
Coursework 4
Advanced random processes

Network Performance—DJW—2009/10

This coursework is worth 4.5% of your final grade. You should hand it in to Computer
Science reception by noon on 22 January 2010. You may use any computer language you
wish. The mark scheme awards more marks for correct and well-explained reasoning than it
does for computer code and final answers. In the questions that ask you to write computer
code, you should explain what your code does and how it works, as if to a colleague who can
program but who doesn’t understand any of the maths; you should also include the source
code as an appendix. If you produce computer output that does not make sense, but you do
not comment on the problem or explore the reason for the nonsensical output, you will lose
marks.

In this coursework, you will use advanced analytical techniques to understand the behaviour
of the multipath TCP that you simulated in Coursework 2.

Little’s Law specifies a relationship between the average number of active jobs in a
system, the arrival rate of jobs to the system, and the average length of time that a job
spends in the system. Little’s Law is a theorem about long-run averages; it does not apply
exactly to simulations of finite duration. It is interesting to explore how accurate Little’s
Law is, for typical simulation runs.

Question 1. Write down a relationship derived from Little’s Law between the average
number of active flows from source A and the average completion time of these flows, in the
setting of Coursework 2. Use the simulator to test this relationship. Repeat for sources B
and C.

Hint. It is up to you to choose parameter values that illustrate the point you wish to
make. It is also up to you to choose how to present your results.

Here is a standard fact about Poisson processes, known as thinning. If an arrival process
is a Poisson process with rate �, and if each incoming job is labelled “green” with probability
p and “red” with probability 1 − p independently of other jobs, then the arrival process of
green jobs is a Poisson process of rate �p, and the arrival process of red jobs is an independent
Poisson process of rate �(1 − p).

Question 2. Using the concept of thinning, explain why the unipath system behaves like
four independent processor-sharing links. Using theoretical results that you have learnt,
calculate the values of x for which link 1 is stable. Repeat for the other links. Also, find the
average flow completion time for each of the three sources. Validate your findings with the
simulator.

Hint. It is up to you to decide what simulations to run, and how to present your results.
For every theoretical claim you make, you should present a simulation to back it up, and you
should explain why it is that the simulation backs up your theoretical claim.

Question 3. Let (nA, nB , nC) be the number of active flows from each of the sources A,
B and C at some point in time. What are the possible values that (nA, nB , nC) can take?
Write out the state space diagram, and find the transition rates.

In order to make calculations simpler, we shall (for Question 4 only) work with a simpler
system that has only two sources. Specifically, let there be two sources A and B, and three
links 1, 2 and 3 with capacities C1 = 2.5 Mb/s, C2 = 4 Mb/s and C3 = 2 Mb/s. Suppose
that jobs arrive at the two sources according to two independent Poisson processes with
arrival rates (�A, �B) = (0.4x, 0.6x) jobs per second, and that job sizes are all Exp(1) Mb.
Suppose that jobs from source A can use links 1 and 2, and that jobs from source B can use
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links 2 and 3. The uncoupled algorithm works as described in Coursework 2. The coupled

algorithm can be described more simply: when there are nA flows active from source A and
nB from source B, then each flow from source A gets throughput
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nA
min

[
max

( nA
nA + nB

(C1 + C2 + C3), C1

)
, C1 + C2

]
and each source B flow gets throughput
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nB
min

[
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( nB
nA + nB

(C1 + C2 + C3), C3

)
, C3 + C2

]
.

Question 4. Answer parts (i)–(iii) below for both the coupled and uncoupled algorithms,
and for a range of values of x in the range 5–15. You do not need to repeat your answer for
every value 5, 6, 7, . . . , 14, 15: instead, pick out two or three values of x that illustrate the
typical behaviour.
(i) Find formulas for the drift in nA and the drift in nB .
(ii) Draw the drift diagram. Hint. Your diagram should have two axes, one for nA and

one for nB.
(iii) Pick an arbitrary starting pair of values for (nA, nB), and solve the drift model nu-

merically. Draw the solution on your drift diagram. Repeat for several other starting
values.

(iv) From your drift diagrams, for what values of x is uncoupled stable? For what values
of x is coupled stable?

(v) Use the simulator to validate your findings about stability.

It has been suggested that the fixed point method might be used to estimate the average
number of active flows from each of the three sources, for the coupled and uncoupled

algorithms. In applying the fixed point method, we shall compute the average number of
active flows at source A, n̄A, assuming that the numbers of active flows at sources B and C
are constant and are given by n̄B and n̄C respectively. Then we will compute n̄B , assuming
that the numbers of active flows at sources A and C are constant and are given by n̄A and
n̄C respectively. Similarly for n̄C .

In order to calculate n̄A given n̄B and n̄C , we need to write out a state space diagram
for nA, compute the equilibrium distribution, and then find the mean of the distribution.
Under the assumption that the numbers of active flows at B and C are constant, the state
space diagram for nA is very simple, and it is easy to find the equilibrium distribution using
the detailed balance method. Although the state space diagram has infinitely many states,
we can find a reasonably good approximation to the equilibrium distribution by counting
only say the first 500 states. The mean of the distribution is just n̄A =

∑
i iℙ(nA = i).

Question 5. Answer parts (i)–(iv) below for both the coupled and uncoupled algorithms,
and for a range of values of x.
(i) Draw out a state space diagram for nA, the number of active flows at source A, assuming

that the numbers of active flows at sources B and C are n̄B and n̄C respectively. What
are the transition rates? Repeat for the other two sources.

(ii) Program a function that computes n̄A given n̄B and n̄C .
(iii) Use the iterative fixed point method to compute n̄A, n̄B and n̄C . Explain carefully

what you are doing.
(iv) Use the simulator to validate your findings.
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