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* Consumers are entitled to access the lawful Internet content of their choice
 
* Consumers are entitled to run applications and use services of their choice, subject to 
the needs of law enforcement

* Consumers are entitled to connect their choice of legal devices that do not harm the 
network

* Consumers are entitled to competition among network providers, application and 
service providers, and content providers
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#-------------------------------------------------------
# Simulator of a Markov chain

import random

def randomselect(p):
    '''Given a list of probabilities p, pick index i with probability p[i] and return i'
    r = random.random()
    i = 0
    d = p[0]
    while r>d:
        i = i+1
        d = d+p[i]
    return i

p = [[.8,.2,0,0],
     [0,0,.8,.2],
     [.3,0,.7,0],
     [0,.5,.5,0]]

# Simulate 1000 steps of the Markov chain, starting from state 0
trace = [0]
for i in range(1000):
    s = trace[-1]  # our current state
    jumpprob = p[s]  # the probability distribution saying where to jump next
    nexts = randomselect(jumpprob)
    trace.append(nexts) 

# Count the total number of visits to each state
visits = [0 for i in p]
for s in trace:
    visits[s] = visits[s]+1
print visits
# Measure the fraction of time spent in each state
print [v/float(sum(visits)) for v in visits]

# Alternative simulator, using a generator.
# Also, using a defaultdict to store visit counts, so we don't need
# to explicitly initialize it.
def markovchain(p,s=0):
    while True:
        yield s
        s = randomselect(p[s])
#
X = markovchain(p)
import collections
visits = collections.defaultdict(int)
for i in range(10000): visits[X.next()] += 1
print visits

notes2--markov.py 1 of 1













Section 2.4
Formal properties of Markov chains
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Formally, we say that the random sequence (X0,X1, . . .) is a Markov chain with state space S,
transition matrix P ∈ [0,1]|S|×|S| and initial distribution ρ ∈ [0,1]|S| if, for all n and x0,x1, . . . ,xn ∈ S

P(X0 = x0,X1 = x1, . . . ,Xn = xn) = ρx0Px0x1 · · ·Pxnxn−1 .

Equivalently,

P(Xn = xn|Xn−1 = xn−1, . . . ,X0 = x0) = Pxn−1xn and P(X0 = x0) = ρx0 .

Definition. A chain is irreducible if for every pair of states x,y ∈ S there is a path in the state
space diagram from x to y. The path may have multiple steps.

Definition. A chain is aperiodic if for every state x there is an integer nx such that there is an
nx-hop path from x to x, and also a path with nx + 1 hops, and a path with nx + 2 hops, and so on.

Theorem. If a Markov chain is irreducible and aperiodic, and if it has finitely many states, then
it is possible to solve the balance and normalization equations, and this solution is unique. The
solution is called the equilibrium distribution, usually written π. Furthermore,
• The equilibrium distribution is invariant, also known as stationary. That is, if P(Xn = j) = π j

for all j, then P(Xn+1 = j) = π j for all j.
• The equilibrium distribution is limiting. That is, no matter what the distribution of X0 is,

P(Xn = j)→ π j as n→ ∞ for all j.
• The equilibrium distribution is ergodic. That is, for every simulation we run, if we let Vn(i)

be the number of times the chain visits state j in the first time steps, then Vn( j)/n→ π j as
n→ ∞ for all j.

Theorem. If a Markov chain is irreducible and aperiodic, and it has infinitely many states, then
it is always possible to solve the balance equations. It may or may not be possible to also solve
the normalization equation.
• If the normalization equation can be solved, then π is invariant, limiting, and ergodic, as in the

finite case. Also the process is recurrent, i.e. starting from any state j, P(eventually returns to j) =
1. Furthermore it is positive recurrent, i.e. starting from any state j, E(time to return to j) <
∞.

• If the normalization equation cannot be solved, then either
(i) the chain is transient, the opposite of recurrent, i.e. there is some state j such that,

starting from state j, P(eventually return to j) < 1; or
(ii) the chain is recurrent but not positive recurrent.
In other words, either it might never return, or it always returns but it can take a very very
long time.

Theorem. For any Markov chain, the equations for hitting time can always be solved, and the
solution is unique.

Theorem. For any Markov chain, the equations for hitting probability can always be solved.
• If the chain has finitely many states, the solution is unique.
• If the chain has infinitely many states, the equations may have more than one solution. If this

is the case, then the true hitting probability is given by the smallest non-negative solution.
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#-------------------------------------------------------
# Simulator of a Markov process

import random, math

def randomselect(p):
    '''Given a list of probabilities p, pick index i with probability p[i] and return i'''
    r = random.random()
    i = 0
    d = p[0]
    while r>d:
        i = i+1
        d = d+p[i]
    return i

def rexp(rate): return -1.0/rate * math.log(random.random())

r = [[0,2,0],
     [0,0,.8],
     [1.1,1.3,0]]

# Calculate the jump probabilities, and the rates for waiting time
p = [[rij/sum(row) for rij in row] for row in r]
d = [sum(row) for row in r]

# Simulate 10000 steps, starting from state 0
state = []
wait = []
s = 0
for i in range(10000):
    state.append(s)
    wait.append(rexp(d[s]))
    jumpprobs = p[s]
    s = randomselect(jumpprobs)
# function to work out the state at some arbitrary time t
def X(t):
    t0 = 0
    for s,w in zip(state,wait):
        t0 = t0+w
        if t0>=t: return s
    return None
#
print X(10)

#------------------------------------------------------------------------

# Different code, using a generator rather than a fixed number of jumps
def markov_process(r):
    p = [[rij/sum(row) for rij in row] for row in r]
    d = [sum(row) for row in r]
    s,wait = 0,rexp(d[0])  # current state, and time left in current state
    t = 0                  # current time
    while True:
        rununtil = t+(yield s)
        while t+wait <= rununtil:
            t = t+wait
            s = randomselect(p[s])
            wait = rexp(d[s])
        wait = wait - (rununtil-t)
        t = rununtil

# Get the value of X at times [.5,1,1.5,2,2.5,3,3.5,4]
X = markov_process(r)
X.next()
print [X.send(.5) for i in range(8)]

# Get the value of X at times [1,2,3,...,100000] and measure how often it's in each state
import collections
visits = collections.defaultdict(int)
for i in range(100000): visits[X.send(1)] += 1
visits = [visits[i] for i in range(len(r))]
print [v/float(sum(visits)) for v in visits]

notes2--markovproc.py 1 of 1



Section 2.5
Equilibrium distribution of a Markov process
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1 Finding the equilibrium distribution

When we simulate a Markov process (Xt , t ≥ 0), we typically find that there is a vector π such
that
• the fraction of time spent in state i approaches πi, the longer we run the simulation i.e. π is

ergodic
• if we interrupt the simulation and see what state it’s in, the probability of finding it in state i

approaches πi the longer we run the simulation, i.e. π is limiting
• if we pick the initial state X0 randomly with distribution π, then at any time t in the future,

Xt has distribution π.
This distribution π is called the equilibrium distribution. To find it,
(i) Write out the balance equations, πi ∑ j ri j = ∑ j π jr ji, one equation for each i.
(ii) Write out the normalization equation, ∑i πi = 1.
(iii) Solve all these equations simultaneously.

2 Using a computer to find the equilibrium distribution

If we write out the balance equations in matrix form, we can solve them with a computer. First,
let r ∈ Rn×n be the rate matrix and define

d =


∑ j r1 j 0 . . . 0

0 ∑ j r2 j 0
...

. . .
...

0 0 . . . ∑ j rn j

 .

The balance equations
πi ∑

j
ri j = ∑

j
π jr ji

can be written in matrix form as
πd = πr,

or equivalently π(r−d) = 0. We can use this to solve for π numerically. For example,

# load in the l i b r a r y f o r l i n e a r a l g e b ra
l ibrary (MASS)
# se t up the ra t e matrix
r <− rbind (c ( 0 , 2 , 0 ) ,

c ( 0 , 0 , . 8 ) ,
c ( 1 . 1 , 1 . 3 , 0 ) )

# ca l c u l a t e d
d <− diag (apply ( r , 1 ,sum) )
# so l v e the ba lance equa t ions
eqm <− Null ( r−d ) [ , 1 ]
# and r e s c a l e eqm so i t sums to 1
eqm <− eqm/sum(eqm)

3 A shortcut that sometimes works

For some Markov processes, you can fairly easily find a distribution π such that

πiri j = π jr ji for all i and j.

If this is so, then π automatically solves the balance equations.
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4 Formal properties of Markov processes

Definition. A Markov process is called irreducible if for every pair of states i and j there is a path
in the state space diagram from i to j. The path may have multiple steps.

Theorem. If a Markov process is irreducible, and if it has finitely many states, then it is possible
to solve the balance and normalization equations, and this solution is unique. The solution is called
the equilibrium distribution, usually written π. Furthermore,
• The equilibrium distribution is invariant, also known as stationary. That is, if P(Xt = j) = π j

for all j, then for any s≥ 0, P(Xt+s = j) = π j for all j.
• The equilibrium distribution is limiting. That is, no matter what the distribution of X0 is,

P(Xt = j)→ π j as t→ ∞, for all j.
• The equilibrium distribution is ergodic. That is, for every simulation we run, if we let Vt(i) be

the amount of time spent in state j over the interval [0, t], then then Vt( j)/t→ π j as t→∞, for
all j.

Theorem. If a Markov chain is irreducible and aperiodic, and it has infinitely many states, then
it is always possible to solve the balance equations. It may or may not be possible to also solve
the normalization equation.
• If the normalization equation can be solved, then π is invariant, limiting, and ergodic, as in the

finite case. Also the process is recurrent, i.e. starting from any state j, P(eventually returns to j) =
1. Furthermore it is positive recurrent, i.e. starting from any state j, E(time to return to j) <
∞.

• If the normalization equation cannot be solved, then either
(i) the process is transient, the opposite of recurrent, i.e. there is some state j such that,

starting from state j, P(eventually return to j) < 1; or
(ii) the process is recurrent but not positive recurrent; or
(iii) the process is explosive, i.e. P(visits infinitely many states in finite time) > 0.
In other words, either it might never return, or it always returns but it can take a very very
long time, or it gets trapped in a ‘black hole’.
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What is modelling?

Nature
Model

AnalysisDesign

simplify

make 
inferences

It’s very hard to know what to include 
in your model. If you choose the model 
right, you can express the real heart of 
what you want to understand about 
the real world, without any useless 
detail. This will make your model much 
easier to analyse.

We come up with models because we 
want guidelines about how a system 
should be designed/built/operated. 
The model and analysis are only useful 
if we can translate the modelling 
conclusions back into real-world 
predictions.

What is modelling good for?

• Hacker insight is good for some problems.

• In other problems (especially distributed systems with adaptive 
behaviour), the network can have surprising behaviour.

• Modelling is a quick way to get insight into large-scale emergent 
behaviour. It can suggest where problems are likely to occur, and you 
can then check these out with more detailed models or simulation or 
experiment.

bistability
of DAR

instability 
of wireless 

backoff TCP's bad 
teleology

Braess's
paradox
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What is modelling good for?

Is it unstable?
e.g. processor sharing when ρ>1
If the system is unstable then it’s 
useless to take measurements; we 
need to think about control systems 
to keep it stable.

Are there stable oscillations?
e.g. route flap, TCP synchronization. 
This may cause problems to some 
users.

Is it bistable?
e.g. dynamic alternative routing. Then 
there is unpredictable flapping, and 
the network can be hard to manage.

What is the 
teleology?
Is the network trying 
to achieve what I 
want it to achieve?

What are the causes 
of the behaviour we 
see?
Do we still see the 
behaviour when we 
create a simplified 
model, ditching 
certain real-world 
properties? 

What are the parameters 
that matter?
e.g. for TCP, we decided that 
the relevant parameter is 
wnd=RTT C/N. This saves us 
from having to explore all 
three parameters separately.

What parameters should we 
investigate?
e.g. for what parameter 
values do we predict the 
system becomes unstable? 
What is the behaviour when 
the system is too large to 
simulate?

What should we model?

We need to go back 
and forth between 
different levels of 
detail. That is the 
only way to 
understand which 
aspects of the system 
truly make a 
difference and which 
parts can be 
simplified out.

implementation / 
operations

measurements

testbed 
experiments

detailed 
simulation (ns2)

simple 
customized 
simulation

computation
e.g. using a computer to 
find the equilibrium 
distribution

mathematical 
analysis
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• Random variables
Describing data

• Poisson process
Normal approximation

• Markov chains and processes

• Job models 
(Erlang link, processor sharing)

• Drift models, 
fixed points, 
operational laws

• Microscopic description
fine-grained rules of behaviour, 
e.g. TCP code, Markov jump 
rates, detailed simulation

• Macroscopic description
formulae for aggregates or 
averages, e.g. TCP throughput 
equation, Erlang fixed point, 
drift model

• Teleological description
an optimization problem which 
has as its solution the fixed-
point equations

Tools we have learnt
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