

http://arstechnica.com/news.ars/post/20071019-evidence-mounts-that-comcast-is-targeting-bittorrent-

http://arstechnica.com/news.ars/post/20080114-fcc-officially-opens-proceeding-on-comcasts-p2p-

* Consumers are entitled to access the lawful Internet content of their choice

* Consumers are entitled to run applications and use services of their choice, subject to
the needs of law enforcement

* Consumers are entitled to connect their choice of legal devices that do not harm the
network

* Consumers are entitled to competition among network providers, application and
service providers, and content providers

http://arstechnica.com/news.ars/post/20080725-hammer-drops-at-last-fcc-opposes-comcast-p2p-throttling.html

http://arstechnica.com/news.ars/post/20080919-comcast-loses-p2p-religion-goes-agnostic-on-throttling.html

http://arstechnica.com/news.ars/post/20080904-comcast-sues-fcc-wants-p2p-throttling-order-

http://arstechnica.com/tech-policy/news/2009/08/fcc-enforcing-imaginary-laws-in-p2p-ruling-says-comcast.ars

http://arstechnica.com/tech-policy/news/2009/09/fcc-congress-said-we-could-spank-comcast-for-p2p-blocking.ars

http://www.intrade.com/jsp/intrade/trading/t_index.jsp?selConID=409933

#---
Simulator of a Markov chain

import random

def randomselect(p):
 '''Given a list of probabilities p, pick index i with probability p[i] and return i'
 r = random.random()
 i = 0
 d = p[0]
 while r>d:
 i = i+1
 d = d+p[i]
 return i

p = [[.8,.2,0,0],
 [0,0,.8,.2],
 [.3,0,.7,0],
 [0,.5,.5,0]]

Simulate 1000 steps of the Markov chain, starting from state 0
trace = [0]
for i in range(1000):
 s = trace[-1] # our current state
 jumpprob = p[s] # the probability distribution saying where to jump next
 nexts = randomselect(jumpprob)
 trace.append(nexts)

Count the total number of visits to each state
visits = [0 for i in p]
for s in trace:
 visits[s] = visits[s]+1
print visits
Measure the fraction of time spent in each state
print [v/float(sum(visits)) for v in visits]

Alternative simulator, using a generator.
Also, using a defaultdict to store visit counts, so we don't need
to explicitly initialize it.
def markovchain(p,s=0):
 while True:
 yield s
 s = randomselect(p[s])
#
X = markovchain(p)
import collections
visits = collections.defaultdict(int)
for i in range(10000): visits[X.next()] += 1
print visits

notes2--markov.py 1 of 1

Section 2.4
Formal properties of Markov chains

Network Performance—DJW—2010/2011

Formally, we say that the random sequence (X0,X1, . . .) is a Markov chain with state space S,
transition matrix P ∈ [0,1]|S|×|S| and initial distribution ρ ∈ [0,1]|S| if, for all n and x0,x1, . . . ,xn ∈ S

P(X0 = x0,X1 = x1, . . . ,Xn = xn) = ρx0Px0x1 · · ·Pxnxn−1 .

Equivalently,

P(Xn = xn|Xn−1 = xn−1, . . . ,X0 = x0) = Pxn−1xn and P(X0 = x0) = ρx0 .

Definition. A chain is irreducible if for every pair of states x,y ∈ S there is a path in the state
space diagram from x to y. The path may have multiple steps.

Definition. A chain is aperiodic if for every state x there is an integer nx such that there is an
nx-hop path from x to x, and also a path with nx + 1 hops, and a path with nx + 2 hops, and so on.

Theorem. If a Markov chain is irreducible and aperiodic, and if it has finitely many states, then
it is possible to solve the balance and normalization equations, and this solution is unique. The
solution is called the equilibrium distribution, usually written π. Furthermore,
• The equilibrium distribution is invariant, also known as stationary. That is, if P(Xn = j) = π j

for all j, then P(Xn+1 = j) = π j for all j.
• The equilibrium distribution is limiting. That is, no matter what the distribution of X0 is,

P(Xn = j)→ π j as n→ ∞ for all j.
• The equilibrium distribution is ergodic. That is, for every simulation we run, if we let Vn(i)

be the number of times the chain visits state j in the first time steps, then Vn(j)/n→ π j as
n→ ∞ for all j.

Theorem. If a Markov chain is irreducible and aperiodic, and it has infinitely many states, then
it is always possible to solve the balance equations. It may or may not be possible to also solve
the normalization equation.
• If the normalization equation can be solved, then π is invariant, limiting, and ergodic, as in the

finite case. Also the process is recurrent, i.e. starting from any state j, P(eventually returns to j) =
1. Furthermore it is positive recurrent, i.e. starting from any state j, E(time to return to j) <
∞.

• If the normalization equation cannot be solved, then either
(i) the chain is transient, the opposite of recurrent, i.e. there is some state j such that,

starting from state j, P(eventually return to j) < 1; or
(ii) the chain is recurrent but not positive recurrent.
In other words, either it might never return, or it always returns but it can take a very very
long time.

Theorem. For any Markov chain, the equations for hitting time can always be solved, and the
solution is unique.

Theorem. For any Markov chain, the equations for hitting probability can always be solved.
• If the chain has finitely many states, the solution is unique.
• If the chain has infinitely many states, the equations may have more than one solution. If this

is the case, then the true hitting probability is given by the smallest non-negative solution.

1

#---
Simulator of a Markov process

import random, math

def randomselect(p):
 '''Given a list of probabilities p, pick index i with probability p[i] and return i'''
 r = random.random()
 i = 0
 d = p[0]
 while r>d:
 i = i+1
 d = d+p[i]
 return i

def rexp(rate): return -1.0/rate * math.log(random.random())

r = [[0,2,0],
 [0,0,.8],
 [1.1,1.3,0]]

Calculate the jump probabilities, and the rates for waiting time
p = [[rij/sum(row) for rij in row] for row in r]
d = [sum(row) for row in r]

Simulate 10000 steps, starting from state 0
state = []
wait = []
s = 0
for i in range(10000):
 state.append(s)
 wait.append(rexp(d[s]))
 jumpprobs = p[s]
 s = randomselect(jumpprobs)
function to work out the state at some arbitrary time t
def X(t):
 t0 = 0
 for s,w in zip(state,wait):
 t0 = t0+w
 if t0>=t: return s
 return None
#
print X(10)

#--

Different code, using a generator rather than a fixed number of jumps
def markov_process(r):
 p = [[rij/sum(row) for rij in row] for row in r]
 d = [sum(row) for row in r]
 s,wait = 0,rexp(d[0]) # current state, and time left in current state
 t = 0 # current time
 while True:
 rununtil = t+(yield s)
 while t+wait <= rununtil:
 t = t+wait
 s = randomselect(p[s])
 wait = rexp(d[s])
 wait = wait - (rununtil-t)
 t = rununtil

Get the value of X at times [.5,1,1.5,2,2.5,3,3.5,4]
X = markov_process(r)
X.next()
print [X.send(.5) for i in range(8)]

Get the value of X at times [1,2,3,...,100000] and measure how often it's in each state
import collections
visits = collections.defaultdict(int)
for i in range(100000): visits[X.send(1)] += 1
visits = [visits[i] for i in range(len(r))]
print [v/float(sum(visits)) for v in visits]

notes2--markovproc.py 1 of 1

Section 2.5
Equilibrium distribution of a Markov process
Network Performance—DJW—2010/2011

1 Finding the equilibrium distribution

When we simulate a Markov process (Xt , t ≥ 0), we typically find that there is a vector π such
that
• the fraction of time spent in state i approaches πi, the longer we run the simulation i.e. π is

ergodic
• if we interrupt the simulation and see what state it’s in, the probability of finding it in state i

approaches πi the longer we run the simulation, i.e. π is limiting
• if we pick the initial state X0 randomly with distribution π, then at any time t in the future,

Xt has distribution π.
This distribution π is called the equilibrium distribution. To find it,
(i) Write out the balance equations, πi ∑ j ri j = ∑ j π jr ji, one equation for each i.
(ii) Write out the normalization equation, ∑i πi = 1.
(iii) Solve all these equations simultaneously.

2 Using a computer to find the equilibrium distribution

If we write out the balance equations in matrix form, we can solve them with a computer. First,
let r ∈ Rn×n be the rate matrix and define

d =


∑ j r1 j 0 . . . 0

0 ∑ j r2 j 0
...

. . .
...

0 0 . . . ∑ j rn j

 .

The balance equations
πi ∑

j
ri j = ∑

j
π jr ji

can be written in matrix form as
πd = πr,

or equivalently π(r−d) = 0. We can use this to solve for π numerically. For example,

load in the l i b r a r y f o r l i n e a r a l g e b ra
l ibrary (MASS)
se t up the ra t e matrix
r <− rbind (c (0 , 2 , 0) ,

c (0 , 0 , . 8) ,
c (1 . 1 , 1 . 3 , 0))

ca l c u l a t e d
d <− diag (apply (r , 1 ,sum))
so l v e the ba lance equa t ions
eqm <− Null (r−d) [, 1]
and r e s c a l e eqm so i t sums to 1
eqm <− eqm/sum(eqm)

3 A shortcut that sometimes works

For some Markov processes, you can fairly easily find a distribution π such that

πiri j = π jr ji for all i and j.

If this is so, then π automatically solves the balance equations.

1

4 Formal properties of Markov processes

Definition. A Markov process is called irreducible if for every pair of states i and j there is a path
in the state space diagram from i to j. The path may have multiple steps.

Theorem. If a Markov process is irreducible, and if it has finitely many states, then it is possible
to solve the balance and normalization equations, and this solution is unique. The solution is called
the equilibrium distribution, usually written π. Furthermore,
• The equilibrium distribution is invariant, also known as stationary. That is, if P(Xt = j) = π j

for all j, then for any s≥ 0, P(Xt+s = j) = π j for all j.
• The equilibrium distribution is limiting. That is, no matter what the distribution of X0 is,

P(Xt = j)→ π j as t→ ∞, for all j.
• The equilibrium distribution is ergodic. That is, for every simulation we run, if we let Vt(i) be

the amount of time spent in state j over the interval [0, t], then then Vt(j)/t→ π j as t→∞, for
all j.

Theorem. If a Markov chain is irreducible and aperiodic, and it has infinitely many states, then
it is always possible to solve the balance equations. It may or may not be possible to also solve
the normalization equation.
• If the normalization equation can be solved, then π is invariant, limiting, and ergodic, as in the

finite case. Also the process is recurrent, i.e. starting from any state j, P(eventually returns to j) =
1. Furthermore it is positive recurrent, i.e. starting from any state j, E(time to return to j) <
∞.

• If the normalization equation cannot be solved, then either
(i) the process is transient, the opposite of recurrent, i.e. there is some state j such that,

starting from state j, P(eventually return to j) < 1; or
(ii) the process is recurrent but not positive recurrent; or
(iii) the process is explosive, i.e. P(visits infinitely many states in finite time) > 0.
In other words, either it might never return, or it always returns but it can take a very very
long time, or it gets trapped in a ‘black hole’.

"A study of networks simulation efficiency: Fluid simulation vs. packet-level simulation"
Liu, Figueiredo, Guo, Kurose, Towsley, INFOCOM 2001.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.3249

"Stability of Fluid and Stochastic Processing Networks", Dai,
1999.

"Loss networks", F.P.Kelly, 1991. http://www.statslab.cam.ac.uk/~frank/loss/

12/15/2010

1

What is modelling?

Nature
Model

AnalysisDesign

simplify

make
inferences

It’s very hard to know what to include
in your model. If you choose the model
right, you can express the real heart of
what you want to understand about
the real world, without any useless
detail. This will make your model much
easier to analyse.

We come up with models because we
want guidelines about how a system
should be designed/built/operated.
The model and analysis are only useful
if we can translate the modelling
conclusions back into real-world
predictions.

What is modelling good for?

• Hacker insight is good for some problems.

• In other problems (especially distributed systems with adaptive
behaviour), the network can have surprising behaviour.

• Modelling is a quick way to get insight into large-scale emergent
behaviour. It can suggest where problems are likely to occur, and you
can then check these out with more detailed models or simulation or
experiment.

bistability
of DAR

instability
of wireless

backoff TCP's bad
teleology

Braess's
paradox

12/15/2010

2

What is modelling good for?

Is it unstable?
e.g. processor sharing when ρ>1
If the system is unstable then it’s
useless to take measurements; we
need to think about control systems
to keep it stable.

Are there stable oscillations?
e.g. route flap, TCP synchronization.
This may cause problems to some
users.

Is it bistable?
e.g. dynamic alternative routing. Then
there is unpredictable flapping, and
the network can be hard to manage.

What is the
teleology?
Is the network trying
to achieve what I
want it to achieve?

What are the causes
of the behaviour we
see?
Do we still see the
behaviour when we
create a simplified
model, ditching
certain real-world
properties?

What are the parameters
that matter?
e.g. for TCP, we decided that
the relevant parameter is
wnd=RTT C/N. This saves us
from having to explore all
three parameters separately.

What parameters should we
investigate?
e.g. for what parameter
values do we predict the
system becomes unstable?
What is the behaviour when
the system is too large to
simulate?

What should we model?

We need to go back
and forth between
different levels of
detail. That is the
only way to
understand which
aspects of the system
truly make a
difference and which
parts can be
simplified out.

implementation /
operations

measurements

testbed
experiments

detailed
simulation (ns2)

simple
customized
simulation

computation
e.g. using a computer to
find the equilibrium
distribution

mathematical
analysis

12/15/2010

3

• Random variables
Describing data

• Poisson process
Normal approximation

• Markov chains and processes

• Job models
(Erlang link, processor sharing)

• Drift models,
fixed points,
operational laws

• Microscopic description
fine-grained rules of behaviour,
e.g. TCP code, Markov jump
rates, detailed simulation

• Macroscopic description
formulae for aggregates or
averages, e.g. TCP throughput
equation, Erlang fixed point,
drift model

• Teleological description
an optimization problem which
has as its solution the fixed-
point equations

Tools we have learnt

	0. Introduction

	1. Random numbers

	2. Random processes

	3. Markov job models

	4. Analysing random processes

	5. TCP

	6. Conclusion

