
Coursework 5
Simulation, Little’s law, fixed points

Network Performance—DJW—2010/11

Recently, researchers at Google have argued1 for an increase in TCP’s initial congestion
window. They argue that most Web transactions are short-lived, and that the current
standard (an initial window of about 4KBytes of data) means that flow completion times
are unnecessarily long.

In this coursework you will investigate how average flow completion time is affected by
congestion control, including both slow start and congestion avoidance. You will simulate
a simple model of congestion control, with a pessimistic version of slow start, and you will
test the simulation results against approximations derived from the fixed point method.

The model of congestion control. Consider the state of a flow to be a pair (x, f ) where
x is the current transmission rate of the flow, and f is the amount of data left to transmit.
Assume that x = 0 when the flow starts. The congestion control algorithm is as follows. In
the absence of congestion, transmit rate grows linearly:

x(t + u) = x(t)+ au for u≥ 0,

where a = 1/RTT2 pkt/s2, and x is measured in pkt/s and time is measured in seconds. The
amount of data transmitted in this time is∫ t+u

t
x(s)ds = x(t)u +

1
2

au2.

Obviously the flow will finish once it has transmitted all its remaining data; we can calculate
how long this will take in the absence of congestion by solving x(t)u+au2/2 = f ; the answer
is

u =

√
x(t)2 + 2a f − x(t)

a
.

Use the following model for congestion at the link. When there are n active flows, with
transmit rates x1(t), . . . ,xn(t), then all the transmit rates grow linearly until some time s
such that x1(s) + · · ·+ xn(s) = C, where C is the link speed. At this time, one of the flows
(selected at random) cuts its transmit rate from xi(s) to xi(s)(1−b), where b = 1/2.

A fixed point approximation. The following fixed point approximation is in terms of
four variables: w, the average completion time for a flow; d, the average transmit rate of a
flow when it completes; x, the average transmission rate that a flow gets when it is congestion
avoidance (i.e. ignoring the time it takes for the flow to get started); and n, the average
number of active flows. The equations, for the case that flow sizes are Exp(1/m) and flows
arrive at rate λ, are

w = exp
(
− x2

2am

)
+

√
πm
2a

(
2Φ
(
x/
√

am
)
−1
)

(1)

d =

√
πam

2

(
2Φ
(
x/
√

am
)
−1
)

(2)

C− x
b
2
− d2

2na
= λm (3)

n = λw. (4)

1Technical paper in CCR online, July 2010, http://ccr.sigcomm.org/online/?q=node/621

1



Here Φ(x) = P(N(0,1)≤ x), where N(0,1) is a random variable with the Normal distribution,
with mean 0 and variance 1. In Python, Φ(x) is called scipy.special.ndtr(x) and in R
it is called pnorm(x).

Equations (1) and (2) come from assuming that the flow’s transmit rate grows linearly
until it reaches x whereupon it stays constant, then integrating to find the amount of data
sent in a given time, then inverting to find how long it takes to send a given amount of data
M, then letting M ∼ Exp(1/m) and taking the expectation either of time or of current rate.
Equation (3) derives from approximating how much utilization is lost due to congestion
backoff and flow departures, and equating total useful work done to total amount of arriving
work. Equation (4) is Little’s law.

Question 1. Program a simulator of this system. Your written report should include the
source code. It should also include a brief description of how your simulator works, at a
similar level of detail to the student’s answer for Coursework 2. [Hint. It is possible to
program this simulator by making a few small changes to the simulator for Coursework 2.]

Test that your simulator works correctly, for some specific set of input data which you
should choose (flow arrival times, flow sizes, which flow backs off when the link is full). Work
out with pen and paper what should happen, and also give a printout from your simulator
that demonstrates it agrees. [Hint. Make sure your example ‘touches’ all parts of your code.]

Question 2. Run simulations with m ∈ {0.2,1,5} Mb, C = 10 Mb/s, and λm/C = 0.9, and
RTT = 200ms. Run these simulations both with exponentially-distributed flow sizes, and
Pareto-distributed flow sizes with α = 1.2 using the random number generator from Course-
work 2.
(i) Plot histograms2 of the queue size distribution, and also histograms of the distribution

of link utilization. [Hint. By the PASTA property, it is sufficient measure queue size
and utilization as seen by arriving flows.] On your graphs, superimpose the corre-
sponding results for the idealized processor sharing model.

(ii) Also report the mean utilization for each of your experiments. Using an argument
similar to the proof of Little’s law, explain why the mean utilization should be 0.9 in
each case. [Hint. See the last page of §4.4.]

(iii) According to Little’s law, n = λW , where w is the average number of active flows and
w is the average flow completion time. For each of your simulations, report w and n/λ,
and verify that Little’s law holds.

[Hint. Make sure you use consistent units, e.g. you work entirely in pkt/s or Mb/s. The
rate increase parameter a is measured in pkt/s2, and 1pkt is approximately 1500 Bytes.]

Question 3. Rewrite (3) as an equation for x, then solve the fixed point equations for the
parameter values you simulated in Question 2. How accurate is this fixed point approxima-
tion?

Equations (1)–(3) are all approximations. Test the validity of each of these approx-
imations for the simulations you conducted in Question 2 with Exp(1/m) flow sizes, by
measuring w, d, x and n from your simulator and then evaluating each of the equations.
[Hint. Here is one way to measure x. Each time a flow’s transmission rate is cut from r to
r(1− b), record r(1− b/2), then take the average of these readings over the flow’s lifetime;
call this the congestion-avoidance transmission rate for that flow. Then let x be the aver-
age congestion-avoidance transmission rate across all flows that received say three or more
drops.]

The fixed point equations (1)–(3) are approximations, and they are not particularly ac-
curate. In a full research project you would test each of the equations using a simulator,
explore the reasons for the inaccuracies, and devise more accurate equations.

2In R, the command histogram(~x) plots a histogram of the values in x. If however you have already
binned the values and counted totals, e.g. in Python, and all you want is to draw bars for your totals, use
xyplot with a panel function like panel.rect(x=x,y=y/2,width=1,height=y).

2



Appendix: the theory behind coursework 2

In Coursework 2 you used simulation to investigate average completion time for flows sharing
a link. In lectures, we have learnt theory that predicts the simulation results. The theoretical
model is a processor-sharing link (§3.1). In this idealized model, the link spends all its time
either idle (no flows) or 100% utilized (one or more active flows).

Let the link speed be C. Let new flows arrive as a Poisson process of rate λ, and let
average flow size be m. Since this is a symmetric queue, the average queue size depends only
on m and not on the distribution of flow size, hence we may as well assume that flow sizes
are exponentially distributed with mean m (§3.7). By analysing a Markov process model we
can calculate the equilibrium distribution of the number of active flows N, and we find that
the average number of active flows is EN = ρ/(1−ρ) where ρ = λm/C, as long as ρ < 1 (§3.1).
If ρ > 1 then the system is unstable and the number of flows increases the longer the system
runs for (§1.9 from the online version of lecture notes, and §4.1). By Little’s law, assuming
the system is stable, the average flow completion time is EN/λ = m/(C−λm) (§4.4). This
theoretical formula is confirmed by simulation, though particular care is needed when flow
sizes have a Pareto distribution (§1.6c from the online version of lecture notes).

Note that by the PASTA property, we get the same answer for average flow completion
time whether we measure the average value of N observed at instants when flows arrive and
then divide by λ, or whether we measure the average over all flows of their completion time
(§3.6).

3


