Computer Laboratory

Improving Multi-Modal Representations Using Image Dispersion: Why Less is Sometimes More

Models that learn semantic representations from both linguistic and perceptual input outperform text-only models in many contexts and better reflect human concept acquisition. However, experiments suggest that while the inclusion of perceptual input improves representations of certain concepts, it degrades the representations of others. We propose an unsupervised method to determine whether to include perceptual input for a concept, and show that it significantly improves the ability of multi-modal models to learn and represent word meanings. The method relies solely on image data, and can be applied to a variety of other NLP tasks.