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Abstract—In the pursuit of both increased energy-efficiency,
as well as high-performance, architects are constructing in-
creasingly complex Systems-on-Chip with a variety of processor
cores and DMA controllers. This complexity makes software
implementation and optimization difficult, particularly when
multiple independent applications may be running concurrently
on such a heterogeneous platform. In order to take full ad-
vantage of the underlying system, increased visibility into the
interaction between the software and hardware is needed. This
paper proposes on-line and off-line fine-grained instrumentation
of SoC components in hardware (e.g. as part of the debug
& trace infrastructure) in order to enable improvements and
optimization for energy efficiency to be undertaken at higher
levels of abstraction, i.e. the programmer and runtime scheduler.
Energy counters are incorporated for each component that keep
track of energy use. These counters are indexed by customer

number tags, that are used to distinguish between the transactions
executed on any given component by client applications running
in a multitasking SoC environment. The contents of the counters
for each augmented component, correlated with the appropriate
consumer-numbers, are extracted from a running SoC under test
via existing debug & trace interfaces like GDBserver, JTAG and
various proprietary trace probes. In addition, auxiliary processing
on-chip computes local and global energy figures and offers them
through a 4-layer abstraction stack so that programmer-level fine-
grained energy measurement is made available. Both the O/S
scheduler and programmers can adapt their policies and coding
styles for their desired energy/performance tradeoff.

Keywords: Power monitoring, debug and trace, on-chip debug
support, energy-efficient computing, spEEDO.

I. INTRODUCTION

Power-efficient design of computer hardware and software
is very important: the Dark Silicon issue arising from the end
of Dennard Scaling means that further performance scaling
must be tied to energy efficiency improvements [1]. Many
significant efficiency improvements can only be achieved at
the higher levels of abstraction, such as in choice of data
structures. However, to enable programmers and O/S develop-
ers to optimize for efficiency, it is important to provide fine-
grained visibility into the interaction of software with hardware
components in the target system. This must be in the presence
of other, unrelated applications that may also be utilizing the
same H/W resources in a multitasking environment.

The extent to which run time and energy use are correlated
for many benchmarks was explored by Pallister [2]. As one
would expect, these are often correlated but not always. Hence

simply using execution time as a guide for energy saving does
not always work. Discrepancies arise from:

1) A complex CPU such as the the Cortex-A8 will
compute faster but use more total energy than a
simple 3-stage pipeline. (This is the motivation for
ARM’s Big.LITTLE).

2) Received DVFS wisdom teaches to run at a low
voltage and compute slowly to get a cubic energy
saving, but this may not apply to DRAM controllers
or other shared resources that will be turned on for
longer under this approach.

3) Turning on and using several cores at once and
finishing early typically also saves energy use in
shared caches.

4) Use of coprocessors and SIMD units by the compiler
may save energy in the large, but the compiler may
not know the number of loop iterations and energy
costs of data movement so automation of these deci-
sions is not optimum. The same goes for may other
compiler options [2] and garbage collection policies
[3].

5) Crosstalk between the application of interest, other
applications and peripherals cannot be deciphered and
masks actual effects.

Modern debug and trace solutions like ARMs Coresight
and UtraSoC’s UltraDebug are an important step towards
improving such visibility for processor cores and the system
as a whole. They achieve this at the expense of silicon area.
In the Dark Silicon era, where only a limited proportion of
on-chip resources can be activated at any time, we argue
that such non-computational uses for these abundant resources
can significantly improve energy visibility and hence power
efficiency.

Unfortunately, current methods for energy measurement
and feedback to programmers are very crude and limited:
power measurement APIs include only coarse-grained aspects
such as battery voltage or total circuit current. Our spEEDO
project proposes and investigates more precise, fine-grained
instrumentation (and control) over power/energy at multiple
levels of abstraction. The goal is to enable new energy opti-
mization schemes, and increase the effectiveness of existing
schemes by facilitating better coordination and collaboration
between the programmer, the OS/runtime developer, and the
hardware architecture. For software development, we provide
infrastructure that allows programmers to identify energy-



intensive regions in their code. Regions can then be selected for
optimization by various means, and the resultant effectiveness
of the different optimizations attempted can be quantified.

This paper proposes:

1) extending the SoC components with (energy/power/-
time) EPT registers that record loads incurred by their
various host/parent components and system activity
measurements provided by the on-chip debug support
infrastructure;

2) correlating these measurements with customer-
numbers that distinguish between the multiple appli-
cation contexts that might be utilizing the component,
so that the EPT for each component and each running
application can be distinguished in hardware;

3) and extending hardware debug watchpoint mecha-
nisms for finer-grain accounting within the work of
a given customer or flow of control.

Ultimately these results are exposed at the higher levels of
abstraction through a newly devised API for fine-grained
energy measurement.

II. RELATED WORK

Current methods of energy instrumentation and con-
trol: System operation can be monitored using software and or
hardware instrumentation. Software instrumentation is where
the program is statically or dynamically augmented in order
to output information about the system. Although intrusive,
software has the advantage of flexibility and established capa-
bilities for various operating systems and debuggers. Examples
include: LTTng [4] an established toolkit for Linux that
uses static software instrumentation; and GDB tracepoints,
an emerging dynamic instrumentation tool1. LTTng outputs
its trace to memory or disk although it is also intended for
streaming, whilst GDB uses its remote stub connection. An-
other example comes from ENTRA, where programs running
on the XMOS core were profiled using custom extensions
to the LLVM compiler chain [5]. Another popular tool is
dtrace which is based on binary patching of previously
inserted NOPs2.

Hardware-based monitoring using on-chip debug support
infrastructure has the advantage of being non-intrusive and is
able to measure the activity for as many parts of the system
as have been provided with suitable monitoring circuits and
counters. In practice both software and hardware monitoring
are needed to gain a comprehensive understanding of the
system to determine its energy usage.

PC motherboards incorporate system monitor chips, such
as the Winbond W83781D. These measure supply voltage as
well as chip temperatures and fan speeds. Crucially they do
not measure supply current and hence give no energy figures.
Likewise, the standard BIOS APIs such as ACPI do not provide
any energy measurement calls.

Until recently, the main means of determining energy use
for a computer program involved time-consuming additional
instrumentation, such as setting up a mains inlet current meter
or resistive droppers in DC supplies. Likewise, laptop and
Android developers could use a basic battery ‘Gas Gauge’

1GDB Tracepoints https://sourceware.org/gdb/onlinedocs/gdb/Tracepoints.html.
2Dtrace web site http://dtrace.org+

API such as the Advanced configuration and Power Interface
Specification (ACPI) [6]. These techniques can provide some
insight towards the gross total energy use for the system, but
offer a measurement bandwidth of less than 10 Hz and cannot
easily be used for investigating particular aspects of energy
consumption.

However, most computer systems contain a good number of
hardware event counters, either embodied in profiling hardware
or in software device drivers. When hardware counters are
provided, software tools like oprofile for Linux can show
where time is being spent with minimal software overhead.
The open-source Gator driver from ARM is an example
where on-chip software reads hardware counters from both
CPU and GPUs. It uses Ethernet in SoC devices to stream
the data to an off-chip performance viewer called Streamline
which can also accept board-level power measurements from
an external hardware probe 3 Other debug tool providers such
as Lauterbach offer probe-based power measurements which
they correlate with fully decoded CPU instruction traces [7].
Holistically monitoring a heterogeneous SoC is also a major
challenge, because each processor type typically has its own
close-coupled debug support architecture [8].

For energy accounting, the obvious counters to use monitor
the major architectural events, including retired instructions,
branch mispredictions, cache misses and evictions at each
level and DRAM row and column operations. But recently,
Najem et al. explained how careful automated placement of
event counters on apparently arbitrary nets of a SoC could
collect sufficient information for an accurate power spline to
be computed [9]. Counts must be combined in a polynomial
with the instantaneous supply voltage to get energy figures.

A significant recent deployment is Intel’s RAPL (Running
Average Power Limit) announced in 2010. [10]. RAPL allows
measurement of SoC power at a medium granularity of four
domains: all cores, graphics, package, and DIMMs. Is neither
fine-grained, nor application centric: i.e. it cannot provide
figures on a per-application basis. The hardware API consists
of several machine-specific registers (MSRs). These contain
values computed by a microcontroller in the ‘Sandy Bridge’
subsystem that applies calibration weights to hardware event
counters with the weights being determined or trimmed at
system reset. Since family 15 (Bulldozer), AMD has provided
similar total core power monitoring. AMD recommends that
details are hidden from the O/S by the BIOS with the BIOS
essentially refusing to honour a request to move to a DVFS
levels that would exceed design parameters [11].

Measurement of energy use in large systems and data-
centres is facilitated using energy logging frameworks such
as the Energy-Aware COmputing Framework (EACOF) that
provides real-time remote access to a centralised SQL database
of energy and power events [12]. Such frameworks are handy
for making dynamic datacentre management decisions at a
macroscopic level: for instance, whether to power up another
rack of server blades. Our current work can be a source
of energy information for EACOF database and we have
built shims above and below it. However, SQL transactions
themselves use significant energy so this cannot serve for low-
intrusion power debugging.

3ARM’s Optimize http://ds.arm.com/ds-5/optimize/



Currently there is no established solution for energy moni-
toring other parts of the system such as its custom accelerators,
interconnects and memory controller. The best system energy
estimates are most easily obtained using power-annotated com-
piler chains. Running the object code on a virtual execution
platforms gives additional insight provided the platform is cal-
ibrated. A virtual platform example is the PRAZOR simulator
that is built in SystemC using TLM POWER3 library [13] and
which is used for the practical experiments reported in this
paper.

What is needed is a universal debug support platform that
integrates with established proprietary debug frameworks and
provides the hardware monitors needed for the rest of the
system. By providing a hardware API, high-level software
instrumentation from projects such as LTTng can also be com-
bined with hardware instrumentation. The authors of this paper
previously developed such a universal on-chip debug support
platform and here enhance it for energy instrumentation.

III. THE SPEEDO API

The spEEDO API is designed to be implemented to one
of several possible granularities on any particular platform
or variant of that platform. For instance, a virtual platform
(simulation model) might include richer support than the taped-
out chip. Or better accuracy might be possible when an off-chip
debugger is connected than is offered to on-chip applications.
But Dark Silicon means we can include substantial monitoring
infrastructure in real implementations.

The significant aspects of our complete spEEDO infras-
tructure are:

1) The system is composed of subsystems (IP blocks).
An IP block might be a processor core, a cache,
a coprocessor, a DRAM controller or a network
interface, etc..

2) Energy information is recorded separately for each IP
block, nominally within that block.

3) Moreover, the originator of the work that incurred the
work is trackable so energy can be accounted on a
customer number basis.

4) Energy information is carried through the system
either by the debug infrastructure or else on the main
busses by programmed I/O commanded by cores.
Clearly the latter approach is more intrusive, but is
appropriate in use cases where the O/S is dynamically
load balancing on an energy basis.

5) The watchpoints and programmable F.S.M.s of the
debug infrastructure are combined with the O/S
knowledge of which jobs are active on which cores
to facilitate detailed energy analysis during multi-
processing and for areas of interest in software pro-
grams.

Fig. 1 shows various abstractions of the spEEDO API at
four levels of abstraction. Starting at the bottom, interface 4
is a Register API. A typical fragment of the register API is
shown in Fig. 2. This is accessed by a spEEDO device driver
(or HAL component) running on a SoC core. The standard
debug infrastructure will enable remote reads and writes to a
core’s I/O space, thereby providing a means of debug access
to this view. The register API can also be mapped into debug
address space of a core if the core has such a concept. The
register API consists of some number of hardware contexts

(minimum of 2) as well as a single read-only bank of registers
that provide basic meta information such as the version of the
API and the units used for time and energy.

Energy is dynamically consumed by a core as it reads and
writes the register API. So, to avoid mis-read races, an atomic
snapshot facility for the actual registers is provided. In the
most simple form of the interface, there are just two contexts,
one which changes all the time while the other is a hardware
snapshot of the dynamic one triggered by a special write to a
control register. In more-complex implementations, the host
can alter which bank of registers is currently being incre-
mented. However, in our multi-processing use case (described
later) there may still be fewer hardware contexts supported than
currently running processes on the local core, in which case
the scheduler must context swap the hardware contexts when it
makes a process switch. This is just an extension of the normal
procedure that keeps track of how much CPU time each core
has used. The number of contexts supported is reflected in the
read-only portion.
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Application Code

O/S scheduler

Software ’C’ API

library dll

Machine-specific HAL
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VLSI &

SoC Debug Network
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1) Application API

2) Machine-neutral multicontext API

3) Machine-neutral core API

4) Register API (H/W S/W ifc). 

Fig. 1: The spEEDO API has various physical manifestations
at different architectural boundaries.

Interface 3 is provided by a spEEDO hardware ab-
straction layer that abstracts the register API for high-level
language use (typically C). This hides the nastiest machine-
specific details and provides basic r/w operations on the
abstracted register file. Simple use for a single process on a
single core is as follows:

typedef struct // The record for constant data

{

u32_t units;

const char *spEEDO_get_reflection_uri;

} spEEDO_metainfo_t;

typedef struct // record for a snapshot of dynamic

data.

{

u32_t core_or_customer_no;

u32_t local_energy;

u32_t customer_energy;

u32_t global_energy;

} spEEDO_local_record_t;

int spEEDO_get_meta(spEEDO_metainfo_t *&p);

int spEEDO_get_simple(spEEDO_local_record_t *&p,

int cust=-1);

An important feature is the separation of local and global
energy in the report. Both are running totals since system reset
and the local is a subtotal figure that is included in the total.
The distinction is that the local energy account records energy
use from operations originating on the local CPU core. Ideally,
the sum of local accounts across the system equals the global
value.



//Constant registers:

#define SPEEDO_REG_MONICA 0 // Contains an identifying constant.

#define SPEEDO_REG_ABI 8 // Version number of the interface

#define SPEEDO_REG_ENERGY_UNITS 16 // This is the fraction of a Joule in the energy registers.

#define SPEEDO_REG_CMD_STATUS 40 // Command capabilities for resetting totals etc. & also the current H/W context.

#define SPEEDO_REG_TIME_UNITS 56 // Number of femtoseconds for each tick in the time register(s).

#define SPEEDO_REG_CORE_ID 64 // Core / Customer Number Identifier

#define SPEEDO_REG_CTX_CTRL 72 // Low 8 bits is no of h/w contexts (ro), bits 15-8 are current active context (r/w).

// The active context is the one being updated in h/w. The remaining contexts are passive.

#define SPEEDO_REFLECTION_URL0 1024 // First location of a canned URL giving further information on this ABI

#define SPEEDO_REG_CTX0_BASE 512 // active

#define SPEEDO_REG_CTX1_BASE (512+256) // shadow for easy read of 64-bit values over 32 bit bus.

// In this implementation there is only one context per CPU core

// but it is visible in active and shadow forms. The active CTX is CTX0 and a snapshot of it is copied

// to CTX1, the shadow, as a side effect of writing any value to the CTX_CTRL register.

// Each hardware context contains the following time-varying registers (volatile):

#define SPEEDO_CTX_REG_LOCAL_ENERGY 8 // Running local energy in the units given

#define SPEEDO_CTX_REG_LOCAL_TIME 16 // Running local time (if implemented) for the context in the time units given

#define SPEEDO_CTX_REG_GLOBAL_ENERGY 24 // Running total energy in the units given - includes local energy

Fig. 2: Typical fragment defining the machine-specific registers (MSRs) for programmed I/O operation of the register API by
host cores.

Our implementation also provides a few convenience func-
tions at this level that return the total energy and average
power consumption as double precision quantities in Joules
and Watts. The user can subtract energies from successive
checkpoints to account for specific intervals.

extern double spEEDO_local_energy_sofar();

extern double spEEDO_total_energy_sofar();

extern double average_power_sofar();

// ... and other obvious calls ...

Interface 2 provides multiple contexts in a machine inde-
pendent way, even if the hardware only supports one or a few
contexts. It also enables to read off the local energy figures
for remote cores. For independent energy accounting, each
process hosted by the O/S kernel requires an extended task
control block. This contains not only the traditional register
file image, priority and CPU time used accounts for a process,
but also a running energy total. The O/S must save and restore
the energy totals and also manage hardware customer tags
(described later) over this interface.

Interface 1 provides a virtual energy context to a process
that may be scheduled over multiple cores. Like the level
4 per-core register interface, the local and global energy are
presented as separate running totals, only the local energy is
for process and not a core.

IV. USE CASES

Case 1a: Programmer-directed Efficiency Optimiza-
tions: Intrusive Profiling: A programmer wishes to evaluate
energy-efficiency benefits from offloading computation from
the CPU to the DSP or GPU. He will recode key regions of
code using portable concurrent programming models such as
OpenCL. The old and the new code are made available by
conditional compilation. An energy checkpoint is taken before
and after the region of interest. We created an application shim
library for the EACOF framework [12] to map the energy
checkpoints using the spEEDO API so the example in Fig. 3
can also be coded using EACOF primitives in the same style.

...

spEEDO record_t before, after;

spEEDO_chkpt(before);

if (USE_GPU) use_gpu(); else old_version();

spEEDO_chkpt(after);

spEEDO_record_t delta = after-before;

cout << "Energy used " << delta.toString()

<< "\n"; ...

Fig. 3: Use Case 1a - Simple, but intrusive, bracketing around
a test.

This is an intrusive measurement because the energy check-
points include new code within the application. The same
measurement can be made via the debugger interface using
breakpoints or unintrusive watchpoints. Connecting to our

...

asm volatile ("start_point1:"::"memory");

if (USE_GPU) use_gpu(); else old_version();

asm volatile ("stop_point1:"::"memory");

...

Fig. 4: Use Case 1b - Inserting code labels for debugger
watchpoints.

virtual platform with the GDB debugger we can set break or
watchpoints on the two labels we have inserted in the binary
object file of the program (Fig. 4). Using symbolic labels
is clearly easier than finding hex addresses by hand and the
volatile keyword stops the compiler reordering around the
region of interest.

$ gdb

(gdb) target remote :9600

(gdb) break start_point1

(gdb) break stop_point1

(gdb) run; cont; cont

...



(gdb) eptDiff

GLOBAL_ENERGY = 32.02mJ, TIME=5.03ms, ...
User-programmable

finite-state machine (FSM)

Watchpoint

trigger

registers

Output events

spEEDO

accounting

context or

on/off

CPU Interrupt

CPU Halt

Input events

Trigger event

counter file.

Fig. 5: Generalised watchpoint and sequencer structure.

Various useful debug extensions are implemented by in-
stalling Python script files in GDB. These know the addresses
of the relevant spEEDO registers in the debug spaces of the
various cores. They also install hooks that read these registers
and record state inside the debugger. Various commands have
been implemented, such as eptDiff that gives the energy
used between the last two breakpoints.

Case 1b: Non-Intrusive Profiling: Despite minimal mod-
ification to the user’s program, stopping the machine at break-
points for tens of milliseconds while the debugger executes a
number of read commands is intrusive to any sort of concurrent
system. Also, static power continues to accumulate while
cores are stopped. The Watchpoint API fixes this. Given that
most non-trivial controllers and processors contain hardware
watchpoint registers it is sensible to exploit the watchpoint
infrastructure for selective energy accounting. In the past, the
output from the watchpoint mechanism simply made the core
or all cores enter sleep mode so that debug cycles could be
run. This has become too invasive in modern multicore SoCs
and more flexible output routing is desired, such as the ability
to freeze instruction trace buffers as well as general counter
operations and issue remote core interrupts. A more modern
and general scheme is illustrated in Fig. 5 that consists of
a user-programmable FSM. Inputs come from watchpoints
and other architectural events. A counter file is included so
the n

th event or other complex trigger sequences can be
matched. In order to trace energy only between two program
counter values, that respectively pre- and post-dominate a
code section of interest, the two addresses are placed in the
watchpoint registers (by remote access debug cycles or local
host operations). The FSM is then programmed to enable and
disable local energy accounting outside that region.

Case 2: Multitasking. Most SoCs today use a multipro-
cessing scheduler. We need to solve two problems: 1. making
sensible scheduling decisions and 2. cleanly reporting energy
use to a process that roams over many cores and peripheral
devices without crosstalk from other applications. A multi-
threaded O/S where the threads are dynamically mapped to
cores can use an extended scheduler to keep energy accounts
for each thread group or process.

Since IBM’s VM-360, the concept of a process tag has
existed in many hardware architectures. Their original purpose
was for hardware protection and to avoid a TLB flush on a
context swaps. The idea is that extra process identifier bits
are associated with each virtual address. In today’s 64 bit

architectures this can be reasonably implemented as other-
wise unused high-order address bits, but generally they are
held in a CPU control register and concatenated in hardware
with every effective address generated by the application
program. Modern on-chip busses also have the ability to
carry user tags and other user sideband signals alongside
the main address and data information. These tags may be
used to match up out-of-order bus transaction results. As
a specific example, the AXI interface from ARM allows
awuserm[AWUSER_WIDTH-1:0] to be declared. Addition-
ally, load-linked instructions commonly used to achieve atomic
transactions in a NoC environment require each originator to
supply an identifier that is stored at the target in readiness
for the store-conditional operation. Together, these examples
show that the idea of carrying a customer number, in-band,
as part every bus transaction is not overly far-fetched. Indeed,
for virtual platform use, the TLM POWER3 library extends
the transactional general payload with a customer number that
serves as a process tag.

Given this infrastructure, the scheduling operating involves
mapping process identifiers to a physical core and process tag.
At context swap time, the root translation pointer is adjusted
with the new context. This commonly contains the process tag
in its lower bits. Also, the system timer is noted to implement
the CPU time account for that task. Our observation is: it is
very little further overhead to also save and load the running
energy totals from the spEEDO register API at a context swap.
In this way, per process energy accounting is provided.

V. IMPLEMENTATION COMPLEXITY

We do not have room for an extensive discussion of
implementations in this paper. But we need to justify that our
API is feasible.

Dark Silicon presents a landscape where a subsystem might
have its own boot-time embedded microcontroller with its
own RAM and ROM (e.g. Thacker’s DDR2 controller for
the BEE3, or the microcontroller that implements the on/off
switch on many contemporary laptops) so quantity of logic is
not a major issue per se. Considerable quantities of ROM are
also very cheap to implement and are commonly copied to
L2 cache during processor boot for a multitude of start-of-day
procedures, such as DRAM leveling and secure key validation.
Adding further boot-time complexity is not a problem.

In the most simple implementation of our API, each
originator has some local accounting mechanism, such as sev-
eral counters for retired instructions and load/store front-side
cycles. If each core additionally has an L1 cache miss counter
we can get some measure of how much shared resource energy
to allocate to that customer core. Accuracy will be further
improved if we can get L2 misses into L3 and L3 misses
into DRAM accounted on a per customer basis. However, the
correct answer is not precisely defined: who should be charged
for capacity and sharing evictions? It is complicated to charge
the evictor for energy burnt by a customer who must reload a
cache line he had already loaded. Regardless or that, we also
assume the chip as a whole has PSU energy instrumentation
(or at least the current DVFS information can be read). With
calibration information, this basis is sufficient to provide the
simple local and global energy counters of the basic spEEDO
API.



A microcontroller can potentially make online computa-
tions using the above information served over the on-chip
debug bus/network. A kilobyte, say, of microcontroller ROM
should provide a quality energy figure, computed from time to
time, as per RAPL. However, we argue that sub-millisecond
energy reports are likely to be useful, and if several of these
are requested at different IP blocks at the same time, a solo
microcontroller might be overloaded. Clients may have to stall
waiting for the computation (that they could indeed compute
more quickly themselves). Therefore, a hardware implementa-
tion is probably preferable overall and we are implementing
this at the moment. It is the ‘energy digestor’ in Figure 6. But
this hardware still uses coefficients measured by software at
boot-time and recomputed at supply voltage change time.

Turning to the complexity overhead for shared caches and
peripheral devices, the most precise information can be col-
lected where process tags are conveyed with the bus traffic and
shared resources have banked event/energy counters indexed
by process tag. However, outside of fully-instrumented virtual
platforms, the hardware overhead of having a large number
of banked counters may be unpalatable. For instance, typical
cores from Intel and AMD at the moment have 250+ events
that can be monitored in hardware, but provide fewer than
ten hardware counters for the complete chip. The Xilinx Zynq
ARM 7 cores have six counters that can allocated each to one
of fifty or so event sources. A routing API is used by programs
like oprofile to wire the counters to events of current
interest. A similar approach can be taken by the spEEDO
implementation. A minimal implementation within a cache or
IP block is to deploy a counter that counts for just one process
tag serves to effectively filter out traffic of current interest. If
that one tag is programmable so much the better, otherwise the
O/S must dynamically reallocate the tags when the process of
current interest rotates.

VI. VIRTUAL IMPLEMENTATION

We are starting to constructed silicon embodying the
spEEDO API and concepts (§VII), but so far we have mostly
just extended a high-performance virtual platform so that all
aspects can be simulated and some power-aware applications
can be run. A novel aspect of our platform is that it was
already fully annotated with energy logging for each major
operation, such as an instruction fetch, mis-predicts, cache
operations at multiple levels and a DRAM energy model using
the University of Maryland DRAM simulator [14]. Therefore
we did not have to implement power supply monitors and
event counters explicitly, we were able to simply connect the
spEEDO API to the energy instrumentation of the simulator.

The virtual platform is implemented in SystemC using
the TLM 2.0 transactional modeling style. It supports various
CPU architectures, including ARM, x86 64, MIPS64 and
OpenRISC. It can be set to be binary compatible with the
Xilinx Zynq series and then boots the same Linux binary and
SD card image. Standard benchmarks, written in C/C++, can
also be compiled with a minimal implementation of libc

and pthreads to run essentially bare metal on the platform.
Power annotation is via the TLM POWER3 library calls [13].
This library was augmented with the customer number concept.
Each TLM packet contains a customer number in its payload
alongside the normal data, address and control fields. The
payload was already augmented beyond the default TLM 2.0

generic payload with fields to estimate bit switching activity so
that transaction wiring energy could be logged on a hamming
distance and bus length basis.

The virtual platform also embodies a relatively simple
debug network. A TCP connection to a GDBserver port on
the running simulator runs the RSP protocol of gdb. Although
this protocol does not readily support multicore systems and
non-uniform address maps, it does support the concept of
switching between active threads. We abused this facility, so
that the number of cores was augmented by the number of
processes over all the cores by the debugger stub and hence
the user could connect to an actual thread or to an actual core
using suitable thread commands. The debugging traffic is
routed over the virtual platform through instantiated debug
components that are no different in their modeling style from
the main bus components: i.e. they are SystemC class instances
with TLM sockets statically wired to form the on-chip debug
network.

The virtual platform is called PRAZOR and
is available with its spEEDO implementation from
http://www.bitbucket.org/prazorvhls.

VII. PHYSICAL IMPLEMENTATIONS

A version of the spEEDO API will be implemented in
RISC-V multicore test chip currently being designed in our
labs. Figure 6 illustrates the general structure in simplified
form. The ‘energy digestor’ is implemented in hardware,
reading performance management (PMU) registers and power
supply instrumentation to populate the spEEDO register con-
tents.

In the meantime, while the test chip is in development, we
are implementing a mock up in the Zynq 7010 FPGA. The
hardware boards are augmented with high-fidelity power sens-
ing hardware that separately measures the core supply to the
Zynq chip and the rest of the card (which essentially consists
of the Ethernet MAC and the DRAM devices). Unfortunately
we are unable to separately measure the consumption of the
individual ARM cores but we see this as a common physical
limitation in future chips, even where spEEDO has been
designed in, owing to supply sharing across cores. But, an RTL
implementation of the digestor can read the PMU registers
for each core, as well as for some shared resources, like the
L2-cache and DRAM. Using this information, online energy
estimates are generated, as outlined above. The spEEDO API
is then provided as AXI slave registers that can be read by the
software on each core: notably the extended Linux scheduler,
or over the JTAG interface. The scheduler context swaps the
energy readings using the same code as when it runs on the
virtual platform. We are also inputting to the FPGA the digital
control signals from the various switching power supplies
in the system, since these can be combined with a single
ADC reading of the unregulated input supply voltage to get
individual rail energy use with reasonable accuracy (e.g. ± 15
percent).

VIII. DEMO: DOTNET VIRTUAL MACHINE HOTSPOT

DETECTION

As an end-to-end example of energy optimisation across
the stack, we took applications coded in C# targeting the
DOTNET virtual machine. We used C# but Java/Dalvik could
be used in the same way and would be a more relevant example
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for mobile phone app energy profiling. The purpose of the
demo is to show that the same application-level and debugger
APIs can be used for both the real silicon and the virtual

platform and to discuss the engineering decisions that might
be made based on this information and the differences that
might arise between the two platforms. Using a small subset



of C# we were able to get away with a locally-coded version
of the VM that is itself energy aware in two ways:

1) it allows the C# code to invoke the spEEDO API for
high-level application purposes, and

2) it embodies an energy profiler that reports not only
the time in each method but the energy used in each
method.

The VM uses one operating system thread per virtual
thread. An asynchronous energy monitor was implemented
using a further processes-level thread that will typically be
running on an otherwise unused core, assuming more cores are
present than threads in the C# application. The monitor wakes
up every 10 milliseconds and inspects the state of the worker
threads, logging their energy and execution statistics to a mem-
ory data structure. The asynchronous energy monitor gives
more accurate readings for short-running method calls given
that the overall test runs long enough to get a sufficient number
of samples. This is because the sub-millisecond invocations
suffer systematic rounding errors owing to the correlation
arising when samples are taken on the same core/thread as the
workload: with a digestor update rate of 1kHz many short-lived
ones will always indicate zero energy use on the real hardware
owing to aliasing. The virtual platform has much-finer energy
logging in its POWER3 library implementation, so does not
suffer from that.

Because the VM threads are mapped to O/S threads, and
because the O/S is saving energy information at context swaps,
a unified energy accounting system exists from application
space right down to cache line fills from DRAM. If the VM
had used a user-space threads package then that too would
have had to be augmented with energy context accounting.

When GDB is connected to the virtual platform, the energy
registers of the hardware cores are directly inspectable and
the O/S energy contexts are inspectable. They are printed
in human-readable form by the scripts running inside the
debugger. When the Zynq mock up is properly working, we
should see exactly the same output from the physical platform.

For software developers, the energy information can guide
which functions are hot spots that might best be JIT compiled
to native code. However, so far, we have not seen any notable
cases where a decision based on energy use would lead to
a different decision compared with a decision based only on
cycle count. Nonetheless, this information can be used to guide
efficiency decisions relating to dynamic micro-architecture
adaptation, such as having segments table entries that indicate
the best number of ways in a set associative cache to enable
for that region of memory [15]. For hardware developers, the
energy information can be used as a guide for moving code to
FPGA or custom hardware coprocessors — the conservation
cores approach [16].

IX. CONCLUSION AND FURTHER WORK

An extended draft of this paper is being shared with
research teams at a number of SoC companies and we await
feedback. Using our virtual platform we have conducted exper-
iments testing compiler optimisation levels, making intelligent
scheduling of work over cores, and examining crosstalk iso-
lation between concurrent applications in a busy environment.
As mentioned, our FPGA implementation of the digestor is
ongoing and an ASIC test chip is being designed.
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