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LARGE DEVIATIONS AND QUEUES

Attempt THREE questions.

There are four questions in total.

The questions carry equal weight.

While rigorous answers are preferred, heuristic answers will still gain partial credit.

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.
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1 Let (Xn, n ∈ N) satisfy a large deviations principle in some space X with good
rate function I. Let f be a bounded continuous function X → R.

(a) Let C1, . . . , Cm be closed subsets of X with
⋃

i Ci = X . Prove that

lim sup
n→∞

1
n

log Eenf(Xn) 6 max
16i6m

{
sup
x∈Ci

f(x)− inf
x∈Ci

I(x)
}

.

(b) Let f(X ) be contained in the interval [a, b]. Pick any ε > 0 and define the
closed intervals

Di = [a + (i− 1)ε, a + iε], i = 1, . . . , d(b− a)/εe.

Let Ci = f−1(Di). Using your answer to part (a), or otherwise, prove that

lim sup
n→∞

1
n

log Eenf(Xn) 6 sup
x∈X

[
f(x)− I(x) + ε

]
.

(c) Pick any x̂ ∈ X and any ε > 0. Define the open interval

D = (f(x̂)− ε, f(x̂) + ε).

Let B = f−1(D). Using this set, or otherwise, prove that

lim inf
n→∞

1
n

log Eenf(Xn) > f(x̂)− I(x̂)− ε.

(d) Deduce that

lim
n→∞

1
n

log Eenf(Xn) = sup
x∈X

[
f(x)− I(x)

]
.
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2 A sequence of random variables (Xn, n ∈ N) taking values in a metric space X is
said to have Hurstiness H ∈ (0, 1) if the following three conditions are satisfied:

• (Xn, n ∈ N) satisfies a large deviations principle with good rate function I at
speed n2(1−H);

• there is some x̂ ∈ X such that 0 < I(x̂) < ∞;

• there is some µ ∈ X such that I(x) = 0 only if x = µ.

Suppose (Xn, n ∈ N) has Hurstiness H. Let G > H, G ∈ (0, 1), and define the
good rate function.

I ′(x) =
{

0 if I(x) = 0
∞ otherwise.

(a) Prove that for any closed set C

lim sup
n→∞

1
n2(1−G)

log P(Xn ∈ C) 6 − inf
x∈C

I ′(x).

(b) Using your answer to (a), or otherwise, show that if D is an open set containing
µ then

P(Xn 6∈ D) → 0.

Hence (or otherwise) show that for any open set E

lim inf
n→∞

1
n2(1−G)

log P(Xn ∈ E) > − inf
x∈E

I ′(x).

(c) Suppose that (Xn, n ∈ N) has Hurstiness H, that (Yn, n ∈ N) has Hurstiness G,
that Xn is independent of Yn, and that both take values in R. Show that (Xn+Yn, n ∈ N)
has Hurstiness equal to the greater of H and G.

Note. You should mention any general results you use, but you need not state them
formally. Recall that (Xn, n ∈ N) is said to satisfy an LDP with rate function I and speed
n2(1−H) if for all measurable sets B ⊂ X

− inf
x∈B◦

I(x) 6 lim inf
n→∞

1
n2(1−H)

log P(Xn ∈ B)

6 lim sup
n→∞

1
n2(1−H)

log P(Xn ∈ B) 6 − inf
x∈B̄

I(x) .
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3 Packets arrive at an Internet router as a Poisson process of rate λ packets per
second. Each packet has a payload; payload sizes are independent of each other and of
the arrival process, and have an exponential distribution with mean 1 kilobyte.

The router maintains two parallel queues, a ‘payload queue’ and a ‘header queue’.
When a packet arrives, the payload is stored in the former, and a packet header is stored
in the latter. Packets are served in the order they arrive. The payload queue is served at
constant rate C kilobytes per second, and when the entire payload of a packet has been
served then that packet’s header is removed from the header queue. Assume C > λ.

Both queues have finite space. The payload queue has space for 1000 kilobytes;
the header queue has space for 1000 headers. As a queueing theorist, you are called in to
advise on whether these are sensible choices.

(a) Let Q be the number of packet headers in the header queue. With reference
to an M/M/1 queue (or otherwise), estimate the probability that Q > q. (For modelling
purposes, you can treat both queues as having infinite space.)

(b) The payload queue may be modelled by a discrete-time queue, with timeslots
of length δ, in which the number of packets arriving in each timeslot is a Poisson random
variable with mean δλ, and the service offered in that timeslot is Cδ. Let Rδ be the amount
of work in this discrete-time queue. Estimate the probability that Rδ > r. (Again, for
modelling purposes, you can treat both queues as having infinite space.)

(c) Which queue is more likely to overflow? Give an intuitive explanation for your
answer.

Hint. If N is a Poisson random variable with mean λ then EtN = eλ(t−1). If X is
an exponential random variable with mean λ−1 then EeθX = λ/(λ− θ).
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4 Consider a queue operating in continuous time, with constant service rate C and
finite buffer B, with arrival process a ∈ Cµ. It is known that if µ < C then the queue size
at time 0 may be written as

q̄(a) = sup
t>0

{(
sup

06s6t
x(−s, 0]

)
∧

(
B + inf

06s6t
x(−s, 0]

)}
where x(−s, 0] = a(−s, 0]−Cs and x∧ y = min(x, y). When B = ∞, denote this function
by q. It is also known that q̄ and q are continuous on (Cµ, ‖ · ‖).

Suppose that (AL, L ∈ N) satisfies a large deviations principle in (Cµ, ‖ · ‖) with
good rate function

I(a) =
{ ∫ 0

−∞ Λ∗(ȧs) ds if a is absolutely continuous
∞ otherwise

for some strictly convex rate function Λ∗ with Λ∗(µ) = 0.

(a) Write down a large deviations principle for q(AL); let it have rate function J .
Also write down a large deviations principle for q̄(AL); let it have rate function J̄ .

(b) Show that q̄(a) 6 q(a). Hence (or otherwise) show that

J̄(x) > inf
y>x

J(y).

(c) Show that J is increasing. Deduce that J̄(x) > J(x).

(d) Let x 6 B. Show that J̄(x) 6 J(x). Hint. Let â be the most likely path to
attain q(a) = x. What is q̄(â)?

(e) Deduce that q̄(AL) satisfies a large deviations principle with good rate function

J̄(x) =
{

J(x) if x 6 B
∞ otherwise.

Note. You may assume standard results about queues with infinite buffers.
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