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Network Performance—DJW—2010/11

Question 1. Consider a FIFO queue, with arrival rate λ, service rate µ, and finite buffer
size b. Suppose that service times are exponentially distributed random variables, and that
arrivals are a Poisson process. Let ρ = λ/µ. Show that the equilibrium distribution of queue
size is P(Q = q) = πq where

πq =
(1−ρ)ρq

1−ρ1+b .

Explain why the packet drop probability is πb. [Hint. 1+ r + r2 + · · ·+ rn = (1− rn+1)/(1− r)
for r 6= 1.]

Question 2. Patient Zero has been infected and turned into a zombie. Zombies can attack
humans and turn them into zombies, and they can also be killed by decapitation. Each
zombie attacks humans as a Poisson process of rate λ, and each zombie unlifetime is expo-
nentially distributed with rate µ. Draw a state space diagram, where the state is the number
of zombies. What is the probability that the zombie infection dies out? What is the mean
time until it dies out?

This is an example of an epidemic model. Epidemics can be used to describe the spread
of gossip, viruses, etc.

Question 3. In a cable modem system, a number of households share a single uplink chan-
nel. A typical capacity for this channel is 4.71 Mb/s. At a busy time of day, maybe 10% of
these households are online and using their Internet connections, and while they are online
and active they initiate new TCP flows at an average rate of one flow every 2 seconds. The
mean flow size is 21 kB (a figure taken from the wischik.com webserver logs). The con-
tention system for sharing capacity between flows begins to break down when there are more
than 10 or so simultaneous flows. Use the standard processor-sharing model to estimate how
many households can be attached to a single upstream channel.

Cisco recommends 200 subscribers per upstream channel. The precise number depends
on characteristics such as signal to noise ratio, and the details of the contention system. See
http://www.cisco.com/application/pdf/paws/12205/max_number_cmts.pdf.

Question 4. The Copenhagen Telephone Company wishes to offer video calls as well as
normal voice calls. A normal voice call takes up one circuit, whereas a video call takes up
four. The company is concerned about a single bottleneck link, consisting of just 12 circuits.

Suppose that voice calls arrive at a rate of 2 calls per minute, and that video calls arrive
at a rate of 0.5 calls per minute, and that the mean duration of both types of call is 2
minutes. Suppose also that call arrivals are Poisson processes and that call durations have
an Exponential distribution.

(i) Let (Tt ,Vt) be the number of voice calls and the number of video calls respectively, at
time t. What is the state space, i.e. what are the possible values that the pair (Tt ,Vt)
can take? Draw a state space diagram.

(ii) Find the transition rates for this Markov process. Set up a rate matrix, and compute
the equilibrium distribution. [Hint. Use a computer.]

(iii) In which states would a newly arriving voice call be blocked? What is the blocking
probability for voice calls? What is the blocking probability for video calls?

One technique for improving the quality of service for video calls, at the expense of voice
calls, is to reserve a certain number of circuits which may only be used by video calls. This
is called trunk reservation.
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Question 5. Consider a network consisting of links {1,2,3,4}. A route is a subset of links;
there are three routes with traffic, r1 = {1,2}, r2 = {2,3} and r3 = {1,2,3,4}. TCP flows
arrive to each of the three routes; they arrive on route i as a Poisson process with rate λi, and
all flow sizes are exponentially distributed with mean m. TCP is a mechanism for sharing
capacity between flows: let θi(n1,n2,n3) be the throughput obtained by a flow on route i
when there are n1 flows active on route r1 etc. Write down the state space for this system.
Find the transition rates.

The function θi(·) was discovered by Misra, Gong and Towsley in 2000. See http:

//gaia.cs.umass.edu/fluid/.

Question 6. My brother wrote a simple program for ripping radio programs from the BBC
website. It downloads an audio file, then encodes it as an MP3, then downloads another
audio file, and so on. The duration of a radio program is an exponential random variable
with mean µ. Downloading happens in real-time, i.e. download time is exactly equal to the
duration of the program. Encoding happens with an s-fold speedup, i.e. encoding time is
an exponential random variable with mean µ/s. (Assume that downloading and encoding
times are independent.)

This program worked but was inefficient, since the CPU is underutilized during down-
loads. To improve efficiency, he has programmed a multithreaded version, which runs m
copies of his original program concurrently, using threads. Downloading takes the same
time as before, for each thread. When there are E files being encoded, then encoding speed
is E times slower for each (i.e. there is processor sharing between the threads that are en-
coding). He hopes that, most of the time, there will be at least one thread encoding, so
that his CPU is not underutilized. He has asked me for advice on how to choose m. For the
multithreaded version of his program,
(i) Let Dt be the number of threads which at time t are in the process of downloading.

Draw a diagram of the state space, showing the possible values that Dt can take, and
draw arrows for the possible transitions.

(ii) What are the transition rates in this system? Explain your answer in detail.
(iii) What is the equilibrium distribution of Dt?
(iv) In which state is his CPU underutilized? For what fraction of time is his CPU under-

utilized?
(v) How do you recommend he should choose m? [Hint. To answer this, you should use a

computer to evaluate your answer to part (iv) numerically, and from these computations
derive a general rule of thumb.]

Question 7. Consider a processor-sharing link, in which flow sizes are exponentially dis-
tributed.
(i) Assume first that flow arrivals are a Poisson process. State a formula for the average

number of active flows. Explain all the terms in your formula. Explain briefly how this
formula is derived.

(ii) Now assume instead that flow arrivals have the following bursty pattern: two flows
arrive back to back, then there is a random exponentially distributed delay, then two
new flows arrive, then there is another random exponentially distributed delay, and so
on. Find a formula for the average number of active flows, in terms of the average flow
arrival rate.

(iii) The PASTA property says that if arrivals are a Poisson process, then arriving flows
see time-averages. In the case of bursty arrivals, do arriving flows see time-averages?
[Hint. Bursts arrive as a Poisson process, so bursts see time averages. Half of all
arriving flows are the first in a burst, and half are the second in a burst.]

Question 8. According to the standard processor sharing model of TCP, the utilization
of a bottleneck link should be ρ and the mean number of active flows should be ρ/(1−ρ),
where ρ = λm/C is the traffic intensity, λ is the arrival rate, m is the mean file size, and C
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is the link capacity. In practice, we observe that core links have tens of thousands of active
flows, but the utilization may be as little as 20%. Obviously the processor-sharing model
is inaccurate. The most likely explanation is that flows are rate-limited, i.e. when there
are n flows then each flow gets throughput min(A,C/n) where A is the capacity of an access
link.
(i) Draw a state space diagram, and find the transition rates.
(ii) Given some value of π0, define πn by

πn =

{
π0
(

λ

A/m

)n 1
n! if n≤ bαc

π0
(

λ

A/m

)bαc 1
bαc!
(

λ

C/m

)n−bαc
if n > bαc

where α = C/A is the multiplexing ratio, and bαc is the floor of α, i.e. bαc ≤α< bαc+1.
Show that π solves the balance equations.

(iii) For what parameter values is this system stable?

Question 9. Let E(ρ,C) be the blocking probability for an Erlang link with traffic load ρ

and C circuits, and let F(ρ,C) be the mean number of active circuits on such a link. Later
in the course, we will prove that F(ρ,C) = ρ(1−E(ρ,C)).

Consider the capped processor-sharing model from Question 8, and assume it is stable. Show
that the mean number of active flows is

e
e + g

F(ρα,bαc)+
g

e + g

(
bαc+ 1

1−ρ

)
.

When there are n active flows, the utilization is min(nA/C,1), hence the mean utilization

∑
∞
a=0 min(na/C,1)πa. Show that this is equal to

e
e + g

F(ρα,bαc)
α

+
g

e + g

where e = 1/E(ρα,bαc) and g = ρ/(1−ρ).
For a core bottleneck link, one might observe a utilization level of 20%, and 5,000 active

flows. Estimate ρ and α. [Hint. If C is large and ρ < 1 then E(ρC,C)≈ 0.]

Question 10. Here is a model for a web server with active server pages, i.e. pages that
cannot be served directly from the disk but instead require processing e.g. in PHP.

Suppose requests arrive at rate λ. Upon arrival they are placed in a ‘task ready’ queue,
where they wait for the next available worker thread. The server has m worker threads. The
CPU can execute c instructions per second, and when there are M threads active then each
executes c/M instructions per second. When a thread becomes free, it starts work on the
next task in the ‘task ready’ queue. When a thread is working on a task, it executes an
average of i instructions, and then either it completes or it blocks, e.g. to wait for I/O. On
average, each request will block b times before completing. If the task blocks, the thread is
freed and the task is placed in a ‘task blocked’ pool. Each blocked task waits for an average
of t seconds to unblock, and then it is placed in the ‘task ready’ queue.

What is the maximum rate at which this web server can serve requests? What is the
average request completion time?
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