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These results are required for some of the course material.

Q 1 (Principle of the largest term). Let (an, n ∈ �
) and (bn, n ∈ �

) be sequences in � + .
Prove that

lim sup
n→∞

1

n
log(an + bn) ≤ lim sup

n→∞

1

n
log(an) ∨ lim sup

n→∞

1

n
log(bn)

and

lim inf
n→∞

1

n
log(an + bn) ≥ lim inf

n→∞

1

n
log(an) ∨ lim inf

n→∞

1

n
log(bn).

[Need: elementary limits]

Q 2 (Lower-semicontinuity). Let f : X → � ∪ {∞} be a lower-semicontinuous function on
a Hausdorff space X (i.e. assume the level sets {x : f(x) ≤ α} are closed for all α ∈ � .)
i. Let K ⊂ X be compact. Show that if infx∈K f(x) < ∞ then the infimum is attained in K.
ii. Are all convex functions lower-semicontinuous?
iii. Let g : � → � ∪ {∞}, and let g∗(x) = supθ∈ � θx − g(θ). Show that g∗ is lower-

semicontinuous.
[Need: elementary topology]

Q 3 (Useful LDPs). Let (Xn, n ∈ �
) and (Yn, n ∈ �

) satisfy large deviations principles in
Hausdorff spaces X and Y with good rate functions I and J .
i. Suppose that (for each n) Xn and Yn are independent, and that X and Y are separable (i.e.

that they have countable bases of open sets.) Show that (Xn, Yn) satisfies a large deviations
principle in X × Y with good rate function (x, y) 7→ I(x) + J(y).

ii. Suppose X = Y , and let

Zn =

{

Xn if Bn = 0

Yn if Bn = 1

where Bn ∼ Bin(1, p), and is independent of Xn and Yn. Show that Zn satisfies an LDP in
X with rate function z 7→ I(z) ∧ J(z).

[Need: abstract large deviations]

Q 4 (Restricting an LDP). Let (Xn, n ∈ �
) be a sequence of random variables taking

values in X . Let E be a measurable subset of X such that � (Xn ∈ E) = 1 for all n. Equip E
with the topology induced by X , and suppose E is closed. Prove the following.
i. If (Xn, n ∈ �

) satisfies an LDP in E with rate function I , then it satisfies an LDP in X
with rate function

I ′(x) =

{

I(x) if x ∈ E
∞ otherwise.

ii. If (Xn, n ∈ �
) satisfies an LDP in X with good rate function I then it satisfies an LDP in

E with the same rate function I .
[Need: abstract large deviations]

Q 5 (Restricted contraction principle). Suppose that Xn satisfies a large deviations prin-
ciple in some Hausdorff space X with good rate function I , and let f : X → Y be a map to
another Hausdorff space Y . Suppose there exists an open neighbourhood E of the effective do-
main of I , such that f is continuous on Ē . Show that f(Xn) satisfies a large deviations principle
in Y with good rate function J(y) = infx:f(x)=y I(x). [Need: contraction principle]



Q 6 (Moderate Deviations). Let X be a real-valued random variable, with log moment
generating function Λ(θ) = log � eθX finite in a neighbourhood of the origin. Let Xn be the
average of n independent copies of X . Show that for any β ∈ (0, 1),

1

nβ
log �

(

n(1−β)/2(Xn − µ) ∈ B
)

≈ − inf
x∈B

1
2x2/σ2

where µ = � X and σ2 = VarX > 0, and the approximation means that the appropriate large
deviations upper and lower bounds apply. Interpret this result, in light of Cramér’s Theorem
and the Central Limit Theorem. [Need: Cramér]
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These questions test your understanding of the course material.

Q 7 (Definition of queue size). State Lindley’s recursion, for a queue with constant service
rate C and infinite buffer, fed by a random arrival process A. Let R−T

0 (r) be the queue size at
time 0, subject to the boundary condition that the queue size at time −T is r. Show that

R−T
0 (r) = max

0≤s≤T

[

A(−s, 0] − Cs
]

∨ (r + A(−T, 0] − CT ).

Deduce that, if A(−t, 0]/t → µ almost surely as t → ∞ for some µ < C, then almost surely

lim
T→∞

R−T
0 (r) = sup

t≥0
A(−t, 0] − Ct for all r.

This shows that we could just as well take any value for the ‘queue size at time −∞’—it makes
no difference to the queue size at time 0. [Need: Lindley’s recursion]

Q 8 (Rate functions). Calculate the cumulant generating function, and its convex conjugate,
for each of the following.
i. X ∼ Bernoulli(p),
ii. X ∼ Binomial(n, p),
iii. X ∼ Poisson(λ),
iv. X ∼ Exponential(λ),
v. X ∼ Geometric(ρ),
vi. X ∼ Normal(µ, σ2),
vii. X ∼ Cauchy, with density f(x) = π−1(1 + x2)−1, x ∈ � .
[Need: Cramér]

Q 9 (Extended LDP for simple queue).

i. Let A be a random stationary arrival process, and define

Λt(θ) =
1

t
log � eθA(−t,0] .

Suppose that the limit
Λ(θ) = lim

t→∞
Λt(θ)

exists in � ∪{∞} for each θ ∈ � , and that it is essentially smooth, finite in a neighbourhood
of θ = 0, and lower-semicontinuous. State a large deviations principle for L−1A(−L, 0].

ii. Consider a queue fed by A. Suppose the queue has infinite buffer, and constant service rate
C > � X1 . Let Q be the queue size at time 0. State and prove a large deviations principle
for L−1Q.

[Need: Cramér, LDP for a simple queue]

Q 10 (Example arrival processes). In the setting of Question 9, verify the conditions and
find the rate function for queue size, for the following arrival processes.
i. (At, t ∈ � ) is a two-state Markov chain, representing a traffic source which produces an

amount of work h in each timestep while in the on state, and no work while in the off state,
and which flips from on to off with probability p, and from off to on with probability q.

ii. (At, t ∈ � ) is a stationary autoregressive process of degree 1, that is, At = µ + Xt where

Xt = αXt−1 + (1 − α2)εt

where |α| < 1 and the εt are independent normal random variables with mean 0 and variance
σ2. Hint: The marginal distribution of Xt is N(0, σ2).

[Need: Question 9]



Q 11. Let (XN/N, N ∈ �
) satisfy a large deviations principle in � with convex rate function

I . Let α be a positive real number. Show that (XbαNc/N, N ∈ �
) satisfies a large deviations

principle in � with rate function J(x) = αI(x/α). Hint: recall the proof of Cramér’s theorem.
[Need: abstract large deviations]

Q 12 (Empirical distributions). A discrete-time Markov chain (Xt) on the states {1, 2, 3, 4}
moves according to the transition matrix









1 0 0 0
1 − p p 0 0
1 − q 0 q 0

0 r 1 − r 0









and X0 = 4. Given that the empirical distribution of X1, . . . , Xn on {1, 2, 3} satisfies a large
deviations principle as n → ∞, write down (without proof) what you expect its rate function
to be. For what choices of p, q and r is the rate function good? convex? [Need: abstract large
deviations, Sanov’s theorem]

Q 13. Let A1, A2, . . . be normal random variables with mean µ and variance σ2. Let B be an
exponential random variable with mean 1/λ. Let C be a normal random variable with mean ν
and variance ρ2. Let all of these random variables be independent.
i. State, without proof, a large deviations principle for L−1B.
ii. Find a large deviations principle for L−1(A1 + · · · + AL).
iii. Find a large deviations principle for L−1(B + A1 + · · · + AL).
iv. Find a large deviations principle for L−1(C + A1 + · · · + AL).
v. Comment on your results.

State clearly any general results to which you appeal. [Need: Cramér, abstract large deviations]

Q 14 (Linear geodesics). A Brownian bridge is a Brownian motion over the interval [0, 1]
conditioned to be 0 at the right endpoint. An easy way to construct a Brownian bridge is to
take a standard Brownian motion B(t) and set X(t) = B(t) − tB(1). Then X is a Brownian
bridge. Its vertical span is

R = sup
t∈[0,1]

X(t) − inf
t∈[0,1]

X(t).

Find an LDP for R/
√

N . What is the most likely path to lead to a large value of R? [Need:
Schilder]

Q 15 (Underflow in queues fed by many flows).

i. Let q be the queue size function for a queue with infinite buffer size and finite service rate
C. Let Dµ be the space of discrete-time arrival processes with mean rate µ < C. Let

B =
{

a ∈ Dµ : q(a) > 0
}

.

Show that
B̄ =

⋃

t>0

{

a ∈ Dµ : a(−t, 0] ≥ Ct
}

.

ii. Suppose that AL is the average of L independent copies of some stationary random arrival
process, with mean rate µ, and that it satisfies the conditions of the many-flows sample
path LDP. Show that

lim sup
L→∞

1

L
log � (B) ≤ inf

t>0
sup
θ∈ �

θCt − Λt(θ) ≤ sup
θ∈ �

θC − Λ1(θ) < 0

where Λt(θ) = log � eθA(−t,0] .

This shows that it is rare for the queue to be non-empty. [Need: many flows limit]

Q 16 (Duality of convex conjugate). Let X be a real-valued random variable, and let
Λ(θ) = log � eθX . Suppose that Λ is finite in a neighbourhood of the origin. Show that
(Λ∗)∗ = Λ. [Need: Varadhan’s Theorem. Although this can be proved directly, for any convex
lower-semicontinuous function Λ.]


