
Coursework 2
Sketch model answer

Network Performance—DJW—2007

The simulator. The simulator for questions 1 and 2 is a standard Markov process sim-
ulator. It keeps track of the current state (n0, n1, n2). It runs a fixed number of iterations

Some of you used a
single simulator for the
entire coursework, the
simulator which I’ll
describe for question 3.
That is perfectly fine.

(usually 500,000). In each iteration it generates two random variables, one specifying the
duration to stay in the current state, the other specifying which state to jump to next, as
described in lecture notes. The possible next states from (n0, n1, n2) and the rates for each
jump are as follows:

transition rate
(n0 + 1, n1, n2) ν0

(n0, n1 + 1, n2) ν1

(n0, n1, n2 + 1) ν2

(n0 − 1, n1, n2) Cy01n0>0

(n0, n1 − 1, n2) C(1− y0)1n1>0

(n0, n1, n2 − 1) C(1− y0)1n2>0

where Cy0 is the total throughput allocated to flows on route 0, i.e. Cy0 = n0x0 where x0

is the formula given in the question.
The second method is
based on the PASTA
property. You can
sample queue size at
every arrival of a job on
any route, or you can
sample qi only when
jobs arrive on route i.

The simulator reports the average queue size for each of the three routes. It can do this
by accumulating queue size times duration, i.e. using the formula

mean queue on route i =
∑

n qi(n)t(n)∑
n t(n)

where qi(n) is the number of jobs active on route i during the nth step and t(n) is the
duration of stay for the nth step. Alternatively, the the average queue size can be computed
by accumulating the queue occupancy at each arrival, i.e. using the formula

mean queue on route i =
∑

m qi(m)
M

where qi(m) is the number of jobs active on route i at the mth arrival to the system, and
M is the total number of arrivals simulated.

Many students correctly
referred to the M/G/1
or M/M/1 processor
sharing queues, and
understood that ρ ≤ 1
means instability, and
concluded that C ≤ 0.9
means instability. Fewer
stated the ρ/(1− ρ)
formula. No one
commented that in an
unstable system it is
meaningless to talk
about the “mean
number of active flows”.

Theory. Consider an M/G/1 processor-sharing queue, where arrivals are Poisson with
rate ν and service rate is C and job sizes have mean µ. Let ρ = νµ/C. We know that if
ρ ≥ 1 then the queue is unstable. We know that if ρ < 1 then the queue is stable, and the
mean number of active jobs is equal to ρ/(1− ρ). We might reasonably expect this two-link
system to have similar properties.

What exactly is instability? To illustrate this, you could plot two simulation traces, i.e.
plot the number of active jobs as a function of time, one at say C = 0.5 and one at say
C = 1.5. When C is low, the number of active jobs seems to increase linearly with time.
Therefore, the longer I run the simulation, the larger the value I will get when I measure the
mean number of active jobs. In other words, the very idea of a mean number of active jobs is
meaningless when the system is unstable (unless we specify the simulation time over which
we measured it). You should still show the measured mean number of active jobs in my
output, but the numbers should be interpreted with caution when the system is unstable.

Based on the single-link M/G/1 processor sharing model, we expect instability when
C ≤ µν, in other words when the total rate at which work arrives (in bits/sec) is more
than the service capacity. If we naively apply this to the two-link model, we might expect

1



the first link to be unstable when C ≤ ν0 + ν1 = 0.8, and the second link to be unstable
when C ≤ ν0 + ν2 = 0.9. Putting these together, we might expect the overall system to be
unstable when C ≤ 0.9. Note µ = 1 in this coursework.

Simulation outputs for Question 1. I varied C from 0.5 to 1.5 in steps of 0.1. At each
value of C, ran 10 runs of 500,000 iterations each. I plotted the mean over the 10 runs, and
the confidence interval, using the R function bwplot2. The measurements agree with my
supposition that the system is stable for C > 0.9 and unstable for C ≤ 0.9.

As discussed above, we cannot actually tell whether the system is unstable simply by
reporting the measured average queue size over a fixed-length simulation run. A clever way
indicate this might be to plot a graph of the total number of jobs (summed over the three
routes) as a function of C, and to include one curve for the result after 100,000 iterations,
another curve for 200,000 iterations, and so on. For C > 1 the number of iterations makes
very little difference to your answer. For C < 0.8 it is clear that the number of iterations
makes a difference.

Simulation outputs for Question 2. What value of C should we use? We expect that
for C ≤ 0.9 the system will be unstable, and so we need to be cautious how we interpret
the answers. But we need C ≈ 0.9 to get 50–100 active jobs on average. I chose C to be
just above 0.9, and I chose 500,000 iterations so as to get an answer in the range 50–100 for
α = 2.

There is no need to run an exhaustive set of values for α; it is sufficient to look at the
values specified in the question. I first of all plotted the total number of jobs, summed over
the three routes, with four different α values on the horizontal axis. Then I plotted three
sub-plots with the same horizontal axis, one plot for the each route.

It seems that α = 1, 2,∞ give much the same answer (i.e. the error bars overlap). At
α = 0 the answer is somewhat different: route 0 has many more active jobs, which is not
surprising. Furthermore the total mean number of jobs is higher, but you will only see this
if your simulation runs are long enough. (In fact, there is theory that says that the α = 0
case is stable only for C > 1.03.)

Nearly everyone
understood that a
Markov process
simulator is not
appropriate, and
roughly 70% of you
programmed an
appropriate simulator.
For every simulator that
I saw, the step of
calculating T involved
iterating through all of
the jobs in the system. I
will award a bottle of
good wine (or a £25
Waterstones gift token)
to the first student who
gives me a simulator
which does not require
this iteration.

Simulator for Question 3. The simulator I described for Question 1 is no longer ap-
propriate, since it only works when file sizes are exponential. What we need here is an
event-driven simulator. The simulator needs to keep track of how much work is left for all
of the jobs in the system, on each of the routes.

At each timepoint, calculate the throughput that each of the flows receives, and the
time T until the first of the jobs finishes. Also generate an exponential random variable
U ∼ Exp(ν0+ν1+ν2) which represents the next scheduled arrival time. Let T be the smaller
of these two quantities. Run the system for time min(T,U), i.e. subtract an appropriate
amount of work from each of the active jobs. If T ≤ U then remove the appropriate job
from the system, and go back to the beginning of this paragraph. If U < T then generate a
new job (on route 0 with probability ν0/(ν0 + ν1 + ν2) etc.) and generate a file size for it,
and add it into the list of jobs, then go back to the beginning of this paragraph.

You need to be able to generate a random variable from a heavy-tailed distribution,
with mean size 1. The simplest heavy-tailed distribution you know about is the Pareto
distribution, for which P (X ≥ x) = x−a for x ≥ 1, where a is some constant. You learnt
how to generate Pareto random variables in Coursework 1. The Pareto distribution is not
suitable on its own (because all sampled variables are larger than 1, the mean is larger
than 1) but you could just generate a Pareto random variable and subtract 1. Choose a
experimentally, so as to get mean close to 1. Or you could use a lognormal distribution, or
anything else you find on Wikipedia.

Most students
understood the point
about symmetric
queues.

Theory. You should mention symmetric queues here. A M/M/1 processor-sharing queue
is symmetric, which means that you get exactly the same queue size distribution if you
replace the exponential service times by some arbitrary distribution with the same mean,
i.e. to get an M/G/1 processor-sharing queue. If this system is symmetric then the mean

2



number of jobs will not depend on the distribution you use. If the system is not symmetric
then the mean number of jobs might depend on the distribution you use.

(There is theory here, which you may be interested to know: it has been proved that the
α = 1 case is symmetric, but no one has been able to prove whether or not the α 6= 1 cases
are symmetric.)

Simulation outputs for Question 3. An appropriate plot here will have the four values
of α on the horizontal axis, the mean number of jobs in the system (summed across the three
routes) on the vertical axis, and three different curves, one for each of the distributions.

You will likely find that there is not very much difference between the three distributions.
However, the heavy-tailed distribution is likely to produce highly variable output, so you
may just be unlucky and end up with the answer that heavy-tailed distributions leads to a
different mean number of jobs.

I awarded grades on three parts: formulation, execution, interpretation. Your
formulation grade is based on identifying the Markov process, understanding that it is not
appropriate for Question 3, explaining how your simulator should work, explaining what
measurements you will take (maybe referring to PASTA), programming it, generating a
heavy-tailed random variable. Also, deciding what it is you have to measure, to answer the
question about stability.

Your execution grade is based on running your code, obtaining values, and plotting the
results. Your plots should be appropriate for answering the question. I ABSOLUTELY
HATE it when, in order to make the comparison that the question asks, I have to flip
through several pages of different plots each with different scales. If the question asks you to
compare X, Y and Z, you NEED to put X, Y and Z on the same plot. Maybe the horizontal
axis will have X, Y and Z. Maybe you will have three curves, one for each of X, Y and Z.
Whichever, you have to rely on the eye of the reader more than the brain.

Your interpretation grade is based on whether you brought in the relevant theory, whether
the case you argued was properly supported by the plots you presented, and whether there
were features of the plots which cried out for explanation but you ignored.

3


