assumptions on g. Hence, g is unique when it exists. For existence, define
gΓ;A(t) = (fΓ,Ξ;A(t))[var(Γ), σ ◦ ▷wk(⋄)

Γ ]. ◀

Substitutions σ ∈ Y (⋄; Ξ) are in natural bijection with homomorphisms ⇑ΞVarS → Y, and
so Lemma 8 equivalently states that ⇑ΞX is the coproduct of X and ⇑ΞVarS . (This contrasts
with presheaf-based frameworks [16, 22], in which context extension is exponentiation.)

2.2 First-order presentations
Clones describe collections of terms closed under variable projection and substitution. We
will frequently be interested in clones equipped with extra structure, so as, for example, to
interpret the operations of a given type theory. Presentations permit the axiomatization of
clones that interpret various operations, subject to sets of axioms; while the algebras for a
given presentation are exactly those clones that satisfy the axiomatization. Later, we will
see how clones may be freely generated from presentations, allowing one to define a clone
simply by specifying its generating operators and axioms.

Our treatment of first-order presentations is the classical notion of presentation for
multisorted universal algebra [9, 17].
▶ Definition 9. An S-sorted first-order signature Σ consists of a set Σ(Γ; B) for each
(Γ; B) ∈ S∗ × S. We call the elements o ∈ Σ(Γ; B) the (Γ; B)-ary operators. Terms over Σ
are generated by the following rules:

Γ, x : A, ∆ ⊢ x : A

Γ ⊢ t1 : A1 · · · Γ ⊢ tn : An (o ∈ Σ(A1, . . . , An; B))
Γ ⊢ o(t1, . . . , tn) : B

An (A1, . . . , An; B)-ary term t over Σ is a term x1 : A1, . . . , xn : An ⊢ t : B, and an (Γ; B)-
ary equation over Σ is a pair (t, u) of (Γ; B)-ary terms. An S-sorted first-order presentation
Σ = (Σ, E) consists of an S-sorted first-order signature Σ and, for each (Γ; B) ∈ S∗ × S, a
set E(Γ; B) of (Γ; B)-ary equations.
▶ Remark 10. Observe that the operators of a signature correspond to terms in the logic
specified below (namely, first-order equational logic). In particular, a (Γ; B)-ary operator o,
where Γ = [A1, . . . , An] ∈ S∗, may be thought of either as a function o : A1, . . . , An → B, or
as a term x1 : A1, . . . , xn : An ⊢ o : B. These perspectives are complementary, and mirror
the practice in categorical logic of representing terms by morphisms.
▶ Definition 11. If Γ ⊢ ui : Ai for i ≤ n and x1 : A1, . . . xn : An ⊢ t : B are terms over
an S-sorted first-order signature Σ, their substitution Γ ⊢ t{x1 7→ u1, . . . , xn 7→ un} : B is
defined by recursion on t in the usual way. The equational logic over an S-sorted first-order
presentation Σ = (Σ, E) consists of the following rules for the congruence of ≈ under
operations and substitution, together with reflexivity, symmetry and transitivity of ≈:

Γ ⊢ t1 ≈ u1 : A1 · · · Γ ⊢ tn ≈ un : An (o ∈ Σ(A1, . . . , An; B))
Γ ⊢ o(t1, . . . , tn) ≈ o(u1, . . . , un) : B

Γ ⊢ t′
1 ≈ u′

1 : A1 · · · Γ ⊢ t′
n ≈ u′

n : An ((t, u) ∈ E(A1, . . . , An; B))
Γ ⊢ t{xi 7→ t′

i}i ≈ u{xi 7→ u′
i}i : B
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The terms over Σ form a clone TermΣ = (TermΣ, var, subst), where TermΣ(Γ; A) is the set
of ≈-equivalence classes of (Γ; A)-ary terms; the variables are var(Γ)

i = xi; and substitution
is t[σ] = t{xi 7→ σi}i. A clone X is presented by Σ when TermΣ is isomorphic to X in
Clone(S) (that is, when there are homomorphisms TermΣ ⇄ X that are mutually inverse).

▶ Remark 12. A clone may have many different presentations: for instance, the clone Mon
of monoids (Example 4) may be presented by a unit and a binary multiplication operation,
or by an n-ary multiplication operation for each n ∈ N (subject to suitable axioms).

▶ Example 13. Fix a finite set V = {v1, . . . , vk} of values. The Ty-sorted presentation ΣGS
V

of global V -valued state has a (b, . . . , b︸ ︷︷ ︸
k

; b)-ary operator get, a (b; b)-ary operator putvi
for

each i ≤ k, and equations

x : b ⊢ get(putv1(x), . . . , putvk
(x)) ≈ x : b

x1 : b, . . . , xk : b ⊢ putvi
(get(x1, . . . , xk)) ≈ putvi

(xi) : b for each i ≤ k

x : b ⊢ putvi
(putvj

(x)) ≈ putvj
(x) : b for each i, j ≤ k

Informally, the term get(t1, . . . , tn) gets the current value vi of the state and then continues
as ti, while the term putvi

(t) sets the state to vi and then continues as t. (In Example 23
below, we combine this presentation with the STLC to obtain a call-by-name calculus with
global state. In call-by-name calculi, effects occur at base types, so it is only necessary to
axiomatize get and putvi

operators for b ∈ Ty, rather than for all types.) We denote by GSV

the clone TermΣGS
V arising from the presentation ΣGS

V .

3 Second-order presentations

Just as first-order presentations describe algebraic structure, second-order presentations
describe binding algebraic structure [16]. Variable-binding operators are prevalent in type
theory: for instance, the λ-abstraction operator of the STLC, let-in expressions in functional
programming languages, and case-splitting in calculi with sum types. Second-order present-
ations are similar to first-order presentations, except that each operator must describe its
binding structure, i.e. how many variables (and of what types) it binds in each operand.
Hence, while first-order arities have the form (A1, . . . , An; B) ∈ S∗ × S, second-order arities
have the form ((∆1; A1), . . . , (∆n; An); B) ∈ (S∗ × S)∗ × S. Operators of such an arity take
n arguments of types A1, . . . An and produce terms of type B: the length of the context
∆i ∈ S∗ is the number of variables bound by the ith argument; and the argument types are
given by the list ∆i. First-order operators may be expressed as second-order operators that
bind no variables.

▶ Definition 14. An S-sorted second-order signature [16, 13] consists of a set Σ(Ψ; B) for
each (Ψ; B) ∈ (S∗ × S)∗ × S. We call the elements o ∈ Σ(Ψ; B) the (Ψ; B)-ary operators.

▶ Example 15. The Ty-sorted second-order signature ΣΛ of the STLC consists of an
((⋄; A⇒B), (⋄; A); B)-ary operator app and an ((A; B); (A⇒B))-ary operator abs for each
A, B ∈ Ty. Thus each application operator app has two arguments, neither of which bind
variables; and each λ-abstraction operator abs has one argument, which binds one variable.

Just as the axioms of first-order presentations are expressed in first-order equational logic,
the axioms of second-order presentations are expressed in the second-order equational logic
of Fiore and Hur [13]. Second-order equational logic extends the first-order setting with
metavariables [1, 18, 11], which conceptually stand for parameterized placeholders for terms.
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Each variable x : A in first-order logic has an associated type A ∈ S; correspondingly, each
metavariable m : (A1, . . . , An; A) has an associated context and type (called second-order
arities in [5]). m may be thought of as a variable parameterized by n terms of types A1
through An; a nullary (n = 0) metavariable behaves like an ordinary variable. There are
several alternative ways to describe second-order equational logic [6], but we follow Fiore
and Hur [13] in associating to each term both a variable context and a metavariable context:
a metavariable context Ψ is a list of context–sort pairs (∆; A) ∈ S∗ × S. The judgment
Ψ | ∆ ⊢ t : A expresses that the term t has sort A in variable context ∆ and metavariable
context Ψ. Below, we write x⃗ for a list x1, . . . , xn of variables, x⃗. t to indicate binding
of the variables x⃗ in t, and write x⃗ : ∆ as an abbreviation of x1 : A1, . . . , xn : An for
∆ = [A1, . . . , An].

▶ Definition 16. Suppose S is a set and Σ is an S-sorted second-order signature. Terms
over Σ are generated by the following rules for variables, metavariables, and operators:

Ψ | Γ, x : A, ∆ ⊢ x : A

Ψ, m : (A1, . . . , An; B), Φ | Γ ⊢ t1 : A1 · · · Ψ, m : (A1, . . . , An; B), Φ | Γ ⊢ tn : An

Ψ, m : (A1, . . . , An; B), Φ | Γ ⊢ m(t1, . . . , tn) : B

Ψ | Γ, x⃗1 : ∆1 ⊢ t1 : A1 · · · Ψ | Γ, x⃗n : ∆n ⊢ tn : An (o ∈ Σ((∆1; A1), . . . , (∆n; An); B))
Ψ | Γ ⊢ o((x⃗1. t1), . . . , (x⃗n. tn)) : B

A ((∆1; A1), . . . , (∆n; An); B)-ary term over Σ is a term m1 : (∆1, A1), . . . , mn : (∆n; An) | ⋄
⊢ t : B, and a (Ψ; B)-ary equation is a pair (t, u) of (Ψ; B)-ary terms. An S-sorted second-
order presentation Σ = (Σ, E) consists of an S-sorted second-order signature Σ and, for each
(Ψ; B) ∈ (S∗ × S)∗ × S, a set E(Ψ; B) of (Ψ; B)-ary equations over Σ.

Multisorted second-order presentations may essentially be taken as a definition of simple
type theory (modulo the subtlety regarding type operators described in Remark 6): just as
the informal notion of algebra was formalized through the framework of universal algebra [8],
so second-order presentations facilitate a precise, formal definition of simple type theory [5].

▶ Example 17. The operators of the signature ΣΛ of the STLC present the following rules:
Ψ | Γ ⊢ f : A ⇒ B Ψ | Γ ⊢ a : A

Ψ | Γ ⊢ app(f, a) : B

Ψ | Γ, x : A ⊢ t : B

Ψ | Γ ⊢ abs(x. t) : A ⇒ B

We can then give, for each A, B ∈ Ty, an ((A; B), (⋄; A); B)-ary equation for β-equality, and
an ((⋄; A⇒B); (A⇒B))-ary equation for η-equality:

m1 : (A; B), m2 : (⋄; A) | ⋄ ⊢ app(abs(x. m1(x)), m2()) ≈ m1(m2()) : B (β)
m : (⋄; A⇒B) | ⋄ ⊢ abs(x. app(m(), x)) ≈ m() : A ⇒ B (η)

The signature ΣΛ together with these equations forms the Ty-sorted second-order presentation
ΣΛβη of the STLC with βη-equality. Note that second-order equations permit the expression
of axiom schemata, as axioms containing metavariables (in both the traditional and precise
sense of the term “metavariable”) [12, 5]. Without second-order equations, one would have
to add β and η equations for each instantiation of the metavariables in the rules above.

▶ Definition 18. If (Ψ | Γ ⊢ ui : Ai)i and Ψ | x1 : A1, . . . , xn : An ⊢ t : B are terms over an
S-sorted second-order signature Σ, then their substitution Ψ | Γ ⊢ t{xi 7→ ui}i : B is defined
by recursion on t:

xj{xi 7→ ui}i = uj m(t1, . . . tm){xi 7→ ui}i = m(t1{xi 7→ ui}i, . . . , tm{xi 7→ ui}i)
o((y⃗1. t1), . . . , o(y⃗k. tk)){xi 7→ ui}i = o((y⃗1. t1{xi 7→ ui}i), . . . , (y⃗k. tk{xi 7→ ui}i))
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(On the right-hand side of the definition on operators, the terms ti are weakened, and we
omit from the substitution variables that are mapped to themselves.) If instead we have
terms (Ψ | Γ, x⃗i : ∆i ⊢ ui : Ai)i and m1 : (∆1; A1), . . . , mn : (∆n; An) | Γ′ ⊢ t : B then their
metasubstitution Ψ | Γ, Γ′ ⊢ t{mi 7→ (x⃗i. ui)}i : B is defined using ordinary substitution by
recursion on t:

x{mi 7→ (x⃗i. ui)}i = x mj(t1, . . . , tm){mi 7→(x⃗i. ui)}i = uj{xjk 7→ tk{mi 7→(x⃗i. ui)}i}k

o((y⃗1. t1), . . . , (y⃗k. tk)){mi 7→ (x⃗i. ui)}i

= o((y⃗1. t1{mi 7→ (x⃗i. ui)}i), . . . , (y⃗k. tk{mi 7→ (x⃗i. ui)}i))

3.1 Algebras
The algebras for a presentation are the abstract clones interpreting each of the operations of
the signature, subject to the axioms of the presentation. In other words, a presentation is a
specification of structure, while the algebras are the realizations, or models, of that structure.
For instance, in the first-order setting, the algebras for the presentation of monoids form
(set-theoretic) monoids.

▶ Definition 19. An algebra (X, J−K) for an S-sorted second-order signature Σ (called
“presentation clones” in [32]) consists of an S-sorted clone X and, for each context Γ and
((∆1; A1), . . . , (∆n; An); B)-ary operator o, a function JoKΓ :

∏
i X(Γ, ∆i; Ai) → X(Γ; B)

such that, for all substitutions σ ∈ X(Ξ; Γ) and tuples of terms (ti ∈ X(Γ, ∆i; Ai))i,

(JoKΓ(t1, . . . , tn))[σ] = JoKΞ(t1[lift∆1σ], . . . , tn[lift∆n
σ])

A homomorphism f : (X, J−K) → (X′, J−K′) of Σ-algebras is a homomorphism f : X → X′

of clones such that, for all o ∈ Σ((∆1; A1), . . . , (∆n; An); B) and (ti ∈ X(Γ, ∆i; Ai))i,

fΓ;B(JoKΓ(t1, . . . , tn)) = JoK′
Γ(fΓ,∆1;A1t1, . . . , fΓ,∆n;An

tn)

The interpretation of operators in a Σ-algebra (X, J−K) extends to an interpretation JtKΓ :∏
i X(Γ, ∆i; Ai) → X(Γ, Ξ; B) of each term m1 : (∆1; A1), . . . , mn : (∆n; An) | x⃗ : Ξ ⊢ t : B

as follows (where n is the length of Γ):

JxiKΓ(σ) = var(Γ,Ξ)
n+i

Jmi(t1, . . . , tm)KΓ(σ) = σi[var(Γ,Ξ)
1 , . . . , var(Γ,Ξ)

n , Jt1KΓ(σ), . . . , JtmKΓ(σ)]
Jo((x⃗1. t1), . . . , (x⃗m. tm))KΓ(σ) = JoKΓ,Ξ(Jt1KΓ(σ), . . . , JtmKΓ(σ))

▶ Definition 20. An algebra (X, J−K) for a second-order presentation Σ = (Σ, E) is a
Σ-algebra such that, for all equations (t, u) ∈ E(Ψ; A) and contexts Γ, we have JtKΓ = JuKΓ.
We let Σ -Alg be the category of Σ-algebras and all Σ-algebra homomorphisms between them.

▶ Example 21. An algebra for the presentation ΣΛβη of the STLC with βη-equality consists
of a Ty-sorted clone X and functions

JappKΓ : X(Γ; A ⇒ B) × X(Γ; A) → X(Γ; B) JabsKΓ : X(Γ, A; B) → X(Γ; A ⇒ B)

that commute with substitution and satisfy

JappKΓ(JabsKΓ(t), t′) = t[var(Γ), t′] for t ∈ X(Γ, A; B), t′ ∈ X(Γ; A) (β)

JabsKΓ(JappKΓ,A(t[▷wk(Γ)
A ], var(Γ,A)

n+1 )) = t for t ∈ X(Γ; A⇒B) (η)
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For each set Z we have a set-theoretic interpretation of the STLC, which forms a ΣΛβη -
algebra (MZ , MZJ−K) as follows. Define interpretations MZJAK ∈ Set of each sort A ∈ Ty
recursively by setting MZJbK = Z and MZJA ⇒ BK = Set(MZJAK, MZJBK) (where
Set(Y, Y ′) is the set of functions Y → Y ′). We then have a Ty-sorted clone MZ , where the
sets of terms are given by MZ(A1, . . . , An; B) = Set(

∏
i MZJAiK, MZJBK), the variables

by projections var(Γ)
i = πi, and substitution by f [σ] = (ξ 7→ f(σ1(ξ), . . . , σn(ξ))). This

forms a ΣΛβη -algebra, with interpretations of the operators given by function application
and currying. More generally, the interpretation of the STLC in any cartesian-closed
category C with a specified object Z ∈ C forms a ΣΛβη -algebra taking MZ(A1, . . . , An; B) =
C(

∏
i MZJAiK, MZJBK) to be the sets of terms, where MZJbK = Z and MZJA ⇒ BK =

MZJBKMZJAK.

The cartesian structure of Clone(S) lifts to Σ -Alg for every presentation Σ: the clone 1
uniquely forms a Σ-algebra, and the product (X1, J−K1) × (X2, J−K2) is the clone X1 × X2
equipped with interpretations JoKΓ((σ11, σ21), . . . , (σ1n, σ2n)) = (JoK1,Γ(σ1), JoK2,Γ(σ2)).

4 Free algebras

Second-order S-sorted presentations Σ can be viewed as descriptions of simple type theories
for which S is the set of types. In particular, the operators specify the term formers of the type
theory (such as λ-abstraction, or application). From this perspective, the syntax of the type
theory described by Σ is the initial Σ-algebra: there is a unique Σ-algebra homomorphism
from the algebra formed by the syntax to any other algebra, given by induction on terms.
More generally, given the syntax of an existing theory in the form of a clone X, the free
Σ-algebra on X is given by augmenting X by the operators and equations of Σ; or, from
another perspective, augmenting the type theory described by Σ with the operations specified
by X. For example, the free ΣΛβη -algebra on GSV (Example 13) may be seen as the STLC
extended by additional term formers (get and putv1 , . . . , putvk

) representing the side-effects
of global state.

▶ Definition 22. Suppose Σ = (Σ, E) is an S-sorted second-order presentation and X is
an S-sorted clone. A Σ-algebra FΣX equipped with a clone homomorphism ηX : X → FΣX
is the free Σ-algebra on X if, for any other Σ-algebra (Y, J−K) and clone homomorphism
f : X → Y, there is a unique Σ-algebra homomorphism f† : FΣX → (Y, J−K) such that
f† ◦ ηX = f . The initial Σ-algebra is the free Σ-algebra on VarS.

▶ Example 23. Recall the presentation ΣΛβη of the STLC with βη-equality from Example 17.
The initial ΣΛβη -algebra is the clone Λβη of STLC terms up to ≈βη (Example 5), with the
operators app and abs interpreted as

((f, a) 7→ app f a) : Λβη(Γ; A ⇒ B) × Λβη(Γ; A) → Λβη(Γ; B)
(t 7→ λx : A. t) : Λβη(Γ, A; B) → Λβη(Γ; A ⇒ B)

The free ΣΛβη -algebra on the clone GSV of global V -valued state (Example 13) can be
described as follows for V = {v1, . . . , vk}. The underlying Ty-sorted clone is defined in the
same way as Λβη, but with the following additional term formers and equations (omitting
the typing constraints on equations).

Γ ⊢ t1 : b · · · Γ ⊢ tk : b
Γ ⊢ get(t1, . . . , tk) : b
Γ ⊢ t : b (i ≤ k)

Γ ⊢ putvi
(t) : b

get(putv1(t), . . . , putvk
(t)) ≈βη t

putvi
(get(t1, . . . , tk)) ≈βη putvi

(ti) (i ≤ k)
putvi

(putvj
(t)) ≈βη putvj

(t) (i, k ≤ k)
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Terms

Γ, x : A, ∆ ⊢X x : A

Γ ⊢X t1 : A1 · · · Γ ⊢X tn : An (f ∈ X(A1, . . . , An; B))
Γ ⊢X f(t1, . . . , tn) : B

Γ, x⃗1 : ∆1 ⊢X t1 : A1 · · · Γ, x⃗n : ∆n ⊢X tn : An (o ∈ Σ((∆1; A1), . . . , (∆n; An); B))
Γ ⊢X o((x⃗1. t1), . . . , (x⃗n. tn)) : B

Equations (reflexivity, symmetry, transitivity omitted)

Γ ⊢X t1 ≈ u1 : A1 · · · Γ ⊢X tn ≈ un : An (f ∈ X(A1, . . . , An; B))
Γ ⊢X f(t1, . . . , tn) ≈ f(u1, . . . , un) : B

Γ, x⃗1 : ∆1 ⊢X t1 ≈ u1 : A1 · · · Γ, x⃗n : ∆n ⊢X tn ≈ un : An (o ∈ Σ((∆1; A1), . . . ; B))
Γ ⊢X o((x⃗1. t1), . . . , (x⃗n. tn)) ≈ o((x⃗1. u1), . . . , (x⃗n. un)) : B

Γ, x⃗1:∆1 ⊢X t1 ≈ u1 : A1 · · · Γ, x⃗n:∆n ⊢X tn ≈ un : An ((t′, u′) ∈ E((∆1; A1), . . . ; B))
Γ ⊢X t′{mi 7→ (x⃗i. ti)}i ≈ u′{mi 7→ (x⃗i. ui)}i : B

Γ ⊢X t1 : A1 · · · Γ ⊢X tn : An (i ≤ n)
Γ ⊢X ti ≈ var(A1,...,An)

i (t1, . . . , tn) : B

Γ ⊢X t1 : A1 · · · Γ ⊢X tn : An

Γ ⊢X f(σ1(t1, . . . , tn), . . . , σk(t1, . . . , tn)) ≈ (f [σ])(t1, . . . , tn) : B

(f ∈ X(A′
1, . . . , A′

k; B), σ ∈ X(A1, . . . , An; A′
1, . . . , A′

k))

Figure 1 Construction of the free (Σ, E)-algebra on a clone X = (X, var, subst).

This forms a ΣΛβη -algebra in the same way as Λβη above. The morphism ηGSV
is given by

ηGSV
(get(t1, . . . , tk)) = get(ηGSV

(t1), . . . , ηGSV
(tk)) and ηGSV

(putvi
(t)) = putvi

(ηGSV
(t)).

If Σ′ is a first-order presentation, the free Σ-algebra on TermΣ′
is closed under the operat-

ors of Σ′: each o ∈ Σ′(A1, . . . , An; B) induces a term η(o(x1, . . . , xn)) ∈ FΣX(A1, . . . , An; B)
and hence functions (σ 7→ η(o(x⃗))[σ]) : FΣX(Γ; A1, . . . , An) → FΣX(Γ; B).

We show that free algebras for any signature, and on any clone, exist, by constructing
them explicitly. Existence of these free algebras facilitates the developments in the next
sections. However, note that we do not rely on the explicit description: after this section,
we reason about free algebras solely using the universal property in Definition 22. This is
important, as we wish to reason about type theories independently of their syntax, which
leads to greatly simplified proofs. (It is also possible to prove the existence of free algebras
entirely abstractly using a monadicity theorem and Remark 7, avoiding concrete syntax.)

In universal algebra, free algebras of first-order presentations are constructed in two steps:
by first closing a sort-indexed set X of constants under the operators of the presentation; and
then quotienting the terms by the equations of the presentation. Figure 1 gives the analogous
construction in the second-order setting. First, we construct terms Γ ⊢X t : B from variables,
the terms of the clone f ∈ X(A1, . . . , An; B) (viewed as function symbols), and the operators
of the presentation Σ. Second, we quotient by the equivalence relation ≈ generated by
congruence, the equations of Σ (using metasubstitution), and rules imposing compatibility
with the clone structure of X. The clone FΣX has terms FΣX(Γ; B) = {Γ ⊢X t : B}/ ≈, with
variables and substitution defined in the evident way; the homomorphism ηX : X → FΣX
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sends t ∈ X(Γ; B) to x1 : A1, . . . , xn : An ⊢X t(x1, . . . , xn) : B, where Γ = [A1, . . . , An].

▶ Proposition 24. For every S-sorted second-order presentation Σ and S-sorted clone X,
the free Σ-algebra FΣX exists.

The forgetful functor Σ -Alg → Clone(S) therefore has a left adjoint (in fact, it is monadic).

5 Induction over second-order syntax

We now describe how the formalism of abstract clones may be used to prove properties
of simple type theories. To begin, we consider predicates over abstract clones, which are
predicates over the terms of the type theory induced by the clone, closed under the structural
operations of variable projection and substitution. Below, we extend each family of subsets
P (Γ; A) ⊆ Y (Γ; A) to contexts by defining P (Γ; A1, . . . , An) to be the set of all substitutions
σ ∈ Y (Γ; A1, . . . , An) such that σi ∈ P (Γ; Ai) for all i ≤ n.

▶ Definition 25. A predicate P over an S-sorted clone X consists of a subset P (Γ; A) ⊆
X(Γ; A) for each (Γ; A) ∈ S∗ × S such that, for all contexts Γ = [A1, . . . , An] and i ≤ n, we
have var(Γ)

i ∈ P (Γ; Ai), and, for all t ∈ P (∆; B) and σ ∈ P (Γ; ∆), we have t[σ] ∈ P (Γ; B).

Closure under variables and under substitution imply that P forms a clone P whose inclusion
P ↪→ X into X is a clone homomorphism. Predicates over S-sorted clones are equivalently
the subobjects in Clone(S), and are hence closed under arbitrary conjunction, existential
quantification, and quotients of equivalence relations. (This follows from Remark 7, since
varieties are exact categories [7, Theorem 5.11], and all exact categories enjoy these properties.)
They are also closed under context extension: if P is a predicate over X and Ξ is a context,
then ⇑ΞP is a predicate over ⇑ΞX.

We present a meta-theorem for establishing properties of simple type theories.

▶ Theorem 26 (Induction principle for second-order syntax). Suppose that (Y, J−K) is an algebra
for an S-sorted second-order presentation Σ, that f : X → Y is a clone homomorphism from
an S-sorted clone X, and that P is a predicate over Y. If

for all operators o ∈ Σ((∆1; A1), . . . , (∆n; An); B), contexts Γ ∈ S∗, and tuples of terms
(ti ∈ P (Γ, ∆i; Ai))i we have JoKΓ(t1, . . . , tn) ∈ P (Γ; B);
for all terms t ∈ X(Γ; A) we have fΓ;A(t) ∈ P (Γ; A),

then, for all free terms t ∈ (FΣX)(Γ; A), we have f†
Γ;A(t) ∈ P (Γ; A).

Proof. The predicate P is closed under operators, so the interpretations of operators in Y
make P into a Σ-algebra. The image of f is contained in P , so f forms a clone homomorphism
X → P. By the universal property of the free algebra FΣX, we therefore have an algebra
homomorphism FΣX → P. This necessarily sends t ∈ (FΣX)(Γ; A) to f†

Γ;A(t) ∈ P (Γ; A). ◀

We give two corollaries of this induction principle. The first is for proving properties of
closed terms, which take the form of families of subsets P (A) ⊆ Y (⋄; A). Given such a family
P , let P (A1, . . . , An) be the set of all σ ∈ Y (⋄; A1, . . . , An) such that σi ∈ P (Ai) for all i ≤ n,
and define a predicate P ♯ over Y by P ♯(Γ; A) = {t ∈ Y (Γ; A) | ∀σ ∈ P (Γ). t[σ] ∈ P (A)}.
Applying the induction principle above to P ♯ gives us the following.

▶ Corollary 27. Suppose that Σ is an S-sorted second-order presentation, that (Y, J−K) is a
Σ-algebra, and that (P (A) ⊆ Y (⋄; A))A∈S is a family of subsets. For every S-sorted clone X
and clone homomorphism f : X → Y, if



12 Abstract clones for abstract syntax

for every operator o ∈ Σ((∆1; A1), . . . , (∆n; An); B) and tuple (ti ∈ P ♯(∆i; Ai))i≤n of
terms, we have JoK⋄(t1, . . . , tn) ∈ P (B);
for every term t ∈ X(Γ; B), we have fΓ;B(t) ∈ P ♯(Γ; B),

then, for every type A ∈ S and free term t ∈ (FΣX)(⋄; A), we have f†
⋄;A(t) ∈ P (A).

Proof. P ♯(⋄; A) = P (A), so it suffices to apply Theorem 26 to the predicate P ♯. We therefore
check the two assumptions of that theorem. Closure of P ♯ under f is immediate; and P ♯

is closed under operators because, if (ti ∈ P ♯(Γ, ∆i; Ai))i and σ ∈ P (Γ), then ti[lift∆i
σ] ∈

P ♯(∆i; Ai) for all i ≤ n, so that JoKΓ(t1, . . . , tn)[σ] = JoK⋄(t1[lift∆1σ], . . . , tn[lift∆n
σ]) ∈

P (B). ◀

Families of subsets P (A) ⊆ X(⋄; A) are closed under arbitrary conjunction and disjunction,
complements, and universal and existential quantification. They form a tripos [25, 34],
and hence a model of higher-order logic over Clone(S); the tripos-theoretic methods of
Hofmann [22] carry over in this way to the setting of abstract clones.

The second corollary is for families of subsets P (Γ; A) ⊆ Y (Γ; A) that are not known to
be closed under substitution. (In some cases proving closure under substitution requires
an induction over terms, but induction over terms is what this section is meant to enable.)
Analogously to the construction P ♯ for predicates over closed terms, we define a predicate
P ♭ over Y by P ♭(Γ; A) = {t ∈ Y (Γ; A) | ∀∆, σ ∈ P (∆; Γ). t[σ] ∈ P (∆; A)}.

▶ Corollary 28. Suppose that Σ is an S-sorted second-order presentation, that (Y, J−K) is a
Σ-algebra, and that (P (Γ; A) ⊆ Y (Γ; A))(Γ;A)∈S∗×S is a family of subsets. For every S-sorted
clone X and homomorphism f : X → Y, if

for every context Γ we have var(Γ) ∈ P (Γ; Γ);
for every context Γ, operator o ∈ Σ((∆1; A1), . . . , (∆n; An); B), and tuple of terms
(ti ∈ P ♭(Γ, ∆i; Ai))i we have JoKΓ(t1, . . . , tn) ∈ P ♭(Γ; B);
for every term t ∈ X(Γ; B) we have fΓ;B(t) ∈ P ♭(Γ; B),

then, for every free term t ∈ (FΣX)(Γ; A), we have f†
Γ;A(t) ∈ P (Γ; A).

Proof. We can apply Theorem 26 to P ♭ because it is closed under operators and under f .
Hence f†

Γ;A(t) ∈ P ♭(Γ; A) for each t ∈ (FΣX)(Γ; A), and so var(Γ) ∈ P (Γ; Γ) implies that
f†

Γ;A(t) = (f†
Γ;A(t))[var(Γ)] ∈ P (Γ; A). ◀

The above corollaries are designed to enable logical relations arguments, in which the
fundamental lemma is proven using an induction hypothesis that quantifies over substitutions.
In particular, in Corollary 28 we require P ♭ to be closed under the operators, rather than
P . There is a third corollary that instead requires closure of P under operators (this would
essentially be the principle of induction on Γ ⊢X t : A), but this is less useful for our purposes.

6 Logical relations

We provide two extended examples of proofs using the induction principles of the previous
section, both involving the presentation ΣΛβη of the STLC with βη-equality. The first is
a proof of the adequacy of the set-theoretic model of the STLC, which uses induction on
closed terms; the second is a proof that every STLC term is βη-equal to one in normal form,
using induction on open terms. Both examples are logical relations proofs, the former using
ordinary logical relations and the latter using Kripke relations [27]. Though both properties
are known to hold, these proofs in particular illustrate that our induction principles are
powerful enough to justify logical relations arguments. We include a proof of normalization
for the STLC with global state in Appendix A, as a further motivating example.
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6.1 Closed terms and adequacy
We say that a model M of the STLC is adequate when, for all closed terms t and u of the
base type b, if MJtK = MJuK, then t and u are equal up to βη-equality. (In adequate models,
equality of denotations implies observational equivalence for terms of arbitrary types.)

We first show that we can perform logical relations arguments for the STLC using our
induction principle: specifically Corollary 27. Fix a ΣΛβη -algebra (Y, J−K), homomorphism
f : X → Y from some clone X, and a subset P (b) ⊆ Y (⋄; b) of closed terms of base type.
We extend P to a family of subsets P (A) ⊆ Y (⋄; A) in the standard way for logical relations:

P (A ⇒ B) = {t ∈ Y (⋄; A⇒B) | ∀a ∈ P (A). JappK⋄(t, a) ∈ P (B)}

Applying Corollary 27 to P gives us the following:

▶ Lemma 29. If, for every context Γ and term t ∈ X(Γ; B), we have fΓ;B(t) ∈ P ♯(Γ; B),
then, for every free term t ∈ (FΣΛβη X)(⋄; A), we have f†

⋄;A(t) ∈ P (A).

Proof. The only non-trivial assumption of Corollary 27 is closure under operators. Closure
under app is immediate from the definition of the logical relation. Closure under abs holds
because, if t ∈ P ♯(A; B), then, for all a ∈ P (A), we have JappK⋄(JabsK⋄(t), a) = t[a] ∈ P (B)
using the β law, so that JabsK⋄(t) ∈ P (A ⇒ B). ◀

Note that if terms are generated only by λ-abstraction and application then there are
no closed terms of base type. For a more interesting example, we therefore consider the
STLC with booleans (where the base type b is the type of booleans). Consider the Ty-sorted
first-order presentation ΣBool with two (⋄; b)-ary operators true, false, and, for each A ∈ Ty,
a (b, A, A; A)-ary operator ite (“if-then-else”), along with two equations:

y : A, z : A ⊢ ite(true(), y, z) ≈ y : A y : A, z : A ⊢ ite(false(), y, z) ≈ z : A

Let Bool be the Ty-sorted clone that is presented by ΣBool.
Consider the free ΣΛβη -algebra FΣΛβη Bool, and the ΣΛβη -algebra MB (as defined in

Example 21) with B = {tt, ff}. The former should be thought of as containing the terms of the
STLC with booleans (we make this precise below); the latter is the usual model in Set. Both
have clone homomorphisms from Bool: the free algebra has ηBool : Bool → FΣΛβη Bool;
the model MB has the unique g : Bool → MB such that

gΓ;b(true()) = ζ 7→ tt gΓ;b(false()) = ζ 7→ ff

gΓ;A(ite(t1, t2, t3)) = ζ 7→

{
gΓ;A(t2)(ζ) if gΓ;b(t1)(ζ) = tt
gΓ;A(t3)(ζ) if gΓ;b(t1)(ζ) = ff

The algebra homomorphism g† : FΣΛβη Bool → MB gives the interpretation of STLC terms
in the model. Define a subset P (b) ⊆ (FΣΛβη Bool × MB)(⋄; b) = (FΣΛβη Bool)(⋄; b) × B by

P (b) = {(ηBool(true()), tt), (ηBool(false()), ff)}

This extends to a logical relation P by the definition on function types above and, by
a simple proof, satisfies the precondition of Lemma 29, where the clone homomorphism
f is ⟨ηBool, g⟩ : Bool → FΣΛβη Bool × MB. Hence, for all t ∈ (FΣΛβη Bool)(⋄; A), we
have (t, g†

⋄;A(t)) = ⟨ηBool, g⟩†
⋄;A(t) ∈ P (A). When A = b this immediately implies, for all

t, t′ ∈ (FΣΛβη Bool)(⋄; b), that if g†
⋄;b(t) = g†

⋄;b(t′) then t = t′.
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This last property is seen to be adequacy of the set-theoretic model MB as follows. Let
ΛβηBool be the Ty-sorted clone that is defined in the same way as Λβη (Example 5) but with
additional term formers and equations (omitting the typing constraints on equations):

Γ ⊢ true : b

Γ ⊢ false : b

Γ ⊢ t1 : b Γ ⊢ t2 : A Γ ⊢ t3 : A

Γ ⊢ if t1 then t2 else t3 : A

if true then t2 else t3 ≈βη t2
if false then t2 else t3 ≈βη t3

ΛβηBool forms an ΣΛβη -algebra, and there is a clone homomorphism η : Bool → Λβη

making it into the free ΣΛβη -algebra on Bool. Hence we can apply the method above with
FΣΛβη Bool = ΛβηBool. The algebra homomorphism g† : ΛβηBool → MB sends each term
Γ ⊢ t : A to its interpretation as a function

∏
i MBJΓiK → MBJAK. Adequacy is therefore

exactly the property that g†
⋄;b(t) = g†

⋄;b(t′) implies t = t′.

6.2 Open terms and normalization
As a second example, we show that every term of the STLC is equal (up to βη-equality) to
one in η-long β-normal form (we define these normal forms below). The proof mostly follows
Fiore [10], except that we reason abstractly using the universal property of free algebras via
our induction principle. It makes use of Kripke logical relations (with varying arity), which
were introduced by Jung and Tiuryn [27] to study λ-definability.

We first show that our induction principle enables arguments using Kripke logical relations
over the STLC. Fix a ΣΛβη -algebra (Y, J−K), homomorphism f : X → Y from a clone X,
and a subset P (Γ; b) ⊆ Y (Γ; b) for each Γ. We extend P from the base type b to all types by

P (Γ;A⇒B) = {t∈Y (Γ;A⇒B) | ∀∆,ρ∈VarS(∆;Γ), a∈P (∆;A). JappK∆(t[▷ρ], a) ∈ P (∆;B)}

This is the standard definition of a Kripke logical relation on function types (other than using
all renamings ρ rather than just weakenings, which is inessential). We therefore have a family
of subsets P (Γ; A) ⊆ Y (Γ; A), to which we apply Corollary 28 and obtain the following.

▶ Lemma 30. If the family of subsets P satisfies
for every context Γ we have var(Γ) ∈ P (Γ; Γ);
for every variable renaming ρ ∈ VarS(∆; Γ) and term t ∈ P (Γ; b) we have t[▷ρ] ∈ P (∆; b);
for every term t ∈ X(Γ; B) and substitution σ ∈ P (∆; Γ) we have (fΓ;Bt)[σ] ∈ P (∆; B),

then, for every free term t ∈ (FΣΛβη X)(Γ; A), we have f†
Γ;A(t) ∈ P (Γ; A).

Proof. The only non-trivial assumption of Corollary 28 is closure under operators. For
closure under app, if t ∈ P ♭(Γ; A ⇒ B) and u ∈ P ♭(Γ; A), then, for all σ ∈ P (∆; Γ), we
have (JappKΓ(t, u))[σ] = JappK∆(t[σ], u[σ]), because interpretations of operators commute
with substitution; this is an element of P (∆; B) using t[σ] ∈ P (∆; A ⇒ B) on the identity
variable-renaming. For closure under abs, suppose that t ∈ P ♭(Γ, A; B). The assumption of
the present lemma that P is closed under variable renamings at the base type b extends
to all types A by an easy induction on A. For every σ ∈ P (∆; Γ), ρ ∈ VarS(Ξ; ∆), and
a ∈ P (Ξ; A), we then have that t[(σ ◦▷ρ), a] ∈ P (Ξ; B). Preservation of substitution by JabsK,
and the β law, together imply that JappKΞ((JabsKΓ(t))[σ][▷ρ]) = t[(σ ◦ ▷ρ), a] ∈ P (Ξ; B).
Hence JabsKΓ(t) ∈ P ♭(Γ; A ⇒ B) as required. ◀

We use this to show normalization as follows. Normal forms Γ ⊢n t : A are defined
mutually inductively with the neutral forms Γ ⊢m t : A by the following rules:

Γ, x : A, ∆ ⊢m x : A

Γ ⊢m f : A ⇒ B Γ ⊢n a : A

Γ ⊢m app f a : B

Γ ⊢m t : b
Γ ⊢n t : b

Γ, x : A ⊢n t : B

Γ ⊢n λx : A. t : A ⇒ B



N. Arkor and D. McDermott 15

Consider the initial ΣΛβη -algebra, which is the clone Λβη of STLC terms up to ≈βη. We
write Nf(Γ; A) for the subset of STLC terms that are equivalent to a term in normal form
under ≈βη; and likewise write Ne(Γ; A) for neutral forms. We consider both as subsets of
Λβη(Γ; A); both are closed under variable renaming. The family of subsets we consider,
P (Γ; A) ⊆ Λβη(Γ; A), is defined on the base type as P (Γ; b) = Nf(Γ; b), and on other types
by the logical relations definition above. By a simple induction on the sort A, one can
show that Ne(Γ; A) ⊆ P (Γ; A) ⊆ Nf(Γ; A) (e.g. as in [10]). Since variables are neutral, this
tells us in particular that var(Γ) ∈ P (Γ; Γ) for all Γ. It then follows from Lemma 30 that
t = (▷)†(t) ∈ P (Γ; A) ⊆ Nf(Γ; A) for all t ∈ Λβη(Γ; A), and so that every term of the STLC
is βη-equivalent to one in normal form.

7 Comparison to other approaches

While we promote abstract clones as an elementary approach to simple type theories (qua
multisorted second-order abstract syntax), there are several equivalent concepts that have
been used to similar effect. We give a brief overview of the existing literature on the subject
and a comparison with our work; we give references where possible, but unfortunately some
of the relationships here exist only in the mathematical folklore.

Presheaves and substitution monoids

The study of second-order abstract syntax was initiated by Fiore et al. [16, 10], who
represent term structure using presheaf categories. In their setting, one considers functors
T : L(S)op → SetS , where L(S) is the category in which objects are contexts Γ, and
morphisms ρ : ∆ → Γ are variable renamings ρ ∈ VarS(Γ; ∆) (recall Section 2.1). The
S-indexed sets T (Γ) consist of the sorted terms in context Γ; while the functions T (ρ) rename
the variables inside the terms to change their context. Substitution is accounted for by
considering the monoidal structure (•, V ) on [L(S)op, SetS ], in which T • T ′ represents (for
each context Γ) the simultaneous substitution of each variable in T with a term from T ′,
and V represents the variables in each context. Monoids with respect to this structure are
equipped with variables and substitution operations; they are equivalently abstract clones [16,
Proposition 3.4]. Fiore and Hur [13] define Σ-algebras as monoids in [L(S)op, SetS ] equipped
with interpretations of the operators of a presentation Σ satisfying its equations; they are
equivalent to our Σ-algebras. Our setting is therefore equivalent to that of Fiore et al. The
advantage of our approach is that abstract clones require less categorical machinery; for
those comfortable with category theory, this will be less of a concern.

There are some technical differences with previous work. Fiore and Hur [13] show the
existence of the free Σ-algebras on each presheaf T ; in light of our free algebra result, the
construction of the free algebra on T can be factored into two steps: constructing the free
clone X on T by freely adding variables and substitution, and then taking the free Σ-algebra
on the clone X. In our examples above, we begin with a clone that admits substitution,
and hence do not freely add substitution. In a separate treatment, Hofmann [22] gives an
induction principle for the λ-calculus using presheaves, but only considers predicates over
closed terms; we obtain induction for closed terms as a corollary of induction over open terms.

Cartesian multicategories

Each abstract clone X has an identity operation for every sort B, given by the unique variable
projection var([B])

1 ∈ X(B; B), along with admissible operations of exchange, weakening,
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and contraction. In this way, the sets of terms X(Γ; A) form the structure of a cartesian
multicategory with object set S (intuitively a category whose morphisms may have multiple
inputs, subject to the structural properties of first-order equational logic). Conversely,
every cartesian multicategory gives rise to an abstract clone. Thus, one could carry out the
development of this paper in the context of cartesian multicategories (cf. [5, Section 9]). Clones
are our preferred choice, because the definition of clone (in which projections are the primary
operation) provides a more minimal axiomatisation than that of cartesian multicategory (in
which the structural operations are primary). Note that one-object cartesian multicategories
are usually called cartesian operads, which correspond to monosorted abstract clones.

Algebraic theories

The traditional approach to describing first-order algebraic structure in categorical logic
is through algebraic theories [29]. An algebraic theory is represented by a category with
cartesian products, which permit the multimorphisms of a cartesian multicategory to be
represented by morphisms from a product: for a context [A1, . . . , An], the terms x1 :
A1, . . . , xn : An ⊢ t : B are represented by a hom-set X(A1 × · · · × An, B). The relationship
between cartesian multicategories and algebraic theories is the notion of representability for
cartesian multicategories [33]. Second-order structure in the context of algebraic theories
is captured by second-order algebraic theories [14, 32, 6], which generalize the first-order
setting by introducing exponential objects that represent function types. Every second-order
presentation Σ induces a second-order algebraic theory, the algebras for which are given by
taking coslices over Σ [6].

Monads and relative monads

There is a classical correspondence in category theory between algebraic theories and certain
monads on the category of sets [31], which in turn are equivalent to J-relative monads, for
J the inclusion of finite sets into sets [4]. This has led to a line of investigation in which
monads are used directly for second-order abstract syntax [20, 21, 2, 3, 19]. There are strong
connections between this approach and that of presheaves and substitution monoids: for
a detailed comparison, see the thesis of Zsidó [38]. In particular, the distinction between
abstract clones and J-relative monads is slight, and the results of our development could
equivalently be rephrased as statements about relative monads (cf. [6]).

8 Conclusion

We have shown that the abstract syntax of simple type theories has an elementary treatment
using abstract clones. The framework we describe allows the specification of the terms
and equations of type theories via second-order presentations [13, 14]. Free algebras then
give the syntax along with an accompanying induction principle, which we show enables
abstract proofs of non-trivial properties such as adequacy. We emphasize that abstract
clones axiomatize the syntax only of simple type theories: clones cannot express linear
types, dependent types, or type theories in which variables stand only for certain classes
of term (e.g. polarized type theories [37], and the call-by-value λ-calculus). In some cases,
analogous structures are already known (for instance, symmetric multicategories for linear
type theories [35, 23]); for others, such as dependent type theories, this remains an open
problem.
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described in Example 23. The proof is similar to normalization of the STLC without global
state (Section 6.2); in particular, we reuse Lemma 30.

Recall that for V = {v1, . . . , vk}, the free algebra consists of the syntax of the STLC
extended by the additional term formers get and putvi

. Normal and neutral forms are defined
as in Section 6.2, except with

the rule
Γ ⊢m t : b
Γ ⊢n t : b

replaced by
Γ ⊢m t1 : b · · · Γ ⊢m tk : b (w1, . . . , wk ∈ V )

Γ ⊢n get(putw1(t1), . . . , putwk
(tk)) : b .

Again we write Nf(Γ; A) (respectively Ne(Γ; A)) for the subsets of terms equal to a normal
(respectively neutral) form, and define the logical relation P (Γ; A) on the base type as
P (Γ; b) = Nf(Γ; b), and on other types by the logical relations definition in Section 6.2. Again
we have Ne(Γ; A) ⊆ P (Γ; A) ⊆ Nf(Γ; A) by induction on A; the only difference with the
previous proof is that on base types one has Ne(Γ; b) ⊆ Nf(Γ; b), because for t ∈ Ne(Γ; b) we
have t ≈βη get(putv1(t), . . . , putvk

(t)) ∈ Nf(Γ; b). To prove that every term is equal to one
in normal form up to ≈βη, it suffices to apply Lemma 30 with f the clone homomorphism
ηGSV

: GSV → FΣΛβη GSV . The first two assumptions of the lemma have the same proof as
before. For the third, since GSV is presented by ΣGS

V and clone homomorphisms preserve
variables and substitution, it suffices to show that

for each t1, . . . , tk ∈ P (Γ; b), we have get(t1, . . . , tk) ∈ P (Γ; b);
for each t ∈ P (Γ; b) and i ≤ k, we have putvi

(t) ∈ P (Γ; b).
The first statement holds because if ti = get(putwi1(t′

i1), . . . , putwik
(t′

ik)) then

get(t1, . . . , tk) ≈βη get(putw11(t′
11), . . . , putwkk

(t′
kk)) ∈ Nf(Γ; b) = P (Γ; b)

The second statement holds because if t = get(putw1(t′
1), . . . , putwk

(t′
k)) then

putvi
(t) ≈βη putwi

(t′
i) ≈βη get(putwi

(t′
i), . . . , putwi

(t′
i)) ∈ Nf(Γ; b) = P (Γ; b)
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