

## MATHEMATICAL TRIPOS Part III

Wednesday 2 June, 2004 1.30 to 3.30

## PAPER 31

## LARGE DEVIATIONS AND QUEUES

Attempt **THREE** questions.

There are four questions in total.

The questions carry equal weight.

 $While\ rigorous\ answers\ are\ preferred,\ heuristic\ answers\ will\ still\ gain\ partial\ credit.$ 

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.



- 1 Let  $(X_n, n \in \mathbb{N})$  satisfy a large deviations principle in some space  $\mathcal{X}$  with good rate function I. Let f be a bounded continuous function  $\mathcal{X} \to \mathbb{R}$ .
  - (a) Let  $C_1, \ldots, C_m$  be closed subsets of  $\mathcal{X}$  with  $\bigcup_i C_i = \mathcal{X}$ . Prove that

$$\limsup_{n \to \infty} \frac{1}{n} \log \mathbb{E}e^{nf(X_n)} \leqslant \max_{1 \leqslant i \leqslant m} \Big\{ \sup_{x \in C_i} f(x) - \inf_{x \in C_i} I(x) \Big\}.$$

(b) Let  $f(\mathcal{X})$  be contained in the interval [a,b]. Pick any  $\varepsilon>0$  and define the closed intervals

$$D_i = [a + (i-1)\varepsilon, a + i\varepsilon], \quad i = 1, \dots, \lceil (b-a)/\varepsilon \rceil.$$

Let  $C_i = f^{-1}(D_i)$ . Using your answer to part (a), or otherwise, prove that

$$\limsup_{n \to \infty} \frac{1}{n} \log \mathbb{E}e^{nf(X_n)} \leqslant \sup_{x \in \mathcal{X}} \Big[ f(x) - I(x) + \varepsilon \Big].$$

(c) Pick any  $\hat{x} \in \mathcal{X}$  and any  $\varepsilon > 0$ . Define the open interval

$$D = (f(\hat{x}) - \varepsilon, f(\hat{x}) + \varepsilon).$$

Let  $B = f^{-1}(D)$ . Using this set, or otherwise, prove that

$$\liminf_{n \to \infty} \frac{1}{n} \log \mathbb{E}e^{nf(X_n)} \geqslant f(\hat{x}) - I(\hat{x}) - \varepsilon.$$

(d) Deduce that

$$\lim_{n \to \infty} \frac{1}{n} \log \mathbb{E}e^{nf(X_n)} = \sup_{x \in \mathcal{X}} \Big[ f(x) - I(x) \Big].$$



- A sequence of random variables  $(X_n, n \in \mathbb{N})$  taking values in a metric space  $\mathcal{X}$  is said to have  $Hurstiness H \in (0,1)$  if the following three conditions are satisfied:
  - $(X_n, n \in \mathbb{N})$  satisfies a large deviations principle with good rate function I at speed  $n^{2(1-H)}$ ;
  - there is some  $\hat{x} \in \mathcal{X}$  such that  $0 < I(\hat{x}) < \infty$ ;
  - there is some  $\mu \in \mathcal{X}$  such that I(x) = 0 only if  $x = \mu$ .

Suppose  $(X_n, n \in \mathbb{N})$  has Hurstiness H. Let G > H,  $G \in (0,1)$ , and define the good rate function.

$$I'(x) = \begin{cases} 0 & \text{if } I(x) = 0\\ \infty & \text{otherwise.} \end{cases}$$

(a) Prove that for any closed set C

$$\limsup_{n \to \infty} \frac{1}{n^{2(1-G)}} \log \mathbb{P}(X_n \in C) \leqslant -\inf_{x \in C} I'(x).$$

(b) Using your answer to (a), or otherwise, show that if D is an open set containing  $\mu$  then

$$\mathbb{P}(X_n \not\in D) \to 0.$$

Hence (or otherwise) show that for any open set E

$$\liminf_{n \to \infty} \frac{1}{n^{2(1-G)}} \log \mathbb{P}(X_n \in E) \geqslant -\inf_{x \in E} I'(x).$$

(c) Suppose that  $(X_n, n \in \mathbb{N})$  has Hurstiness H, that  $(Y_n, n \in \mathbb{N})$  has Hurstiness G, that  $X_n$  is independent of  $Y_n$ , and that both take values in  $\mathbb{R}$ . Show that  $(X_n + Y_n, n \in \mathbb{N})$  has Hurstiness equal to the greater of H and G.

Note. You should mention any general results you use, but you need not state them formally. Recall that  $(X_n, n \in \mathbb{N})$  is said to satisfy an LDP with rate function I and speed  $n^{2(1-H)}$  if for all measurable sets  $B \subset \mathcal{X}$ 

$$-\inf_{x \in B^{\circ}} I(x) \leqslant \liminf_{n \to \infty} \frac{1}{n^{2(1-H)}} \log \mathbb{P}(X_n \in B)$$
  
$$\leqslant \limsup_{n \to \infty} \frac{1}{n^{2(1-H)}} \log \mathbb{P}(X_n \in B) \leqslant -\inf_{x \in \bar{B}} I(x).$$



**3** Packets arrive at an Internet router as a Poisson process of rate  $\lambda$  packets per second. Each packet has a payload; payload sizes are independent of each other and of the arrival process, and have an exponential distribution with mean 1 kilobyte.

The router maintains two parallel queues, a 'payload queue' and a 'header queue'. When a packet arrives, the payload is stored in the former, and a packet header is stored in the latter. Packets are served in the order they arrive. The payload queue is served at constant rate C kilobytes per second, and when the entire payload of a packet has been served then that packet's header is removed from the header queue. Assume  $C > \lambda$ .

Both queues have finite space. The payload queue has space for 1000 kilobytes; the header queue has space for 1000 headers. As a queueing theorist, you are called in to advise on whether these are sensible choices.

- (a) Let Q be the number of packet headers in the header queue. With reference to an M/M/1 queue (or otherwise), estimate the probability that  $Q \ge q$ . (For modelling purposes, you can treat both queues as having infinite space.)
- (b) The payload queue may be modelled by a discrete-time queue, with timeslots of length  $\delta$ , in which the number of packets arriving in each timeslot is a Poisson random variable with mean  $\delta\lambda$ , and the service offered in that timeslot is  $C\delta$ . Let  $R_{\delta}$  be the amount of work in this discrete-time queue. Estimate the probability that  $R_{\delta} \geqslant r$ . (Again, for modelling purposes, you can treat both queues as having infinite space.)
- (c) Which queue is more likely to overflow? Give an intuitive explanation for your answer.

Hint. If N is a Poisson random variable with mean  $\lambda$  then  $\mathbb{E}t^N = e^{\lambda(t-1)}$ . If X is an exponential random variable with mean  $\lambda^{-1}$  then  $\mathbb{E}e^{\theta X} = \lambda/(\lambda - \theta)$ .



4 Consider a queue operating in continuous time, with constant service rate C and finite buffer B, with arrival process  $a \in \mathcal{C}_{\mu}$ . It is known that if  $\mu < C$  then the queue size at time 0 may be written as

$$\bar{q}(a) = \sup_{t \geqslant 0} \Bigl\{ \Bigl( \sup_{0 \leqslant s \leqslant t} x(-s,0] \Bigr) \wedge \Bigl( B + \inf_{0 \leqslant s \leqslant t} x(-s,0] \Bigr) \Bigr\}$$

where x(-s,0] = a(-s,0] - Cs and  $x \wedge y = \min(x,y)$ . When  $B = \infty$ , denote this function by q. It is also known that  $\bar{q}$  and q are continuous on  $(\mathcal{C}_{\mu}, \|\cdot\|)$ .

Suppose that  $(A^L, L \in \mathbb{N})$  satisfies a large deviations principle in  $(\mathcal{C}_{\mu}, \|\cdot\|)$  with good rate function

$$I(a) = \begin{cases} \int_{-\infty}^{0} \Lambda^{*}(\dot{a}_{s}) \, ds & \text{if } a \text{ is absolutely continuous} \\ \infty & \text{otherwise} \end{cases}$$

for some strictly convex rate function  $\Lambda^*$  with  $\Lambda^*(\mu) = 0$ .

- (a) Write down a large deviations principle for  $q(A^L)$ ; let it have rate function J. Also write down a large deviations principle for  $\bar{q}(A^L)$ ; let it have rate function  $\bar{J}$ .
  - (b) Show that  $\bar{q}(a) \leq q(a)$ . Hence (or otherwise) show that

$$\bar{J}(x) \geqslant \inf_{y \geqslant x} J(y).$$

- (c) Show that J is increasing. Deduce that  $\bar{J}(x) \geqslant J(x)$ .
- (d) Let  $x \leq B$ . Show that  $\bar{J}(x) \leq J(x)$ . Hint. Let  $\hat{a}$  be the most likely path to attain q(a) = x. What is  $\bar{q}(\hat{a})$ ?
  - (e) Deduce that  $\bar{q}(A^L)$  satisfies a large deviations principle with good rate function

$$\bar{J}(x) = \begin{cases} J(x) & \text{if } x \leq B \\ \infty & \text{otherwise.} \end{cases}$$

Note. You may assume standard results about queues with infinite buffers.