
Transport Layer Security purely in OCaml

Hannes Mehnert ∗

University of Cambridge

David Kaloper Meršinjak †

University of Cambridge

Abstract
Transport Layer Security (TLS) is probably the most widely de-
ployed security protocol on the Internet. It is used to setup virtual
private networks, secure various services such as web and email,
etc. In this paper we describe our clean slate TLS implementa-
tion developed in OCaml. Our motivating goals are reliability, ro-
bustness, and API conciseness. While our implementation is still a
work in progress and lacks some of the protocol features (such as
client authentication and session resumption), it already interoper-
ates with other existing TLS implementations1. Preliminary perfor-
mance evaluation shows that our library is roughly five times slower
compared to OpenSSL, but we expect to improve our performance.

1. Introduction
The Transport Layer Security (TLS) protocol has been standard-
ized by the IETF 15 years ago, and provides communication pri-
vacy and authenticity: communication between applications which
use this protocol is immune to eavesdropping, tampering, and
message forgery. TLS is widely deployed for securing web ser-
vices (HTTPS), email communication, virtual private networks,
and wireless networks.

The variety of used TLS implementations is rather small: most
programming language bind OpenSSL, an open source implemen-
tation written in C. There are three main reasons to interface an
existing TLS library instead of developing one from scratch: de-
ployment of different TLS versions (SSL 3, TLS 1.0, TLS 1.1, and
TLS 1.2), protocol complexity (ASN.1 encoding, X509 verifica-
tion, and crypto primitives), and numerous attacks (comprehensive
list (Meyer and Schwenk 2013)). The disadvantage of a monocul-
ture of TLS libraries is that an issue in the single library can lead
to a catastrophe (as recently observed with the Heartbleed issue).
OCaml-TLS is available under a BSD license on GitHub2 and via
OPAM.

The motivation for our implementation is manifold:

Reliability OCaml provides us with type safety and memory
safety. Its unique module system is essential for development of
robust and reliable implementations of security protocols: units of
code can be developed and reasoned about in isolation, with type
abstraction enforcing separation of concerns. Furthermore, we de-
veloped TLS using applicative style: the library core does not use
mutable data structures3, making it much easier to reason about.
The code base of our current prototype is at least an order of mag-

∗ Partly funded by EPSRC grants EP/H005633/1 and EP/K008528/1
† Partly funded by FP7/2007-2013 under the UCN project, grant 611001
1 Try it yourself at https://tls.openmirage.org
2 https://github.com/mirleft/ocaml-tls
3 We use the cstruct library to handle byte arrays with zero-copy, but we
do not mutate these.

nitude smaller than OpenSSL4. We are aware of several attacks
on the TLS protocol, and implement and discuss mitigations5 in a
transparent way. While OCaml’s memory safety prevents certain
vulnerabilities such as out-of-bounds memory accesses, it might
open further attack surfaces (connected to timing and garbage col-
lector) - this facet is still unexplored.

Conciseness of API Research on the certificate verification (Georgiev
et al. 2012; Brubaker et al. 2014) discovered that badly designed
APIs of existing TLS implementations often lead developers to use
the libraries incorrectly, especially with respect to certificate verifi-
cation. We develop from scratch, learn from their failures and strive
to design APIs which are easy to use correctly.

Robustness Since the core is pure, it is much easier to test both
against known cases and in an automated fashion. We developed the
code with robustness in mind, and are looking forward to rigorously
test it using execution traces checked by miTLS (Bhargavan et al.
2013) and other TLS implementations.

2. Description
In this section we describe the TLS protocol in more detail, fol-
lowed by preliminary performance results of our implementation.

2.1 Protocol Description
The TLS protocol establishes a secure channel between a client
and a server. It supports different key exchange methods, encryp-
tion algorithms and MAC algorithms. These are negotiated on a
per-connection basis together with the protocol version within the
initial handshake. Each handshake establishes shared secrets for the
encryption algorithm and the MAC key.

Client and server can mutually authenticate each other, us-
ing X509 certificates. Usually only the server authenticates itself
by presenting a certificate chain consisting of a server certificate
(which contains the server name), some intermediate certificates,
and the last intermediate must be signed by a certificate which is
in the set of trust anchors on the client. The set of trust anchors is
usually deployed with the client software.

Several attacks (Meyer and Schwenk 2013) exist on TLS, which
fall into different categories: protocol deficiencies (key renegoti-
ation not authenticated with previous handshake), weaknesses of
cryptographic primitives (MD5, DES, RC4), and implementation
issues (goto fail, Heartbleed).

4 http://www.openbsd.org/papers/bsdcan14-libressl/
mgp00026.html
5 both in an extended blog post (http://openmirage.org/blog/
ocaml-tls-api-internals-attacks-mitigation) and our is-
sue tracker (https://github.com/mirleft/ocaml-tls/issues?
labels=security+concern&page=1&state=open)

https://tls.openmirage.org
https://github.com/mirleft/ocaml-tls
 http://www.openbsd.org/papers/bsdcan14-libressl/mgp00026.html
 http://www.openbsd.org/papers/bsdcan14-libressl/mgp00026.html
http://openmirage.org/blog/ocaml-tls-api-internals-attacks-mitigation
http://openmirage.org/blog/ocaml-tls-api-internals-attacks-mitigation
https://github.com/mirleft/ocaml-tls/issues?labels=security+concern&page=1&state=open
https://github.com/mirleft/ocaml-tls/issues?labels=security+concern&page=1&state=open


2.2 Design Considerations
We dissect TLS into several parts:

• cryptographic operations6

• X.509 certificate verification7 (ASN.1 encoding library8)
• protocol implementation

We implemented cryptographic operations: block cipher prim-
itives (AES, 3DES) and hash algorithms (MD5, SHA, SHA-224,
SHA-256, SHA-384, SHA-512) by calling public domain C code
(˜4500 lines C code); RSA (with blinding) and DH (using zarith);
and Fortuna (Ferguson and Schneier 2003, Chapter 10.3) (a pseudo
random number generator). Our crypto library is smaller than
2000 lines of OCaml code, implementing high-level interfaces
for the above crypto operations and some advanced block cipher
modes (such as Galois counter mode), with ECC implementation in
progress. The wrapper for C code are expressed entirely in OCaml,
and all the memory management is done on the OCaml side.

API design for certificate verification has to be done care-
fully (Georgiev et al. 2012) to ensure that clients correctly verify
certificates. Our API requires a client to provide a X.509 validator, a
hostname and a port to connect to. The certificate verification takes
the hostname and the list of certificates received from the server,
and returns either ‘Ok or a ‘Fail of certificate failure.
The certificate verification code is roughly 400 lines, plus some
helpers for encoding and decoding PEM etc. We currently do not
support certificate revocations.

The protocol implementation itself consists of byte array pars-
ing and unparsing (600 lines, internally using exceptions to signal
failures, which are signaled in a monadic style upwards) and the
handshake state machines (1000 lines together for client and server,
written using a monadic style to propagate errors).

TLS is not stateless: messages must be received and sent in
order, some messages are only allowed when specific key exchange
methods are negotiated, and - especially during the handshake
phase - some incoming messages elicit more messages to be sent.
This poses an architectural problem: how should the accumulated
state and reactivity be represented in a pure context?

The TLS implementation in HOL (Lochbihler and Züst 2014)
solves this problem using reactive resumptions (Harrison and Proc-
ter 2005), a CPS-like monadic abstraction that interleaves the pure
TLS computation with an effectful one (used for network IO),
largely storing the internal protocol state as local variables the con-
tinuation is closed over. We opt for a much simpler approach - our
main handler function is typed:

handle : state * bytes → state * bytes * bytes.
This function maps state and the input into the new state, possible
output and possible application-level data decoded from the input.
The state type explicitly encapsulates all the state accumulated
during the TLS session.

To actually use our pure implementation we provide a Lwt
frontend (and a Mirage frontend) that connect the engine to the
network IO layer.

So far we are developing unit tests for the entire implementa-
tion, and use code coverage tools. The network packet parser and
unparser already has 100% code coverage (using OUnit2 for test
cases and Bisect for code coverage).

6 https://github.com/mirleft/ocaml-nocrypto
7 https://github.com/mirleft/ocaml-x509
8 https://github.com/mirleft/ocaml-asn1-combinators

2.3 Preliminary Performance Results
We ran our implementation on both client and server side, used
3DES CBC as the encryption algorithm and SHA-1 as the hashing
algorithm; and in a second setup ran OpenSSL on the same machine
with the same algorithms. We measured the time of transferring 100
MB of data after an initial handshake. The preliminary results show
that our OCaml implementation is roughly five times slower than
OpenSSL. Roughly 60%-70% of the time is spent in the C-level
crypto primitives (3DES and SHA), and not on the OCaml side.
Replacing the current primitives is likely to speed up our library
significantly. On top of that, the OCaml code was largely not tuned
for speed, so we expect further improvements after we reach feature
completeness and start optimizing.

3. Related Work
The miTLS project (Bhargavan et al. 2013) verifies the crypto-
graphic security of TLS using F# and F7 for specification.

Both Erlang and Haskell have a TLS library. Recently a partial
TLS library was developed in Isabelle (Lochbihler and Züst 2014)
with a focus on correctness. Also, a partial specification has been
developed in Coq, leading to the discovery of an issue in OpenSSL
when a change cipher suite packet was sent prematurely.

Parsifal9 is a OCaml-based parsed engine. It provides a domain
specific language to write binary protocols in a concise way, and
generates a parser and unparser. The reason we are not using parsi-
fal is its license (which is rather GPL than BSD) and that we wrote
the parser and unparser before we became aware of parsifal.

4. Conclusion and Future Work
We have implemented a complete TLS stack in OCaml, further de-
scription is written in our blog series10. It can be used to communi-
cate with a large number of services deployed on the Internet, run-
ning different TLS implementations. The code base is more than
an order of magnitude smaller than OpenSSL. We support all ma-
jor TLS versions (1.0, 1.1, 1.2), but not SSL version 3. Several TLS
extensions are supported, such as server name indication (SNI) to
enable virtual hosting, and secure renegotiation.

We are working on missing TLS features such as client authen-
tication, elliptic curve and GCM cipher suites, as well as other fron-
tends to our pure library.

References
K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P. Strub. Imple-

menting TLS with verified cryptographic security. In IEEE Security and
Privacy, 2013.

C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov. Using
frankencerts for automated adversarial testing of certificate validation
in SSL/TLS implementations. In IEEE Security and Privacy, 2014.

N. Ferguson and B. Schneier. Practical Cryptography. John Wiley & Sons,
Inc., New York, NY, USA, 2003. ISBN 047122894X.

M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and V. Shmatikov.
The most dangerous code in the world: Validating SSL certificates in
non-browser software. In ACM CCS, pages 38–49, 2012.

W. L. Harrison and A. Procter. Cheap (but functional) threads. Submitted
to Journal of Functional Programming, 2005.

A. Lochbihler and M. Züst. Programming TLS in Isabelle/HOL, 2014.
C. Meyer and J. Schwenk. Lessons learned from previous ssl/tls attacks - a

brief chronology of attacks and weaknesses. Cryptology ePrint Archive,
Report 2013/049, 2013.

9 https://github.com/ANSSI-FR/parsifal
10 http://openmirage.org/blog/introducing-ocaml-tls

https://github.com/mirleft/ocaml-nocrypto
https://github.com/mirleft/ocaml-x509
https://github.com/mirleft/ocaml-asn1-combinators
https://github.com/ANSSI-FR/parsifal
http://openmirage.org/blog/introducing-ocaml-tls

	Introduction
	Description
	Protocol Description
	Design Considerations
	Preliminary Performance Results

	Related Work
	Conclusion and Future Work

