
How to answer questions

If you understand the mathematical principles, you

can answer most projects very briefly. Try to think

around the question (‘Why are they asking this?’)

to understand the point.

(Just because it’s coursework doesn’t mean you have

to produce a literary dissertation!)

• If a question is precise:

your answer should be precise.

• If a question can be interpreted broadly:

you should explore the problem space, consider-

ing a range of alternatives and possibilities, on

your own.

• If you use simulation:

choose appropriate parameters to vary; investi-

gate parameter space systematically; repeat sim-

ulation, to estimate reliability; plot well-designed

graphics.



What to write up

Exercise discretion and selection in what you choose

to report. You will not get good marks for a large

table of undigested numbers.

You will gain quality marks by thinking around the

problem, investigating alternative approaches, analysing

them, and writing them up concisely.



Who to ask for help

The questions have (for the most part) been care-

fully phrased.

• If there’s an inconsistency,

email the help-desk.

• If the problem setup is ambiguous,

email the help-desk.

• If you don’t understand the language,

ask a friend.

• If you don’t understand the maths,

ask a colleague or supervisor.



9.2 Value iteration 10 units.

Recommend IIB Optimization and Control (L).

Example. I run a call center, and I have to decide

staffing levels. I can bring in extra staff at any time,

though (because of union issues) once they start a

shift I have to pay them for the full length of the

shift.

New calls arrive according to a Poisson process.

If a caller is on hold for too long, she gets impatient

and hangs up, and I loose a customer; if she is an-

swered promptly, she buys the product I’m selling.

I want to maximize my long-run average profit.

What policy should I use to set staffing levels? How

does it depend on the number of callers currently

on hold? How can I prove the policy is optimal?

Use dynamic programming to solve the problem

over a finite horizon. When the horizon is far enough

away, the answer should approximate the infinite-

horizon solution, letting us compute maximum long-

run average profit.

Programming is reasonably simple; understanding

the infinite-horizon theory is more challenging.



9.3 Proteins comparison
in bioinformatics 8 units.

Uses elementary probability and discrete maths.

What is the difference between THATCHER and BLAIR?

THATCHER

BLATCHER change, change
BLAR delete
BLAIR insert

Each of these edits has a cost. What is the cheapest

edit sequence?

An example of dynamic programming. Start with

(R,R), then (ER,R), then (R,IR), then (ER,IR). Work

backwards to (THATCHER,BLAIR).

Requires some algorithmic/programming skill, to keep

track of all the possibilities.



9.4 Option pricing
in mathematical finance 6 units.

Self-contained, but IIB Optimization & Control (L)

or II Stochastic Financial Models (L) may help.

Consider a stock whose price performs a random

walk:

pt+1 =







pt + d with probability u

pt − d with probability 1 − u

A European call option gives me the right to buy 1

stock at time T at price s.

At time T , the value of the option is

vT (pT ) = (pT − s)+.

How much should I pay for the option at time 0? I

should pay the expected return,

v0(p0) =
� (

vT (pT )|p0

)

.

Dynamic programming. Calculate all vT (pT ), then

all vT−1(pT−1), etc. Work back to v0(p0).

Programming is reasonably simple. Questions are

not deep, but require some care.



10.3 Bootstrap estimation
of standard error 5 units.

Based on IB Statistics.

We have sampled X1, . . . , Xn, from N(µ, σ2), and we

want to estimate µ. We use the estimator

T =
X1 + · · · + Xn

n

Theory says that T ∼ N(µ, σ2/n), and we can use

this fact to test a hypothesis like “µ > 0”.

What if the Xi come from some distribution F which

we don’t know? We could take many samples from

F , compute T for each sample, plot a histogram of

values of T , hence test the hypothesis.

What if we don’t know F and can’t sample from it?

Then sample from X1, . . . , Xn, as an approximation

to sampling from F . This is the bootstrap.

Simple programming. Some statistical and proba-

bilistic thought required to answer the questions.



10.9 Markov Chain
Monte Carlo 6 units.

Requires IB Statistics, and elementary Markov Chains

(M).

Suppose we want to sample from a Bayesian poste-

rior distribution:

π(θ1, θ2|x) ∝ π(θ1, θ2)f(x|θ1, θ2).

It may be hard to compute the posterior distribution

exactly, if the parameter space is large.

Often we know π(θ1|θ2, x) and π(θ2|θ1, x). An ap-

proximate way to sample from the posterior distri-

bution is: start with θ1, θ2 generated from π(θ1, θ2),

then

• generate a new θ1 from π(θ1|θ2, x)

• generate a new θ2 from π(θ2|θ1, z)

• Repeat until their distribution stabilizes

Programming is simple. There are questions about

speed of convergence: be sure to answer them prop-

erly!



10.11 Data analysis 7 units.

Based on IB Statistics.

You are given raw data and required to

• formulate hypotheses

• manipulate data (e.g. Excel, R)

• test hypotheses

• draw conclusions

Data set is a list of countries, together with their

number of Olympic medals, population, GDP, size

of state, level of democracy.

What is the data trying to tell you? Can you find

the best way to let the data display your conclu-

sions? Can you spot trends, patterns, relationships,

anomalies?



19.1 Random codes 5 units.

Requires IIA Coding & Cryptography (E)

or IIB Information Theory (M)

An n-bit code is a subset of {0,1}n. The elements

are called codewords. We want the codewords to be

dissimilar (to be robust to bit error), yet we want

there to be lots of them (to maximize the informa-

tion rate).

{000,111} is robust but has low information rate.

{000,001,010,011,100,101,110,111} is not robust

but has high information rate.

What is the tradeoff? Investigate by generating ran-

dom codes.

Programs are reasonably simple, though there are

some tricks needed to make them efficient. Ques-

tions involve intelligent simulation & plotting, and

a little bookwork.



19.2 Information content
of natural language 4 units.

Requires IIB Information Theorem (M).

Consider a message with symbols c1, . . . , cn, with fre-

quencies p1, . . . , pn. The entropy is

h = −
n

∑

i=1

pi log pi.

It measures the information content, i.e. how com-

pressible the message is.

Take individual letters to be symbols. How com-

pressible is a block of English text?

Take letter-pairs to be symbols. Now how com-

pressible is it?

Needs careful programming.



20.2 Importance sampling
and fast simulation 5 units.

Requires elementary Markov chains (M).

Consider a queue. There is a random stream of

customers, on average λ customers per second. The

server can serve on average ν customers per second.

What is

�
(queue > B)?

If λ � ν, the probability is small, and it takes a long

time to estimate small probabilities.

Instead, simulate the system at λ′ > λ, measure

� ′(queue > B),

and use (elementary probability) theory to derive

�
(queue > B).

Simple programming, simple theory, simple technique—

tremendously useful when it can be applied.



20.5 Percolation and
the invasion process 7 units.

Assumes basic probability. Some slight help from IIB

Applied Probability (L). Covered more in III Perco-

lation.

Consider an infinite square lattice. Let each edge

of the lattice be present with probability p, absent

otherwise, all edges independently. What is

�
(there is an infinite connected component)?

Simulation. Requires some programming sophisti-

cation (data structures, pointers) and also clever

thinking to find efficient techniques. Questions are

somewhat challenging.


