
4.

a) (Bookwork.) ‘CS’ stands for ‘carrier sense’. It means: don’t start trans-
mission as soon as you have a packet to send; instead, listen to the channel
first, and if it is busy then don’t transmit but instead back off.

b) (Bookwork.) A packet which arrives at time t is successfully transmitted
only if no others interfere with it, i.e. no others start in [t−Δ, t+Δ]. Since
packet arrivals are Poisson, the number of packets which arrive in [t, t + Δ]
is Poisson with parameter λΔ, so the probability that no packets arrive
in [t, t + Δ] is e−λΔ. Similarly, the probability that no packets arrive in
[t − Δ, t] is e−λΔ. Thus the probability of no interference is e−2λΔ.

Thus the rate of successful transmissions is λe−2λΔ. The maximum achiev-
able rate is

max
λ

λe−2λΔ =
1

2eΔ
, attained at λ =

1
2Δ

.

If we had an omniscient scheduler it could schedule one packet every Δ, i.e.
achieve a tranmission rate of 1/Δ. Thus the efficiency is

efficiency =
1/2eΔ
1/Δ

=
1
2e

.

c) Now, a packet which arrives at time t can only be dropped if some other
packet started in [t−Δ, t]. Any new packets in [t, t+Δ] are dropped imme-
diately and do not interfere. As above, the packet loss probability is e−λΔ.
Carrying through the algebra above, the maximum possible efficiency is
1/e.

d) (Bookwork.) The number of packets which attempt transmission in timeslot
[t, t + 1] is Xt = Nt + Rt. That is, all newly arrived packets attempt
transmission, and so do Rt of the Bt backlogged packets.

At time t + 1, what does the backlog consist of? It consists of the old
backlog, plus any new packets which attempted transmission but failed,
minus the number of packets which are no longer part of the backlog i.e.
which have succeeded in transmission. Consider three cases: if Nt = 0 then
Bt+1 = Bt−1Xt=1, since there are no new packets which enter the backlog;
if Nt = 1 and Rt = 0 then Bt+1 = Bt since the new packet is transmitted
successfully and no others attempt transmission; if Nt > 1 or if Nt = 1 and
Rt > 0 then all the new packets attempt transmission and are blocked and
so enter the backlog. These three cases cover all contingencies, and in each
of them the suggested equation is valid.

P(Bt+1−Bt = i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 with prob. P(Nt = 0, Rt = 1) = e−λb(1 − p)b−1p

0 otherwise
1 with prob. P(Nt = 1, Rt ≥ 1) = λe−λ[1 − (1 − p)b]
2 with prob. P(Nt = 2) = λ2e−λ/2! etc.



e) Let Yt = Nt + Rt. This is the number of packets that are scheduled to at-
tempt transmission in [t, t +1]. The actual number that attempt transmis-
sion is Xt = min(Yt, 1), since no more than one of them actually attempts
transmission. The same equation holds, with this new Xt.

P(Bt+1−Bt = i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 with prob. P(Nt = 0, Rt ≥ 0) = e−λ[1 − (1 − p)b]
0 otherwise
1 with prob. P(Nt = 1) = λe−λ

2 with prob. P(Nt = 2) = λ2e−λ/2! etc.



5.

a) (Bookwork.) First, the relationship between window size and rate. If TCP
has a window size w, this means that w packets are sent every RTT, and
so the average transmit rate is x = w/RTT.

Now suppose drops are period at rate p, i.e. one drop every 1/p packets.
Then TCP window size follows a periodic sawtooth, say of period T , going
from window wmin to wmax. During the window increase phase, TCP in-
creases w by 1/w for every acnkowledgement, which occur roughly at rate
x = w/RTT. Thus w increases at roughly rate 1/RTT, thus

wmax = wmin + T
1

RTT
.

When drops occur, TCP cuts its window by half:

wmin =
1
2
wmax.

Solving these equations simultaneously,

T = wRTT2/3

where w = (wmin + wmax)/2 is the average window size. Now, in a single
sawtooth, the overall average transmit rate is x = w/RTT, so there are
wT/RTT packets sent every sawtooth. By assumption there’s one drop
every 1/p packets. Thus

wT

RTT
=

1
p

which, rearranged, gives the throughput formula

x =

√
3/3

RTT
√

p
.

b) Substituting in TCP’s parameters,

1
pŵ

=
ŵ

2

which gives

ŵ =
√

2√
p

or x =
√

2
RTT

√
p
.

This is has the same form as the TCP throughput equation but is out by
a constant factor.

c) With α = β = 1, the heuristic equation gives

x =

√
A/B

RTT
√

p
.

We want this not to depend on RTT. Therefore we want

A

B
= κRTT2

for some arbitrary constant κ. This can be allocated however we like to A
and B, e.g. A = κRTT, B = 1/RTT.



d) Let the reference RTT be RTT0. Then, for fairness, we want

√
κ√
p

=
√

2
RTT0

√
p

=⇒ κ =
2

RTT2
0

.

e) We’ll work with the generalized window control, with parameters A and B
(and α = β = 1). When the window is cut, window size decreases from
wmax = xmaxRTT to (1 − B)wmax. To recover, it needs to regain Bwmax.
As above, the window size increases at steady rate A/RTT in the absence
of drops. Thus, the time T to recover satisfies

T
A

RTT
= Bwmax =⇒ T =

B

A
wmaxRTT =

B

A
xmaxRTT2.

For TCP, this time is xmaxRTT2/2. For modified TCP, this time is xmaxRTT2 =
xmax/κ. Observe that there is no RTT dependence for modified TCP.

The time taken to reach xmax starting from near-nothing is, as above,

T =
wmaxRTT

A
=

xmax

Bκ
.

To keep this small, we want B large.


