
mathsml.group.cam.ac.uk

𝑥 ∈ 0,1 224×224×3 𝐹𝑤,𝑏 𝑥 = 𝜉 𝜉 ∈ ℝ1000

𝑤 𝑏 ℙ stoat =
𝑒𝜉stoat

σ𝑟 𝑒
𝜉𝑟

𝜉 = 𝐹𝑤,𝑏(𝑥)

𝑦1

𝑦2

𝑧3

𝑧4

𝑧5

𝑦3

𝑦4

𝑦5

𝑧6

𝑧7

𝑦6

𝑦7

𝑧8

𝑧9

𝑧10

𝑧11

𝑥

𝜉

𝑛 𝑦𝑛 = 𝑥𝑗(𝑛)

𝑛 𝑧𝑛 = 𝑏𝑛 + σ𝑚∶𝑚→𝑛 𝑦𝑚𝑤𝑚𝑛

𝑦𝑛 = 𝑔 𝑧𝑛 = max(𝑧𝑛, 0)

𝑟 𝜉𝑟 = 𝑧𝑛(𝑟)

𝑥1 𝑥2

𝑙1 𝑙2

𝑤 𝑏

𝐸 𝑤, 𝑏 = − log lik 𝑤, 𝑏 𝑥, 𝑙) = −σ𝑖 log lik 𝑤, 𝑏 𝑥𝑖 , 𝑙𝑖)

ℙ class of image 𝑖 = 𝑙 =
𝑒𝜉𝑙

𝑖

σ𝑟 𝑒
𝜉𝑟
𝑖 , 𝜉𝑖 = 𝐹𝑤,𝑏(𝑥

𝑖)

𝜃 = (𝑤, 𝑏)

𝐸 = ෍

images 𝑖

𝐸1(𝑤, 𝑏|𝑥
𝑖 , 𝑙𝑖)

𝜃 ⟵ 𝜃 − 𝛿
𝜕𝐸

𝜕𝜃

𝑦3

𝑧6

𝑧7

𝑦6

𝑦7

𝑧8

𝑧9

𝑧10

𝑧11

Neural network function:

𝑧𝑛 = 𝑏𝑛 + ෍

𝑚∶𝑚→𝑛

𝑦𝑚𝑤𝑚𝑛

𝑦𝑛 = 𝑔 𝑧𝑛 = max(𝑧𝑛, 0)

𝐸 = ෍

images 𝑖

𝐸1 𝑤, 𝑏 𝑥𝑖 , 𝑙𝑖)

𝑦3

𝑧6

𝑧7

𝑦6

𝑦7

𝑧8

𝑧9

𝑧10

𝑧11

Neural network function:

𝑧𝑛 = 𝑏𝑛 + ෍

𝑚∶𝑚→𝑛

𝑦𝑚𝑤𝑚𝑛

𝑦𝑛 = 𝑔 𝑧𝑛 = max(𝑧𝑛, 0)

𝐸 = ෍

images 𝑖

𝐸1 𝑤, 𝑏 𝑥𝑖 , 𝑙𝑖)

https://notebooks.azure.com/djw1005/libraries/mathsml/html/mnist.ipynb

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

g = tf.Graph()
with g.as_default():

inputs
x = tf.placeholder(tf.float32, shape=[BATCH_SIZE, 784], name='x')
y = tf.placeholder(tf.float32, shape=[BATCH_SIZE, 10], name='y')

reshape a batch of inputs to be of dimension [28,28,1] 28=width, 28=height, 1=channels
x0 = tf.reshape(x, [-1, 28,28,1])

convolve with a 5x5x1x32 matrix (gives 32 features for every 5x5x1 tile), then add constant
then apply the relu function elementwise
then pool over 2x2x1 blocks, giving a 14x14x32 image
W_conv1 = tf.Variable(tf.truncated_normal(mean=0.0, stddev=0.1, shape=[5,5,1, 32]), name='w_conv1')
b_conv1 = tf.Variable(tf.constant(0.1, shape=[32]), name='b_conv1')
z1 = tf.nn.conv2d(x0, W_conv1, strides=[1,1,1,1], padding='SAME') + b_conv1
y1 = tf.nn.relu(z1)
h1 = tf.nn.max_pool(y1, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME', name='h1’)

...

another fully-connected layer, giving an output of size 10
W_cls = tf.Variable(tf.truncated_normal(mean=0.0, stddev=0.1, shape=[1024,10]), name='w_cls')
b_cls = tf.Variable(tf.constant(0.1, shape=[10]), name='b_cls')
y4 = tf.matmul(z4, W_cls) + b_cls

define the loss function and accuracy metrics
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=y4), name='loss’)
is_correct = tf.equal(tf.argmax(y,1), tf.argmax(y4,1))
accuracy = tf.reduce_mean(tf.cast(is_correct, tf.float32))

add necessary computation nodes for gradient descent
train_step = tf.train.AdamOptimizer(1e-4).minimize(loss)

with tf.Session(graph=g) as sess:
sess.run(tf.global_variables_initializer())
for i in range(20000):

batch = mnist.train.next_batch(50)
train_data = {x: batch[0], y: batch[1], keep_prob: 0.5}
test_data = {x: mnist.validation.images, y: mnist.validation.labels, keep_prob: 1}
sess.run(train_step, train_data)
if i % 100 == 0:

print(i, "train", sess.run([loss, accuracy], train_data))
print(i, "test", sess.run([loss, accuracy], test_data))

(𝑖, 𝑗) 𝐿 + 1

𝑧𝑖,𝑗
𝐿+1 = 𝑏𝐿 +෍

𝑖′,𝑗′

𝑤𝑖−𝑖′,𝑗−𝑗′
𝐿 𝑦𝑖′,𝑗′

𝑓

𝑧𝑖,𝑗,𝑓
𝐿+1 = 𝑏𝑓

𝐿 + ෍

𝑖′,𝑗′,𝑓′

𝑤𝑖−𝑖′,𝑗−𝑗′,𝑓′,𝑓
𝐿 𝑦𝑖′,𝑗′,𝑓′

•

•

•

•

•

logprob: -8.44

logprob: -6.23

logprob: -6.18

logprob: -7.69

https://notebooks.azure.com/djw1005/libraries/mathsml/html/style-transfer.ipynb

𝑐(∎) =

𝑠(∎) =
×

𝑝 𝑠 𝑝 − 𝑠(∎) + 𝑐 𝑝 − 𝑐(∎)

http://www.ostagram.ru/
https://arxiv.org/abs/1508.06576

https://turbo.deepart.io/

https://notebooks.azure.com/djw1005/libraries/mathsml/html/style-transfer.ipynb

loss function
𝐸 = 𝑠 𝑦 − 𝑠(∎) + 𝑐 𝑦 − 𝑐(𝑥)𝑥 𝑦 = 𝐹𝑤,𝑏(𝑥)

×

