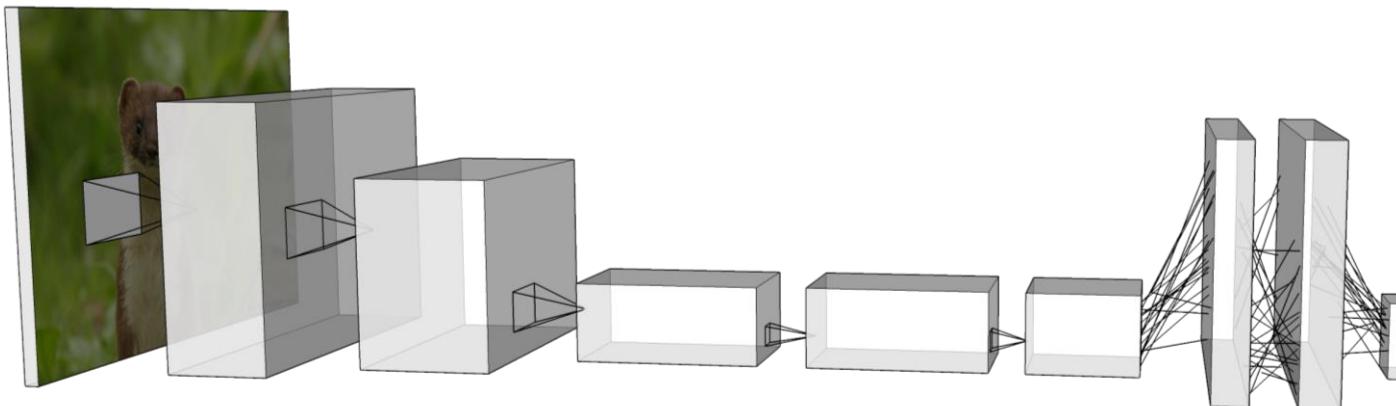


mathsml.group.cam.ac.uk

An introduction to backpropagation

Damon Wischik
Computer Laboratory

A neural network for classifying images



$$\textcolor{teal}{x} \in [0,1]^{224 \times 224 \times 3}$$

input image,
3 colour
channels

$$F_{\textcolor{teal}{w}, \textcolor{teal}{b}}(\textcolor{teal}{x}) = \xi$$

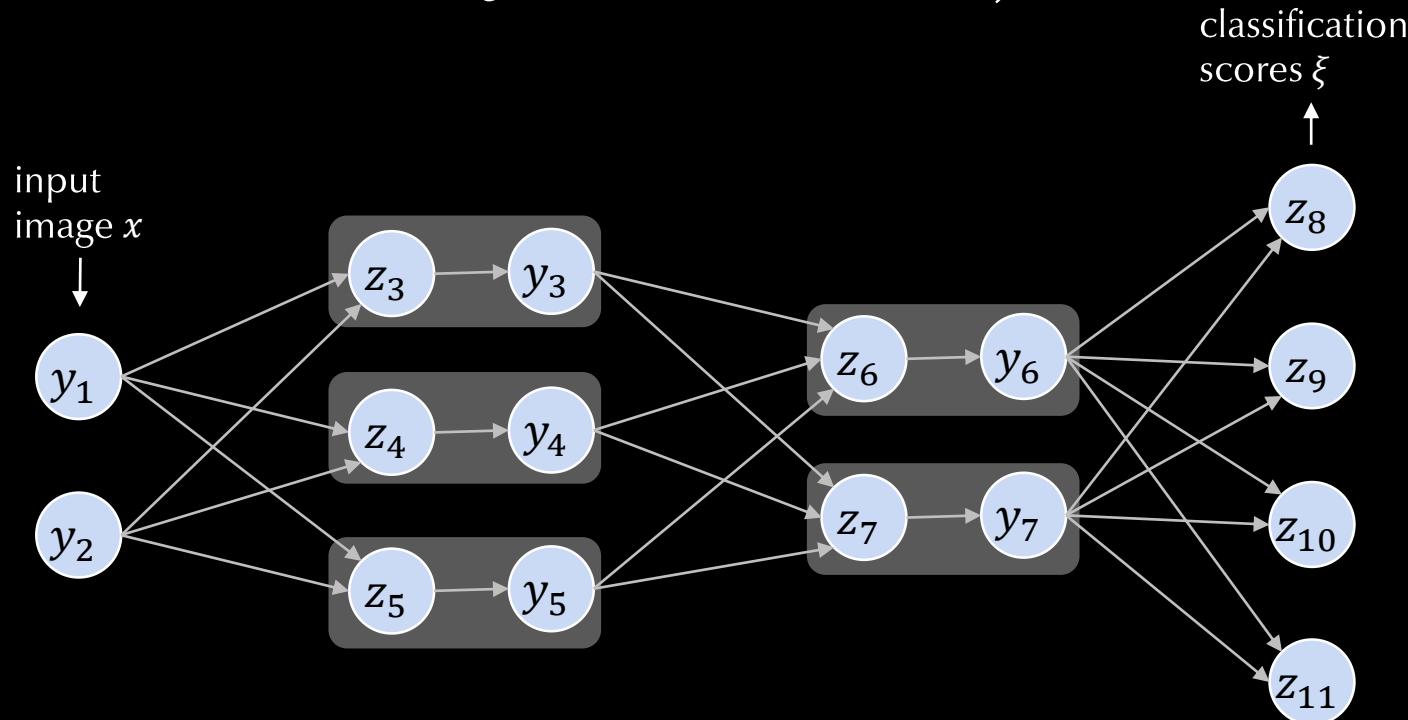
neural network, with
138 million
parameters w , b

$$\xi \in \mathbb{R}^{1000}$$

classification scores,
interpreted as

$$\mathbb{P}(\text{stoat}) = \frac{e^{\xi_{\text{stoat}}}}{\sum_r e^{\xi_r}}$$

The neural network function $\xi = F_{\mathbf{w}, \mathbf{b}}(\mathbf{x})$



The network is a directed acyclic graph.
Input nodes and output nodes store one value;
intermediate hidden nodes store two values.

$$\text{input nodes } n: \quad y_n = \mathbf{x}_{j(n)}$$

$$\begin{aligned} \text{hidden nodes } n: \quad z_n &= \mathbf{b}_n + \sum_{m: m \rightarrow n} y_m \mathbf{w}_{m,n} \\ y_n &= g(z_n) = \max(z_n, 0) \end{aligned}$$

$$\text{output readout } r: \quad \xi_r = z_{n(r)}$$



The objective function

Given a dataset of images x^1, x^2, \dots ,
annotated with their actual classification l^1, l^2, \dots

we want to find parameters w and b to minimize

$$E(w, b) = -\log \text{lik}(w, b \mid x, l) = -\sum_i \log \text{lik}(w, b \mid x^i, l^i)$$

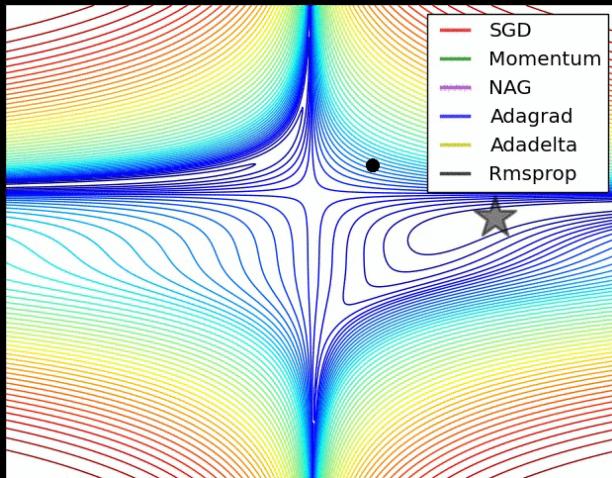
where the log likelihood is obtained from the model

$$\mathbb{P}(\text{class of image } i = l) = \frac{e^{\xi_l^i}}{\sum_r e^{\xi_r^i}}, \quad \xi^i = F_{w, b}(x^i)$$

Training dataset

ImageNet: a large-scale hierarchical image database, Deng, Dong, Socher, Li, Li, Fei-Fei, 2009.
1.3 million images, each annotated with one of 1000 labels

Training is by gradient descent and hyperparameter tuning



Objective: minimize over $\theta = (\mathbf{w}, \mathbf{b})$ the loss function

$$E = \sum_{\text{images } i} E_1(\mathbf{w}, \mathbf{b} | \mathbf{x}^i, \mathbf{l}^i)$$

The basic method is iterative gradient descent,

$$\theta \leftarrow \theta - \delta \frac{\partial E}{\partial \theta}$$

with endless variations and lots of babysitting.

"Usually, there are lots and lots of equally good minima."

Karpathy

"The batch size was set to 256, momentum to 0.9. The learning rate was initially set to 10^{-2} and then decreased by a factor of 10 ... the learning rate was decreased 3 times. ... The initialisation of the network weights is important."

Simonyan+Zisserman

"During training, monitor the loss, the training/validation accuracy, and if you're feeling fancier, the magnitude of updates in relation to parameter values (it should be $\sim 10^{-3}$) ... Decay your learning rate over the period of the training. ... Search for good hyperparameters with random search (not grid search)."

CS231n lecture notes

Gradient descent animation: Andrej Karpathy, for CS231n at Stanford

Practical advice: CS231n, <http://cs231n.github.io/neural-networks-3/>

Practical recommendations for gradient-based training of deep architectures, Bengio, 2012

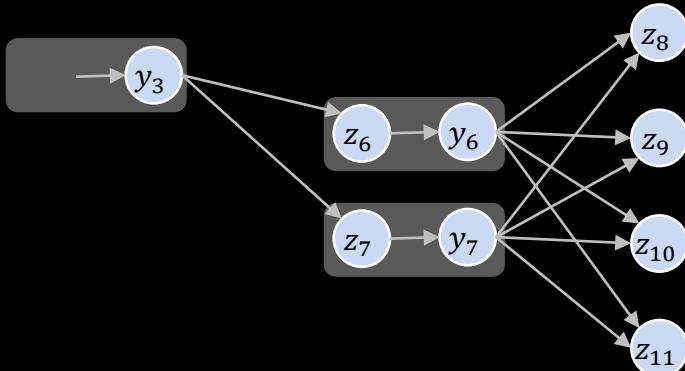
Backpropagation

Neural network function:

$$z_n = b_n + \sum_{m:m \rightarrow n} y_m w_{m n}$$
$$y_n = g(z_n) = \max(z_n, 0)$$

The objective is to minimize:

$$E = \sum_{\text{images } i} E_1(w, b \mid x^i, l^i)$$



Backpropagation

Neural network function:

$$z_n = b_n + \sum_{m:m \rightarrow n} y_m w_{m,n}$$

$$y_n = g(z_n) = \max(z_n, 0)$$

The objective is to minimize:

$$E = \sum_{\text{images } i} E_i(w, b | x^i, l^i)$$

For a single training example i :

For n in the output layer:

$$\frac{\partial E_i}{\partial y_n} = \text{easy to derive}$$

For other nodes n :

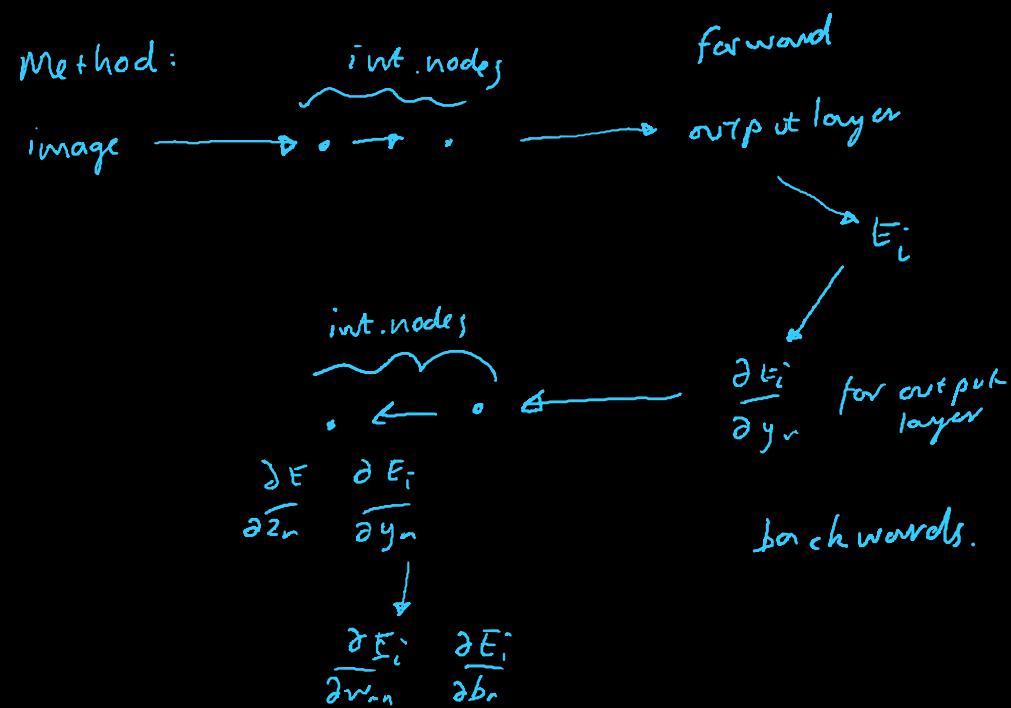
$$\frac{\partial E_i}{\partial y_n} = \sum_{l:n \rightarrow l} \frac{\partial E_i}{\partial z_l} \frac{\partial z_l}{\partial y_n} w_{nl}$$

$$\frac{\partial E_i}{\partial z_n} = \frac{\partial E_i}{\partial y_n} \frac{\partial y_n}{\partial z_n} g'(z_n)$$

For the parameters:

$$\frac{\partial E_i}{\partial w_{mn}} = \frac{\partial E_i}{\partial z_n} y_m$$

$$\frac{\partial E_i}{\partial b_n} = \frac{\partial E_i}{\partial z_n}$$



```

1  g = tf.Graph()
2  with g.as_default():
3      # inputs
4      x = tf.placeholder(tf.float32, shape=[BATCH_SIZE, 784], name='x')
5      y = tf.placeholder(tf.float32, shape=[BATCH_SIZE, 10], name='y')
6
7      # reshape a batch of inputs to be of dimension [28,28,1] 28=width, 28=height, 1=channels
8      x0 = tf.reshape(x, [-1, 28,28,1])
9
10     # convolve with a 5x5x1x32 matrix (gives 32 features for every 5x5x1 tile), then add constant
11     # then apply the relu function elementwise
12     # then pool over 2x2x1 blocks, giving a 14x14x32 image
13     W_conv1 = tf.Variable(tf.truncated_normal(mean=0.0, stddev=0.1, shape=[5,5,1, 32]), name='w_conv1')
14     b_conv1 = tf.Variable(tf.constant(0.1, shape=[32]), name='b_conv1')
15     z1 = tf.nn.conv2d(x0, W_conv1, strides=[1,1,1,1], padding='SAME') + b_conv1
16     y1 = tf.nn.relu(z1)
17     h1 = tf.nn.max_pool(y1, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME', name='h1')
18
19     # ...
20
21     # another fully-connected layer, giving an output of size 10
22     W_cls = tf.Variable(tf.truncated_normal(mean=0.0, stddev=0.1, shape=[1024,10]), name='w_cls')
23     b_cls = tf.Variable(tf.constant(0.1, shape=[10]), name='b_cls')
24     y4 = tf.matmul(z4, W_cls) + b_cls
25
26     # define the loss function and accuracy metrics
27     loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=y4), name='loss')
28     is_correct = tf.equal(tf.argmax(y,1), tf.argmax(y4,1))
29     accuracy = tf.reduce_mean(tf.cast(is_correct, tf.float32))
30
31     # add necessary computation nodes for gradient descent
32     train_step = tf.train.AdamOptimizer(1e-4).minimize(loss)
33
34
35
36 with tf.Session(graph=g) as sess:
37     sess.run(tf.global_variables_initializer())
38     for i in range(20000):
39         batch = mnist.train.next_batch(50)
40         train_data = {x: batch[0], y: batch[1], keep_prob: 0.5}
41         test_data = {x: mnist.validation.images, y: mnist.validation.labels, keep_prob: 1}
42         sess.run(train_step, train_data)
43         if i % 100 == 0:
44             print(i, "train", sess.run([loss, accuracy], train_data))
45             print(i, "test", sess.run([loss, accuracy], test_data))

```

Define the computation graph via code.

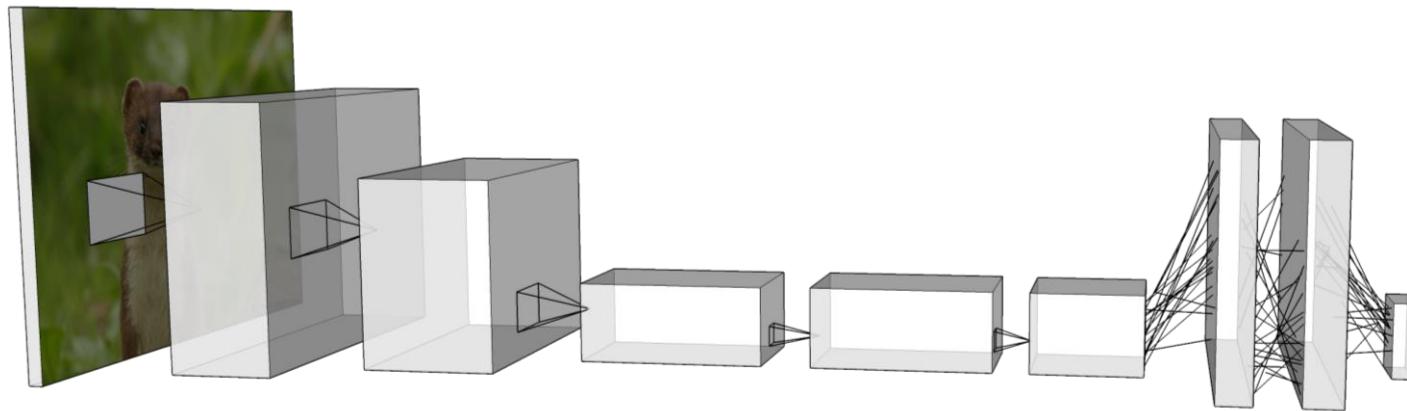
Use matrix/tensor syntax for repeated operations.

Include nodes that compute E , and other metrics for logging

automatically generate computation nodes for $\frac{\partial E}{\partial x}$ and specify the gradient descent method

run it, on CPU / GPU / cluster

“A structure primed for vision”



Re-use the parameters, by treating them as convolutions.

For pixel (i, j) in layer $L + 1$,

$$z_{i,j}^{L+1} = b^L + \sum_{i',j'} w_{i-i',j-j'}^L y_{i',j'}$$

Additionally, we can store multiple features f for each pixel,

$$z_{i,j,f}^{L+1} = b_f^L + \sum_{i',j',f'} w_{i-i',j-j',f',f}^L y_{i',j',f'}$$

Training works better if you “prime the structure” to suit your problem.

There are neural network architectures primed for

- vision (convolutional networks)
- time series / language (recurrent networks)
- dimension reduction (autoencoders, generative adversarial networks)
- branching processes
- relational reasoning

They can be mixed together, e.g. vision + time series = image captioning.

a dog is standing
in the snow with a
frisbee
logprob: -8.44

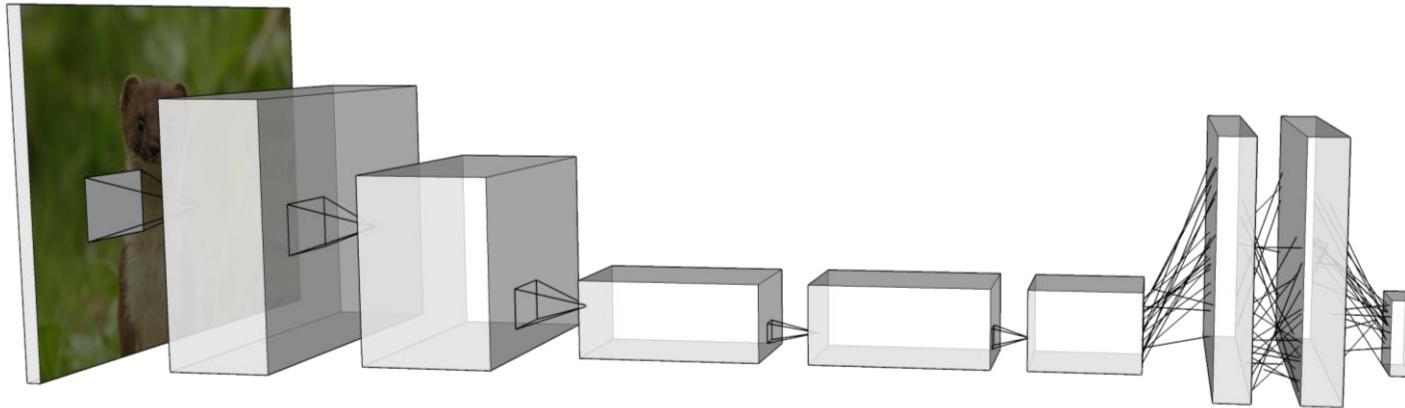
a bathroom with a
toilet and a sink
logprob: -6.23

a red double
decker bus driving
down a street
logprob: -6.18

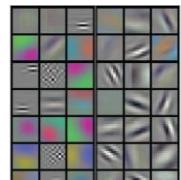
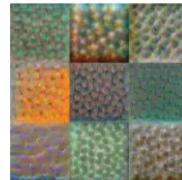
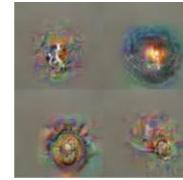
a cat sitting on a
window sill
looking out the
window
logprob: -7.69

*Q. How can a neural network
identify what's in a picture
if it doesn't understand the picture?*

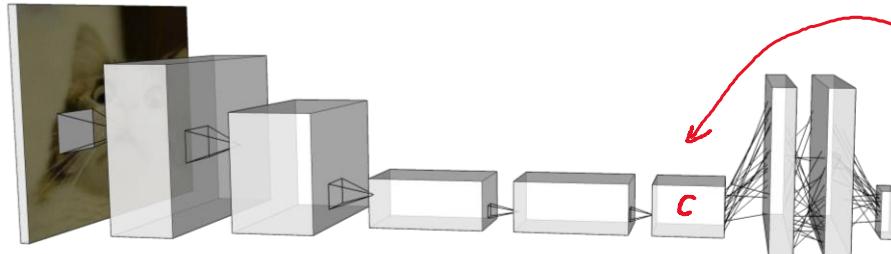
~~A. Ha ha, silly, there is no
understand, there is only
optimize.~~



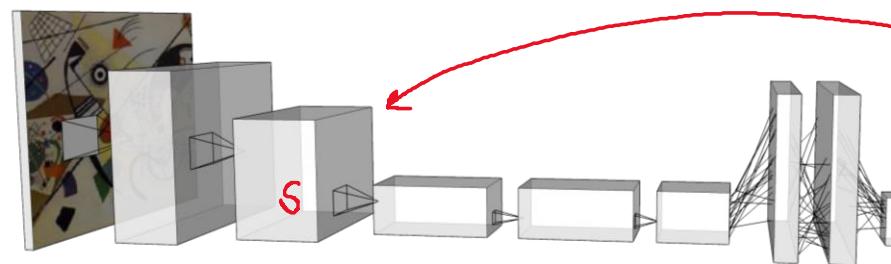
What patterns of input will maximally excite a node, at various depths in the network?



Load in a pre-trained network for image classification. Run it on two images:

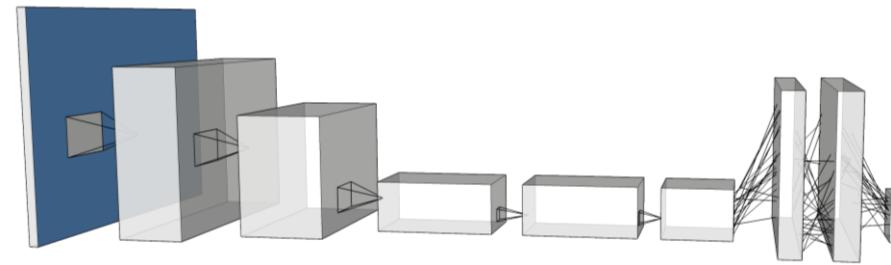


$c(\text{cat})$ = values in a deep layer



$s(\text{art})$ = feature \times feature correlation matrix at an early layer

Find the image p that minimizes $\|s(p) - s(\text{art})\| + \|c(p) - c(\text{cat})\|$



Cat art from <http://www.ostagram.ru>. *Transverse Line*, 1923, Wassily Kandinsky

A neural algorithm of artistic style (2015) by Gatys, Ecker, Bethge. <https://arxiv.org/abs/1508.06576>

TensorFlow code. <https://notebooks.azure.com/djw1005/libraries/mathsm1/html/style-transfer.ipynb>

Image produced by <https://turbo.deepart.io/>

Sample code at <https://notebooks.azure.com/djw1005/libraries/mathsm1/html/style-transfer.ipynb>

The only way to classify images well,
is to build a general-purpose visual
processing cortex.

That's what the neural network learnt.

Transfer learning

Use a network trained on one task to bootstrap a second task
(Useful if the second task is data-poor)

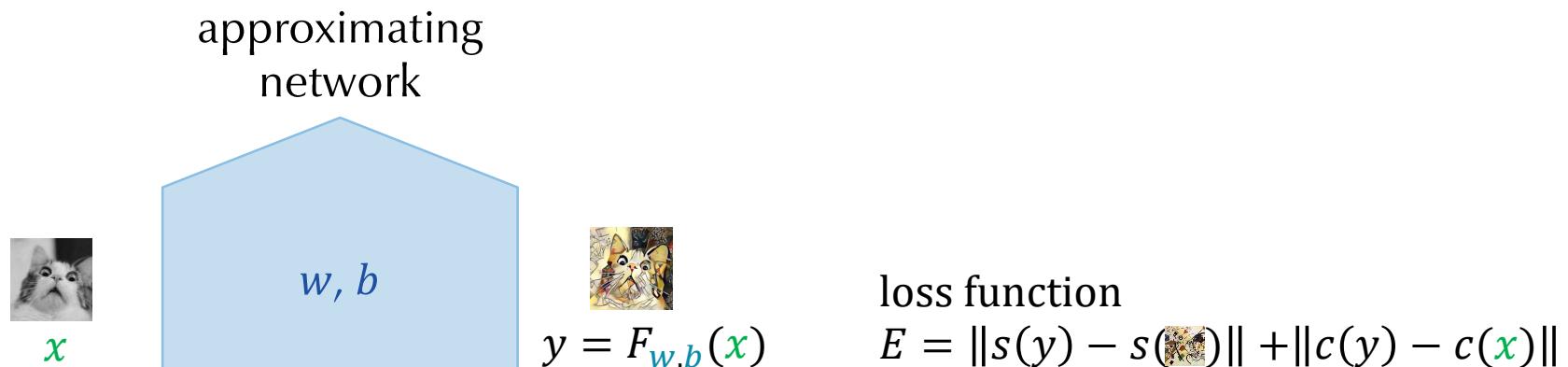
Multi-task training

Train a network with multiple simultaneous objectives
(Improves the performance on each objective)

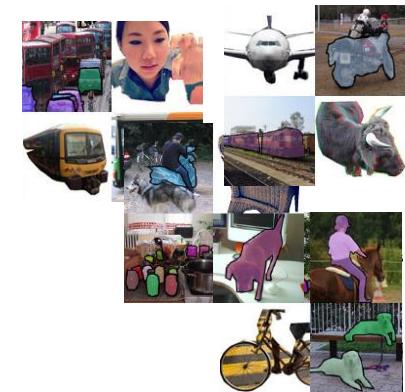
Dropout regularization

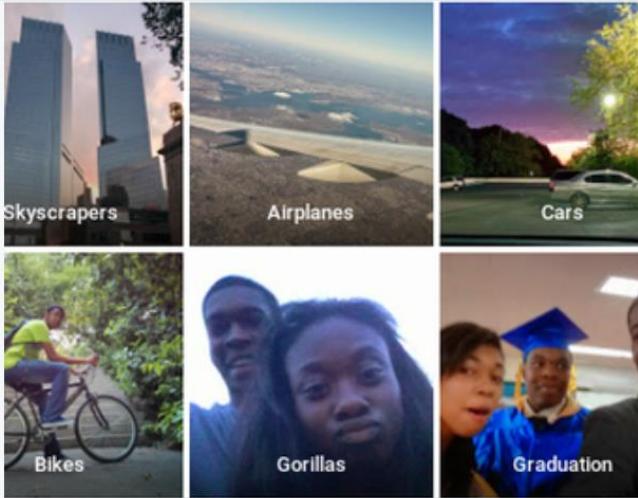
In each training iteration, randomly knock out half the nodes
(Improves ability to generalize)

*Running backpropagation for neural style transfer is slow.
To speed it up, can we fit an approximating function?*



1. Pick a style image.
2. Find a large dataset of everyday content images.
3. Train a feedforward network to learn style transfer, on this dataset.
4. Now, we have a fast approximate implementation of style transfer (on the domain of images similar to those in the dataset).





 Jacky Alciné
@jackyalcine

 Follow

Google Photos, y'all fucked up. My friend's not a gorilla.

2:22 AM - Jun 29, 2015

 224 3,182 2,024

 Jacky Alciné @jackyalcine Jun 29, 2015
Replying to @jackyalcine
Like I understand HOW this happens; the problem is moreso on the WHY.

This is how you determine someone's target market.

 ((Yonatan Zunger))
@yonatanzunger Follow

@jackyalcine Holy fuck. G+ CA here. No, this is not how you determine someone's target market. This is 100% Not OK.

4:07 AM - Jun 29, 2015

 14 47 124

Challenges

1. It's odd to train neural networks with objective functions.

They try to learn multi-purpose representations anyway.

And multi-purpose representations would be more useful for us, to save us from having to retrain for every new question.

2. The data's the thing.

Has the network learned the representations it needs to be able to extrapolate appropriately to new (counterfactual) situations?
How can we as data scientists check this?

3. Why is training so painfully slow, and such an art?

The human brain has roughly 10^{15} connections, and a human lifetime is roughly 2.5×10^9 seconds. What are all the parameters for, and how are they trained?