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g = tf.Graph()
with g.as_default():

# inputs
x = tf.placeholder(tf.float32, shape=[BATCH_SIZE, 784], name='x')
y = tf.placeholder(tf.float32, shape=[BATCH_SIZE, 10], name='y')

# reshape a batch of inputs to be of dimension [28,28,1] 28=width, 28=height, 1=channels
x0 = tf.reshape(x, [-1, 28,28,1])

# convolve with a 5x5x1x32 matrix (gives 32 features for every 5x5x1 tile), then add constant
# then apply the relu function elementwise
# then pool over 2x2x1 blocks, giving a 14x14x32 image
W_conv1 = tf.Variable(tf.truncated_normal(mean=0.0, stddev=0.1, shape=[5,5,1, 32]), name='w_conv1')
b_conv1 = tf.Variable(tf.constant(0.1, shape=[32]), name='b_conv1')
z1 = tf.nn.conv2d(x0, W_conv1, strides=[1,1,1,1], padding='SAME') + b_conv1
y1 = tf.nn.relu(z1)
h1 = tf.nn.max_pool(y1, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME', name='h1’)

# ...

# another fully-connected layer, giving an output of size 10
W_cls = tf.Variable(tf.truncated_normal(mean=0.0, stddev=0.1, shape=[1024,10]), name='w_cls')
b_cls = tf.Variable(tf.constant(0.1, shape=[10]), name='b_cls')
y4 = tf.matmul(z4, W_cls) + b_cls

# define the loss function and accuracy metrics
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=y4), name='loss’)
is_correct = tf.equal(tf.argmax(y,1), tf.argmax(y4,1))
accuracy = tf.reduce_mean(tf.cast(is_correct, tf.float32))

# add necessary computation nodes for gradient descent
train_step = tf.train.AdamOptimizer(1e-4).minimize(loss)

with tf.Session(graph=g) as sess:
sess.run(tf.global_variables_initializer())
for i in range(20000):

batch = mnist.train.next_batch(50)
train_data = {x: batch[0], y: batch[1], keep_prob: 0.5}
test_data = {x: mnist.validation.images, y: mnist.validation.labels, keep_prob: 1}
sess.run(train_step, train_data)
if i % 100 == 0:

print(i, "train", sess.run([loss, accuracy], train_data))
print(i, "test", sess.run([loss, accuracy], test_data))
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https://notebooks.azure.com/djw1005/libraries/mathsml/html/style-transfer.ipynb

𝑐(∎) =

𝑠(∎) =
×

𝑝 𝑠 𝑝 − 𝑠(∎) + 𝑐 𝑝 − 𝑐(∎)

http://www.ostagram.ru/
https://arxiv.org/abs/1508.06576


https://turbo.deepart.io/

https://notebooks.azure.com/djw1005/libraries/mathsml/html/style-transfer.ipynb





loss function
𝐸 = 𝑠 𝑦 − 𝑠(∎) + 𝑐 𝑦 − 𝑐(𝑥)𝑥 𝑦 = 𝐹𝑤,𝑏(𝑥)
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