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Consider a queue with constant service rate C, with buffer size B = ∞,
and with arrival process A = (. . . , A−1, A0) where the At are independent and
identically distributed. Recall that the queue size Q is given by Q = q(A) where
q(a) = supt≥0 a(−t, 0] − Ct and a(−t, 0] = a−t+1 + · · · + a0.

A

B = ∞ C

Let Λ(θ) = log EeθA0 and Λ∗(x) = supθ∈R
θx − Λ(θ). Assume that Λ(θ) is

finite for all θ (and thus that EA0 is finite, and Λ(θ) is infinitely differentiable
for all θ).

Theorem 1 If EA0 < C then, for q > 0,

lim
l→∞

1
l

log P

(Q

l
> q

)
= −q sup

{
θ > 0 : Λ(θ) < θC

}
(1)

= − inf
t>0

tΛ∗(C + q/t) (2)

= − inf
t>0

sup
θ≥0

θ(q + Ct) − tΛ(θ) (3)

(The limit, infimum and supremum are taken over l ∈ R, t ∈ R and θ ∈ R.)

We will split the proof into three parts: the large deviations upper bound

lim sup l−1 log P(Q > lq) ≤ (1), (4)

the large deviations lower bound

lim inf l−1 log P(Q > lq) ≥ (2), (5)

and finally (1) = (2) = (3).

Proof of LD upper bound. Write out the probability we wish to estimate, and
then use the Chernoff bound. For any θ > 0 such that Λ(θ) < θC,

P(Q > lq) = P
(
sup
t≥0

A(−t, 0] − Ct > lq
)

= P
(
A(−t, 0] − Ct > lq for some t ≥ 0

)
≤

∑
t≥0

P
(
A(−t, 0] − Ct ≥ lq

)
≤

∑
t≥0

e−θlqet{Λ(θ)−θC} by Chernoff’s bound, since θ > 0

= e−θlq eΛ(θ)−θC

1 − eΛ(θ)−θC
the series is summable, since Λ(θ) < θC



and so lim sup l−1 log P(Q > lq) ≤ −θq. Take the infimum over all such θ to
prove the result (4).

Note that if no such θ existed then the supremum would be −∞, by conven-
tion, and so the bound would be trivial. But such a θ does exist, because Λ(θ)
is finite in a neighbourhood of θ = 0, hence differentiable at θ = 0, and we’ve
assumed that Λ′(0) = EA0 < C; therefore Λ(θ) < θC for θ sufficiently small. �

Proof of LD lower bound. Pick any u > 0, u ∈ R. We will find a lower bound
for P(Q > lq) by estimating the probability that the queue reaches level lq in
time lu using Cramér’s theorem:

lim inf
l→∞

1
l

log P(Q > lq) (6)

= lim inf
l→∞

1
l

log P

(
sup

v
A(−v, 0] − Cv > lq

)
= lim inf

l→∞
1
l

log P(A(−v, 0] − Cv > lq for some v)

≥ lim inf
l→∞

1
l

log P

(
A

(−�lu�, 0]
> lq + C�lu�

)
by choosing v = �lu�

≥ lim inf
l→∞

u

�lu� − 1
log P

(
A

(−�lu�, 0]
>

�lu�
u

q + C�lu�
)

by bounds1 for �lu�

= u lim inf
n→∞

1
n − 1

log P

( 1
n

A(−n, 0] > C +
q

u

)
where n = �lu�

≥ u lim inf
n→∞

1 + ε

n
log P

( 1
n

A(−n, 0] > C +
q

u

)
for any ε > 0

(6) ≥ −u lim inf
n→∞

1
n

log P

( 1
n

A(−n, 0] > C +
q

u

)
since ε > 0 arbitrary

≥ −u inf
x>C+q/u

Λ∗(x) by Cramér’s theorem

= −uΛ∗(C + q/u+) since Λ∗(x) is increasing for x ≥ EA0

where by f(x+) we mean lim
y↓x

f(y)

(6) ≥ − inf
u>0

uΛ∗(C + q/u+) since u > 0 arbitrary

≥ −(t + δ)Λ∗(C + q/(t + δ)+
)

choosing u = t + δ, δ > 0
≥ −(t + δ)Λ∗(C + q/t) since q/(t + δ)+ < q/t and Λ∗ is increasing

(6) ≥ −tΛ∗(C + q/t) since δ > 0 arbitrary
(6) ≥ − inf

t>0
tΛ∗(C + q/t) since t > 0 arbitrary

This completes the proof. �

Equality of rate functions. First, (2)=(3): Expand Λ∗, and use the fact that
the supremum over θ in Λ∗(x) = supθ∈R

θx − Λ(θ) can be taken over θ ≥ 0 for
x ≥ EA0, as we saw in the proof of Cramér’s theorem.

Second, (3)≥(1): For any θ > 0 with Λ(θ) < θC,

θ(q + Ct) − tΛ(θ) = θq + t
(
θC − Λ(θ)

)
. ≥ θq

1Recall that �x� − 1 < x ≤ �x�, so l ≤ �lu�/u and 1/l < u/(�lu� − 1).
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Taking the supremum over such θ,

sup
θ>0:Λ(θ)<θC

θ(q + Ct) − tΛ(θ) ≥ sup
θ>0:Λ(θ)<θC

θq

=⇒ sup
θ≥0

θ(q + Ct) − tΛ(θ) ≥ q sup{θ > 0 : Λ(θ) < θC}.

Now take the infimum over t > 0.
Finally, (3)≤(1): Let θ̂ = sup{θ > 0 : Λ(θ) < θC}. (The set is non-empty,

by our remark in the proof of the LD upper bound.) If θ̂ = ∞, we are done.
Otherwise, using the fact that Λ is convex and differentiable, it must be that
Λ(θ̂) = θ̂C and Λ′(θ̂) > C.

Λ(θ)

θC

θ
θ̂

Now consider the supporting tangent to Λ(θ) at θ̂: by convexity, Λ(θ) ≥
θ̂C + Λ′(θ̂)(θ − θ̂), and so

(3) = inf
t>0

sup
θ≥0

θ(q + Ct) − tΛ(θ)

≤ inf
t>0

sup
θ≥0

θ(q + Ct) − t
(
θ̂C + Λ′(θ̂)(θ − θ̂)

)
from supporting tangent at θ̂

= inf
t>0

sup
θ≥0

θ
(
q − t

(
Λ′(θ̂) − C

))
+ θ̂t

(
Λ′(θ̂) − C

)
gathering θ terms

= inf
t>0

{
∞ if t < q/

(
Λ′(θ̂) − C

)
θ̂t

(
Λ′(θ̂) − C

)
else

performing the θ-optimization

= θ̂q performing the t-optimization
= (1).

This completes the proof. �
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