Sample path LDP for traffic
(in the long-timescale limit)

Large Deviations and Queues—Damon Wischik

1 Model

Let \mathcal{X} be the set of discrete-time traffic processes

$$\mathcal{X} = \{ x : \mathbb{Z}_+ \to \mathbb{R}, x(0) = 0 \}.$$

Let \mathcal{C} be the set of continuous-time traffic processes

$$\mathcal{C} = \{ x : \mathbb{R}_+ \to \mathbb{R}, x(0) = 0 \}.$$

Let \mathcal{A} be the subset of \mathcal{C} consisting of absolutely continuous traffic processes.

Let \mathcal{X}^T be and \mathcal{C}^T be

$$\mathcal{X}^T = \{ x : \{0, \ldots, T\} \to \mathbb{R}, x(0) = 0 \},$$

$$\mathcal{C}^T = \{ x : [0, T] \to \mathbb{R}, x(0) = 0 \},$$

and define \mathcal{A}^T similarly. Interpret $x(t)$ as the amount of work arriving in the interval $(-t, 0]$. Say that a traffic process x has mean rate μ if $\lim_{t \to \infty} x(t)/t = \mu$. Write \mathcal{X}_μ, \mathcal{C}_μ and \mathcal{A}_μ for the restrictions of \mathcal{X}, \mathcal{C} and \mathcal{A} to traffic processes with mean rate μ.

Define the scaled uniform norm $\| \cdot \|$ on these spaces by

$$\| x \| = \sup_{t \geq 0} \left| \frac{x(t)}{t+1} \right|$$

Also define π, the topology of uniform convergence on compact intervals.

Given $x \in \mathcal{X}$, define the polygonalized version $\tilde{x} \in \mathcal{A}$ to be

$$\tilde{x}(t) = ([t+1] - t)x([t]) + (t - [t])x([t+1]).$$

Given $x \in \mathcal{C}$, define the speeded-up version $x^{\mu L} \in \mathcal{C}$ to be

$$x^{\mu L}(t) = x(Lt).$$

Use the following extended notation: write

- $x(-t, 0]$ for $x(t)$
- $x|_{(-t,0]}$ for the restriction of x to $[0,t]$
- \tilde{x}_{-t} for $dx(t)/dt$, where it is defined, for $x \in \mathcal{C}$
- \tilde{x}_{-t} for $x(t+1) - x(t)$, for $x \in \mathcal{X}$

2 Probabilistic setup

Let A be a random discrete-time traffic process, taking values in \mathcal{X}. Suppose that the A_{-t} are independent and identically distributed. Let

$$\Lambda(\theta) = \log E \exp(\theta A_0),$$

and assume that $\Lambda(\cdot)$ is finite in a neighbourhood of the origin.
3 Cramér’s theorem

By Cramér’s theorem, $L^{-1}A^{\infty L}(1)$ satisfies an LDP in \mathbb{R} with good convex rate function

$$\Lambda^*(x) = \sup_{\theta \in \mathbb{R}} \theta x - \Lambda(\theta).$$

4 Finite horizon SP-LDP

By Mogulskii’s theorem, $L^{-1}\tilde{A}^{\infty L}|_{[-1,0]}$ satisfies a sample path LDP in (C^1, π) with rate function

$$I_1(x) = \begin{cases} \int_{-1}^{0} \Lambda^*(\dot{x}_s) \, ds & \text{if } x \in A^1 \\ \infty & \text{otherwise.} \end{cases}$$

This can easily be extended to a sample path LDP for $L^{-1}\tilde{A}^{\infty L}|_{[-T,0]}$ with rate function

$$I_T(x) = \begin{cases} \int_{-T}^{0} \Lambda^*(\dot{x}_s) \, ds & \text{if } x \in A^T \\ \infty & \text{otherwise.} \end{cases}$$

5 Infinite horizon SP-LDP

Write $\Pi_L : C \to C^T$ for the projection $x \mapsto x|_{[-T,0]}$. With these projections, (C, π) is the projective limit of the collection of spaces (C^T, π). By the Dawson-Gärtner theorem, $L^{-1}\tilde{A}^{\infty L}$ satisfies a sample path LDP in (C, π) with good rate function

$$I(x) = \sup_{T \geq 0} I_T(\Pi_L x).$$

By the non-negativity of Λ^*, the supremum is

$$I(x) = \begin{cases} \int_{-\infty}^{0} \Lambda^*(\dot{x}_s) \, ds & \text{if } x \in A \\ \infty & \text{otherwise.} \end{cases}$$

6 Strengthening the topology

It can be shown that $L^{-1}\tilde{A}^{\infty L}$ is exponentially tight in $(C, \|\cdot\|)$. Therefore, using the inverse contraction principle, the sample path LDP for $L^{-1}\tilde{A}^{\infty L}$ holds in $(C, \|\cdot\|)$.

7 Restricting the space

Since $\Lambda(\cdot)$ is finite in a neighbourhood of the origin, it is differentiable at the origin. Let $\mu = \Lambda'(0)$. It can be shown that $\mathbb{P}(L^{-1}\tilde{A}^{\infty L} \in C_\mu) = 1$, and that this space is closed. Therefore the sample path LDP for $L^{-1}\tilde{A}^{\infty L}$ holds in $(C_\mu, \|\cdot\|)$.