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Abstract—Consideration of an embedded system’s timing
behaviour and power consumption at system-level is an ambitious
task. Sophisticated tools and techniques exist for power and
timing estimations of individual components such as custom
hard- and software as well as IP components. But prediction
of the composed system behaviour can hardly be made without
considering all system components. In this paper we present an
ESL framework for timing and power aware rapid virtual system
prototyping of heterogeneous SoCs consisting of software, custom
hardware and 3rd party IP components. Our proposed flow
combines system-level timing and power estimation techniques
with platform-based rapid prototyping. Virtual executable proto-
types are generated from a functional C/C++ description, which
then allows to study different platforms, mapping alternatives,
and power management strategies. We propose an efficient code
annotation technique for timing and power, that enables fast host
execution and collection of power traces, based on domain-specific
workload scenarios.

I. INTRODUCTION

The increasing use and growing complexity of MPSoCs
(Multi-Processor System-on-Chip) and the resulting potential
interaction of system components makes it very hard to analyse
the timing and power consumption of complex embedded sys-
tems. For an early analysis of extra-functional system proper-
ties, the estimation of execution times and power consumption
of MPSoC components becomes more and more important.
In the last years, a lot of effort has been spent in estimating
execution times and power on RT-level. However, today’s
application and target platform complexity inhibits full system
simulations at such a low level of abstraction. Furthermore,
simulating the different components of the target platform
separately is not feasible since predictions and analyses of the
overall system can hardly be made if components are only
considered in isolation.

Thus, for complex applications on large MPSoCs the inter-
action of all components must be taken into account to capture
the behaviour of the entire system. This is essential for accurate
power and timing estimations. For specific platforms, propri-
etary simulation environments are available for both timing and
power models. But a common and open methodology, suitable
for a large range of platforms and designs, is still missing.

Such a framework would allow comparing different platform
characteristics and thus rapid prototyping and design space
exploration. Performance bottlenecks and power peaks within
the entire system could be identified in early design phases,
where modifications of the system are easier and less costly
than in later phases. For these reasons, a methodology and
modelling infrastructure is required, which allows integration
of timing and power information from RT-level estimations
into a fast executable virtual platform at system-level.

In this paper, a methodology for estimating execution times
and power consumption of hardware and software components
in multiprocessor systems is presented. To simulate the timing
and power behaviour of hardware and software for a given
target architecture, low-level timing and power properties are
annotated to the source code of the functional model. Then,
the annotated source code is compiled and natively executed
on the simulation host. Instead of directly annotating power
and time values to the source code, three different approaches
have been combined:

• For software, the binary-level control flow for the target
processor’s architecture is simulated in addition to the
functionality. This allows a dynamic estimation of timing
and power properties without interpreting target code on
the simulation host.

• To consider custom hardware, the resulting controller and
data path timing and power properties after high-level
synthesis are simulated in addition to the functionality.
This allows a dynamic estimation of timing and power
properties without co-simulating RTL code on the simu-
lation host.

• For third-party black-box intellectual property (IP) com-
ponents or pre-existing RTL modules like memories,
interconnects and communication peripherals, timing and
power information is modelled as Power State Machine
(PSM). A PSM observes the interaction of the black-box
IP component with its system environment and triggers
the transition between different power modes, either based
on data sheet information, designer knowledge, or trace-
based power characterisation performed at RT-level.

By combining these approaches with a common timing
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and power model, the interaction between software, custom
hardware, and third-party black-box IP components can be
analysed for complex MPSoCs running real application code
using a source-level host-based simulation. In this paper a
proof-of-concept integration based on SystemC is presented
and evaluated using an MP3 player application on an ARM-
based SoC.

II. RELATED WORK

To facilitate the design of complex systems, virtual pro-
totypes (VPs) which are described in a system-level design
language like SystemC [9] are in widespread use. A standard
technique to improve simulation performance of these VPs
is transaction-level modelling (TLM), which separates the
modelling of communication between system components and
the computations performed inside these components [6]. In
transaction-level models, low-level timing properties are often
added to the source code of hardware and software components
to perform a timed simulation. Neither SystemC nor TLM offer
built-in features to model and trace extra-functional properties
like power consumption.

In [4] an estimation of power consumption at behavioural
level using SystemC is described. This approach extends
signals with power macro models of RT components and over-
loaded arithmetic, logic, and assignment operators carrying
power information. The main drawback of this approach is its
limited application to system-level models, since the modelling
style is very close to RTL design.

ActivaSC is a non-intrusive extension for activity-based
analysis of SystemC models [20]. With this approach switching
activity can be obtained from SystemC simulations without
modifying the functional specification. The analysis and con-
version of activity data to power consumption is not part of
this approach.

In [10] annotations for power modelling in SystemC at
Transaction Level with dynamic voltage and frequency scaling
(DVFS) capabilities is presented. The basic idea is to separate
the functional (IP) model from the power model and specific
power information. Power monitors are used to trace and
check power consumption. This separation has also been
followed in our work. As an extension we explicitly distinguish
between different extra-functional models for software, custom
hardware, and IP components.

A top-down power and performance estimation methodol-
ogy for heterogeneous multiprocessor systems-on-chip at Elec-
tronic System Level (ESL) is proposed in [17]. By separating
the system functionality from its architecture, different design
options can be assessed with low effort. The simulation-based
approach permits to evaluate the effects of dynamic power
management. In contrast to our approach the focus is mainly
on software and a higher abstraction level without considering
automatic extra-functional model generation.

A methodology for power estimation of SystemC trans-
action level models for bus power is presented in [5]. It
describes a bus power characterization approach, a hierarchical
representation of transaction level (TL) data, and a power
model interface/mapping mechanism to augment TL simula-
tion models with power information. These techniques were

implemented for IBM CoreConnect based architectures. We
have chosen a similar approach for the Power State Machine
generation of our bus power model.

In [2] a framework for system-level power estimation using
heterogeneous power models is proposed. The integration of
heterogeneous component power models is implemented as
a network of power monitors. The monitor-based framework
provides interfaces, facilitating the integration of component
simulation models on one hand, and a variety of heterogeneous
power models on the other. Power monitors enable each
component model to be associated with multiple (distinct)
power models of differing accuracy and efficiency, or with
configurable power models that can be tuned to different accu-
racy/efficiency levels and thus delivering a trade-off between
power consumption, accuracy, and simulation speed. In our
work we propose a native host-based simulation of functional
and power models with a flexible tracing infrastructure that
allows efficient SystemC TLM simulation with a scalable
amount of context switches to enable the same accuracy
vs. simulation time trade-off.

The back-annotation of power properties obtained from
cycle-accurate custom hardware descriptions at RTL to a pure
functional representation in C has been presented in [21].
Based on power macro models for each RTL component and
explicit knowledge about the structural decomposition from
functional C to RTL allows the instantiation of virtual power-
aware components for each operator in the RTL. These virtual
components are fed with the same values of the particular
RTL-operation and are transformed to executable C models
linked to the functional input model. The main drawback of
this approach is that the execution of the virtual components
slows down the functional system simulation drastically. In our
approach the concept of hardware basic blocks (HBBs) is used
to obtain an efficient executable functional model with power
information.

Determining extra-functional properties of embedded soft-
ware through source-level simulation has been proposed as
an alternative to using an instruction set simulator (ISS).
In a source-level simulation, the source code of software
components is enriched with annotations describing the extra-
functional properties to be analysed. The annotated source is
then compiled for the simulation host. Using the resulting host-
compiled binary, extra-functional properties of the software
running on the target architecture can be obtained while
natively executing the software on the simulation host. In this
paper we have extended the software timing back-annotation
presented in [16] and [15] with a software power model as
presented in [14].

III. PROPOSED METHODOLOGY

A. Overview

Our proposed concept for a rapid prototyping framework
(based on [7]) is illustrated in Figure 1, which follows the
Platform-Based Design approach with a separation of ap-
plication model a©, platform model c©, and mapping de-
scription b©. The platform model is a graph consisting of
processing element, interconnect, and memory nodes. The
parallel application is described as a task graph and a pre-
defined communication and synchronisation scheme along the
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edges between different tasks and service nodes. In a separate
mapping step tasks and service nodes are mapped onto the
processing element and memory nodes of the platform model.
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Fig. 1. Proposed Rapid Prototyping Framework

The most important property of the proposed framework is
that extra-functional timing and power modelling is separated
from functional application specification and modelling. For
pre-defined black-box IP models g© Power State Machines
observe the communication behaviour of the component and
extrapolate the timing properties and power consumption based
on the externally observable behaviour. For software e© and
custom hardware f© components timing and power estimation
based on cross-compilation for the target processor and high-
level synthesis for the target technology is performed. For
these components, timing and power back-annotation to the
executable input model is performed. During virtual system
generation h© timing and power annotated software, cus-
tom hardware, and IP components are functionally connected
through TLM-2.0 wrappers. Furthermore, the power and tim-
ing annotation are connected to an extra-functional model
to enable tracing of these properties during virtual system
prototype execution i©.

B. Input Specification

Parallel application model: In our Parallel Application
Model, the system is represented as a set of parallel, com-
municating processes, representing hardware or software inde-
pendent tasks and services. A Service Node is the modelling
primitive for inter-task communication. It provides a set of
interfaces to its client tasks. Interfaces are used to group ser-
vices. The services themselves are side-effect free C functions.
Different synchronisation protocols can be chosen.

A Service Node is a tuple SN = (S, I, protocol), where

1) S is a set of symbols, representing the provided services.
2) I = {IF0, . . . , IFk} is a set of interfaces, where each

IFi ⊆ S denotes a subset of services.
3) protocol = {FIFO, handshake, none} specifies the syn-

chronisation protocol among clients of this Service Node.

Tasks communicate with other tasks via Service Nodes,
statically bound to ports. The internal behaviour of a task

is described as executable sequential C code with explicit
service calls to Service Nodes. All calls to Service Nodes
are blocking, i.e. the caller’s behaviour can be continued only
after the service call has been completed. When multiple tasks
are requesting non-mutual exclusive services from the same
Service Node scheduling is required. More details about this
can be found in [3].

A Task Node is a tuple T N = (Ps,Pa,Pe,F), where

1) Ps = {ps0 , . . . , psn} is a set of ports, each representing
a set of associated services psi ⊆ Si.

2) Pa is the activation port. There are two kinds of activation
ports: AND ports activate the task when all bound activa-
tion edges observe an activation event. OR ports activate
the task when at least at one of the bound activation edges
an activation event occurs.

3) Pe = {pe0 , . . . , pem} is a set of exit ports. An event on
one of these port is emitted, when the execution of the
task’s functionality has been completed.

4) F specifies the functional behaviour of the task.

A Task Node describes a Runnable i.e. a process. A task
starts running immediately after its activation through Pa and
can only be blocked by communication on its ports Ps. A
task can be (self-)triggered again after a certain amount of
time (time-triggered or periodic task).

Based on these notations for the modelling primitives, the
overall Application Model AM consists of

• a set of Task Nodes T = {T N 0, . . . , T Nn},
• a set of Service Nodes S = {SN 0, . . . ,SNm}, and
• a service port binding function Bs :

⋃
T N∈T PsT N →

S, that uniquely associates each port ps to a compatible
Service Node: ∀ps : B(ps) = SN ⇔ ∃ IF ∈ ISN : ps =
IF⇔ ps � ISN ,

• an exit to activation port binding function, that associates
each exit node with a non-empty set of activation nodes,

• a set of initial activation edges, each bound to a unique
activation port.

Platform Model: The Platform Model PM is composed
independently from the application model. It is a pure struc-
tural and non-executable parameterizable representation of the
execution platform. It consists of a set of Processing Elements
PE ∈ {SW,HW, IP}, where

• Software Processor SW = (ISA,DMs, IMs, IS) with
a specific Instruction Set Architecture (ISA), local data
memory DMs and instruction memory size IMs, and a
set of Initiator Sockets (IS),
• Custom Hardware Component HW = (area, IS, T S)

with a specific area constraint (area), a set of Initiator
Sockets (IS), and a set of Target Sockets (T S),

• IP Component IP = (IS, T S),

Memory Elements ME = (width, size, T S), and Router
Elements RE = (dwidth, scheduling) with a data width and
selectable scheduling policy. A binding function uniquely as-
sociates each Initiator and Target Socket to a Router Element.
PEs, MEs, and REs can be uniquely associated to a Power
Island PI. Each power island has its own set of pairs (f, Vdd)
that defines valid steps for dynamic voltage and frequency
scaling (DVFS).
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Fig. 2. Mapping of input models

Mapping: Figure 2 depicts the process of mapping an
initial functional specification to a platform model, based on
an MP3-decoder design that we will use as a demonstrator
throughout this paper. The left part of Figure 2 shows the
mapping of the initial functional specification to our parallel
application model. This step involves the partitioning into
appropriate tasks and services, as well as the identification
of potential parallelism. We start from C code taken from
[19]. The code outlined in the simplified flowcharts covers the
main loops and sub-routines of the PCM synthesis, including
a discrete cosine transform (DCT). The sub-routines exchange
data over a central data structure. Accessing the central decoder
state and reading input data are both considered as a service
and mapped to corresponding service nodes SN1 and SN2
(Figure 2, 1© and 2©). For most parts of the functional
specification we keep the sequential nature of the decoding
algorithm and map them to task nodes that reproduce the
original structure of the code (Figure 2, 3©). These tasks are
activated one by one and require no service nodes for inter-
task communication. However, they all rely on SN1 in order
to access the common decoder state data. Without loss of
generality, we focused on the considerably complex DCT in
the PCM synthesis part of the MP3 decoder and separated it
to a concurrent task node (Figure 2, 4©). In order to be able to
introduce some temporal decoupling, we also parallelised the
processing of output samples (Figure 2, 5©). The corresponding
task nodes T N7 and T N9 require additional service nodes
SN3 and SN4 to define their communication.

The right hand side of Figure 2 shows the result of mapping
the application model’s task graph to a target platform model.
The platform model consists of five processing elements:
a software processor SW , a custom hardware component
HW , and an IP component IP . Two non-processing elements
complete the platform: a memory element ME and a router
element RE . The platform model is divided into two power

islands. One holds the custom hardware and the other one
governs all remaining platform elements. Task nodes can be
mapped to any kind of PE . We map the bulk of task nodes
to the single SW (Figure 2, C©). This mapping is valid,
because the sequential execution imposes a static schedule
on the mapped nodes. A static schedule is evident as each
exit port is bound to exactly one single activation port within
the set of task nodes. While the separated task node T N7,
which provides the DCT functionality, is mapped to HW
(Figure 2, D©), the task node T N9 with the output functionality
is mapped to IP (Figure 2, E©). Service nodes can be mapped
to SW , ME or register interfaces (Reg IF) of HW or IP
with a target socket (T S), depending on the mapping target
of its client task nodes. The service node SN1 that is related
to the shared decoder state data is mapped to SW as well,
respectively to its local data memory, in order to avoid bus
contention (Figure 2, B©). However, the input data related
service node SN2 is mapped to an external memory element in
order to accommodate the size of the input data (Figure 2, A©).
The inter-task communication related service nodes SN3 and
SN4 are mapped to the interfaces of the corresponding HW
and IP . This mapping is legitimate as both HW and IP
provide a target socket.

C. Extra-Functional Model

The timing and power properties are represented in a
common extra-functional model for all estimated platform
components HW, SW, and IP. The proposed extra-functional
model allows scalability for different operation conditions
(f, Vdd) per component, as defined by its associated Power
Island PI. Each Task Node T ∈ T mapped on platform
component X ∈ {PE ,ME ,RE}, written T → X , can be
modelled as an abstract state transition system with a set of
states ST→X (basic blocks), a set of Boolean Guards GT→X

(branches), and a state transition function ST→X ×GT→X →
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ST→X × ΓT→X . Each state is annotated with the tuple
ΓT→X = (Cycles,Capacitance). Cycles ∈ N0 is the number
of clock cycles, and Capacitance ∈ N0 is the average switched
capacitance in nF .

The execution of the functional model can be represented
as a use-case and data-dependent path through the possible
states. For the execution sequence from state/basic block si to
sj : si →∗ sj , with si, sj ∈ ST→X a trace of extra-functional
information γ0, . . . , γn, with γi ∈ ΓX can be obtained.
Given the clock frequency f at time t the duration d(γi)
of each state can be calculated as d(γi) = Cycles(γi)/f(t).
With this information an index function p(T → X, t) ∈
{Capacitance(γ0), . . . ,Capacitance(γn)} can be generated as
a lookup table to access the average switched capacitance of
component T mapped on component X at time t. With this
information the dynamic power consumption over time of task
T mapped on component X is calculated:

Pdyn(T → X, t) =
1

2
· Vdd(X, t)2 · f(X, t) · p(T → X, t)

For static power a leakage resistance model with Rleakage is
used to calculate the static power over time:

Pstat(T → X, t) = Vdd(X, t)2/Rleakage(T → X)

The total system’s power consumption over time is:

Ptot(t) =
∑

∀T→X,

X∈PM

(Pdyn(T → X, t) + Pstat(T → X, t))

D. Estimation & Extra-Functional Model Generation

The estimation and extra-functional model generation step
augments the functional input specification model with timing
and power properties. Depending on the user-defined mapping,
each task of the parallel application model is characterized
regarding its timing and power properties. During hardware/-
software task separation (Figure 1, d©) the functional C code
is extracted from each task for analysis of its timing and power
consumption. The following three sections describe the esti-
mation and extra-functional model generation for Software e©,
Hardware f©, and IP components g©.

1) Software: Timing and power properties of a software
task are analysed using the optimized target machine code of
the software. The results of the respective low-level analyses
are back-annotated to the source code of the program to
estimate its extra-functional properties during a system-level
simulation based on SystemC. As compiler optimizations often
obfuscate the relation between source code and target binary
code, matching both program representations to perform the
back-annotation requires an intricate analysis of the program
structure on both levels.

To overcome the issue of matching the structure of the
source code and the machine code, the design methodology
proposed in this paper uses the annotation approach described
in [15], [16]. This technique is based on the reconstruction
of compiler-generated debugging information and the dynamic
simulation of binary-level control flow. Modelling binary-level
control flow in parallel to the functionality of the software
allows the dynamic selection of annotations during simulation.
Thus, additional information can be used to select annotations

...
23 int i = 1;
24 for (int c= 0; c <= pow; c++) {
25 i = i * 2;
26 }
27 pot = i;
...

Target Compiler

...
0x8000 addi r1 r0 0x1
0x8004 addi r2 r0 0x0
0x8008 sub  r4 r3 r2
0x800C bez  r4 0x801C
0x8010 muli r1 r1 0x2
0x8014 addi r2 r2 0x1
0x8018 j 0x800C
0x801C str r5 r3
...

0x8000 → main.c:23
0x800C → main.c:24
0x8010 → main.c:25
0x8014 → main.c:24
0x801C → main.c:27

0x8000

0x800C

0x8010
0x801C

5 cycles
0.93 mF

3 cycles
0.42 mF

10 cycles
1.24 mF

2 cycles
0.20 mF

C/C++ Source Code Binary Executable

Binary-to-Source Mapping

Extract
Debug Information

Low-Level Timing &
Power Analysis

Instrumentation
Low-Level

Path Analysis

Annotated Control Flow Graph

...
23 int i = 0; bb (0x8000);
24 for (int c= 0; c <= pow; c++) {
25 i = i * 2; bb (0x8010);
26 }
27 pot = i; bb (0x801C);
...

Annotated C/C++ Source Code

void bb (int address)
{
...
if (lastBlock == 0x8000

&& nextBlock == 0x8010)
simulatePath (0x8000, 0x8010);

...
lastBlock = nextBlock;
}

Path Simulation Code

1)

2)

3) 5)

4)

void simulatePath (int lastBlock,
                              int nextBlock)
{
int cycles = 0;
int instr = 0;
double capacitance = 0;
switch (nextBlock) {
…
case 0x8010:
instr = instruction_count (0x8010);
cycles =
  pipeline_delay (lastBlock, 0x8010);
capacitance =
  switched_capacitance (0x8010);
  break;
...
}
consume (instr, cycles, capacitance);
}

Timing & Power Annotation Code

Fig. 3. Software Annotation Flow

more accurately while the program is executed. This enables a
precise consideration of compiler optimizations modifying the
program structure like loop unwinding, e.g. by correcting the
number of simulated iterations to compensate for the unrolling
performed by the compiler.

The complete annotation work flow for software tasks is
depicted in Figure 3. After a program has been cross-compiled
for the target architecture using a standard compiler (Figure 3,
step 1), the compiler-generated debug information is used
to relate the source code and the binary code (Figure 3,
step 2). Instead of using this information to relate source-
level and binary-level basic blocks for a direct annotation
of low-level properties, the proposed method only uses this
information for a tentative estimation of which source code
portions correspond to the binary-level basic blocks. For every
binary-level basic block, an equivalent source code position is
determined from this data. During instrumentation (Figure 3,
step 3), address references to the binary-level basic blocks are
added to the source code at the determined position.

The extra-functional properties of the basic blocks in
the binary code are obtained using an analysis of machine
instructions which considers the low-level effects on the target
processor (Figure 3, step 4). The execution time of each basic
block in terms of clock cycles is obtained using the commercial
timing analysis tool AbsInt aiT [1]. The power consumption
per basic block is determined using an instruction-dependent
power model generated through exhaustive simulation of the
processor RTL model [14]. The result of these analyses is an
annotated control flow graph of the binary executable. The
edges in this graph, which describe the transition between basic
blocks during an actual execution of the program, are labelled
with the execution time and switched capacitance required
by the respective sequence of machine instructions. Based on
the binary-level CFG, the program control flow on the target
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architecture is analysed to create path simulation code which
models the target-specific behaviour of the program (Figure 3,
step 5).

Compiling the instrumented source code and the path
simulation code for the simulation host yields a model of
the program which determines its execution time and power
consumption on the target processor. Using the markers that
were added to the original source code during instrumentation,
the path simulation code can approximate the path taken
through the binary executable. This reconstruction of binary-
level control flow is executed in addition to the functionality
of the original source code during simulation on the simulation
host and allows the dynamic selection of annotations. As
the path reconstruction is based on the binary-level CFG,
only feasible paths through the binary program are simulated.
By simulating the transition between basic blocks, the path
simulation can also consider structural differences between
source code and binary code. So not every marker in the
source code always results in the simulation of the respective
binary-level basic blocks. Instead, the path simulation code
can accumulate markers, for instance to model loop unrolling,
or completely skip them if they do not match an actual path
through the binary-level control flow graph.

2) Custom Hardware: To consider the challenges of cus-
tom hardware power-modelling we combine synthesis with
cycle-accurate simulation at RT-level and a subsequent phase
of basic block identification and power/timing annotation [8].
Based on the results of the synthesis, a characterisation of
the RT data path and the corresponding controller is per-
formed. Scheduling (determine order of operations), allocation
(determine required number of RT components) and binding
(assign operation to RT operator) phases performed during
synthesis inhibit a back-annotation to the original source.
Transformations and optimisations applied by the synthesis
phases do not allow to directly relate data path and controller
elements to statements of the original source code. In order
to deal with the significant differences between the original
source code and the resulting RTL description, no back-
annotation is performed, but an augmented C/C++ version
of the generated RTL model is generated automatically. This
model is functionally equivalent to the initial input source, but
in its internal structure it follows the generated RTL model,
allowing an accurate estimation of the behaviour in terms of
power and timing.

The characterisation and model generation flow is shown
in Figure 4. Using a high-level synthesis tool (PowerOpt), the
initial source code is transformed into a control and data flow
graph (CDFG) (Figure 4, step 1). The CDFG serves as input
for the scheduling, allocation, and binding phases (Figure 4,
step 2). The result of these phases is two-fold. First, an RTL
data path is generated that contains all operations and performs
the computation. Second, a controller is generated that controls
the data path. The controller itself is represented as an FSM,
whose inputs are given by the data path. The outputs of the
controller are used to enable registers and select the correct
inputs of multiplexers belonging to the data path.

Based on the RTL data path, hardware basic block (HBB)
identification and characterisation is performed (Figure 4,
step 3). An HBB is a set of RT components from the data
path that are jointly active. An HBB is defined by the com-
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Fig. 4. Custom Hardware Annotation Flow

bination of the actual state of the controller’s FSM as well
as the evaluation of the controller’s conditions. The conditions
themselves depend on the actual values obtained from the data
path. In simplified terms, an HBB can be considered as the set
of RT components that is required for providing the input to
the registers that are enabled by the controller in the particular
clock cycle. As a result of the functional simulation during
synthesis all values for each RT component are known. Since
an RT component might be used by several HBBs, the data
patterns that belong to the particular HBB are identified. These
patterns are then used for estimating the power consumption of
the particular component [13]. Since the real patterns obtained
from the simulation are used, data dependencies between
individual RT components are considered implicitly. In order
to support different supply voltages and frequencies as defined
by the power-islands, switched capacitance instead of power
dissipation is used to represent an RT component. This allows
re-positioning of the HW module in another power-island
without performing the characterisation again. The power value
is then averaged for all activations of the component. Switched
capacitance of an HBB is the sum of the average capacities
switched by all RT components belonging to the HBB. Along
with the average switched capacitance the number of clock
cycles for each HBB are annotated.

For virtual platform integration the controller model is
transformed into executable C/C++ code by means of a switch-
statement (Figure 4, step 4). This control structure activates,
i. e. calls the particular HBBs and computes the next state
of the FSM. The functionality of each HBB can be easily
obtained from the data path (Figure 4, step 5), since enabled
registers and values of all MUX-select signals are known for
the particular HBB.
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3) Hardware IP: Generic IP components delivered by
third-party vendors cannot be estimated like custom HW and
SW components. System-level simulation models of these
IP’s are typically provided as black-box executable models
(e. g. API to a compiled object-file). These black-box modules
usually contain timing but no power information. In order to
obtain at least approximate power values a simple monitor is
used which observes the component’s input/output behaviour.
Based on this observable activity a Power State Machine
(PSM) [12] inside the monitor is triggered.

IP Component

Transaction
Information

trigger

Register IF
Description

Power
Information

Op1

Opn
···

5 mW

7 mW
···

Datasheet
TLM-2.0 Functional Model

PrSM PSM

observe

state variables
Tracing

Fig. 5. Overview of Power-State Machine Model

A Power State Machine models the internal power states
and possible transitions between them through observing an
IP component’s interaction with its environment. For our PSM
approach (see Figure 5) we assumed that IP components use
a SystemC TLM-2.0 compatible interface using the Generic
Payload for communication with other system components.
TLM-2.0 models bus-based communication with memory-
mapped I/O, where transactions deliver data from initiator
(master) to target (slave) socket and from the target back
to the initiator socket. A transaction describes aspects like
protocol phase, base address, data length and the transmitted
data. To filter power state relevant information from the TLM-
2.0 transactions and to trigger state transitions within the PSM,
a protocol pre-processing automaton, called Protocol State
Machine (PrSM) is used. The states of the PrSM can be derived
from the bus protocol and the register interface description of
the IP component.

PrSMs and PSMs are modelled as a combination of Ex-
tended Finite State Machines (EFSM) and Timed Automata
(TA) to express time dependent power state transitions. The
PrSM gets triggered by TLM-2.0 transactions and emits events
to trigger the PSM. The PrSM’s state space can be extended
through state variables (EFSM). This extended state is shared
by the PSM with read-only access. The PSM states are
annotated with a timing invariant and static & dynamic power.
The timing invariant specifies after which time the state has
to be left, the dynamic power represents the average switched
capacitance, and the static power the leakage resistance for this
state of the IP component. The transitions between PSM states
are triggered by PrSM events and can be guarded by a state
variable (to model payload data dependencies on the internal
power state) and a clock/timer (to model time dependent power
transitions).

Power states of an IP component can be obtained from
IP datasheet power information (if available), an estimation
of the IP component’s size and functional complexity (top-
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namespace cplx {
 ...
 template <class derived>
 class base_tlm_initiator_wrapper
   : public sc_core::sc_module
 {
   public:
     template <typename T>
     void base_tlm_write(
       const sc_dt::uint64 addr,
       const unsigned int data_length,
       T* data,
       tlm_utils::simple_initiator_socket<
         derived> &socket,
       unsigned int &busCycles);
   ...
 };
}

Transactor for separated function

void dct32(const int in[32], int out[32])
{
  ...
  sc_core::sc_process_handle proc =
    sc_get_current_process_handle();
  sw_main_wrapper *initiator =
    dynamic_cast<sw_main_wrapper*>(
        proc.get_parent_object()); 
  ...
  /* write inputs: */
  for(i=0; i<32; ++i) {
    initiator->tlm_write<int>(
      addr_in, const_cast<int*>(&in[i]), ...);
  }
  ...
}

Thread process running annotated SW

void wrapped_sw_task()
{
  char* argv[] = {(char*)"sw_main"};
  // execute annotated sw:
  sw_main(1, argv);
  ...
  sc_stop();
}

Timing and Power annotated SW code

void simulatePath(int lastBlock,
                              int nextBlock) {
  int cycles = 0, instr = 0;
  double capacitance = 0;
  switch(nextBlock) {
    case 0x8010:
     instr = instruction_count(0x8010);
     ...
  }
  consume(instr, cycles, capacitance);
}

ca
ll call

sw_main_wrapper

Fig. 6. TLM-2.0 Wrapper Module for SW

down approach), or from RTL or gate level power estimation
(bottom-up approach) [11].

E. Virtual System Generation

During generation of the virtual system, annotated sources
from e© and f© as well as the selected models from g© are
combined to a virtual prototype (Figure 1). The annotated
sources for the HW and SW components have to be wrapped
in appropriate TLM-2.0 models. These TLM wrappers are gen-
erated based on an analysis of the source code from the input
specification. The generated wrapper modules must account
for different characteristics of the hardware and software.

TLM wrapper for annotated software: We assume that
a single function represents the entry point for every piece
of software, e.g. function main, and that software always
represents a master within the system. The functionality of
certain sub-routines might be provided by corresponding HW
accelerators. Furthermore, (implicitly) accessed data, like stack
variables, is assumed to be located in external memory. The
generated TLM-2.0 SW wrapper module therefore provides
an initiator socket that allows establishing the communica-
tion with subordinated service modules. Calls to sub-routines
that have been separated out from the software need to be
transformed into corresponding TLM-2.0 transactions. This
requires replacing the sub-routines’ software implementations
by transactor functions. Likewise, all accesses to data located
in external memory must be redirected to similar transactors,
conducting TLM-2.0 transactions for every access. Figure 6
gives an overview on a TLM-2.0 SW wrapper module. As the
software is supposed to run on some CPU core right from
the start after system initialisation, the wrapper module just
contains one thread process that simply executes the annotated
software code and stops a simulation run as soon as the
top-level software function returns. The transactor functions
(output and dct32 in Figure 6) are free functions that are called
from within the annotated software which itself runs as part of
the wrapper module’s thread process. For convenience, a base
class from a specialized library is utilized when generating a
new wrapper module. This base class also provides methods
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{
  while(true)
  {
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      m_buffer.toplevel_if.out.out);
    ...
    m_state = FINISHED;
  }
}

TLM2 protocol
interface

(b_transport)

hw_dct32_wrapper

Fig. 7. TLM-2.0 Wrapper Module for HW

(tlm read and tlm write) that can be used to issue TLM-2.0
transactions from within a transactor function. Derivation from
this base class reduces the size of the code that needs to be gen-
erated. For simplification, the current flow does not consider
re-allocated sub-routines when generating the TLM wrapper
for software. Instead, the transactor functions are generated
together with the wrappers for separated HW and need to be
integrated with the annotated software manually. In general
this only requires to ignore those sub-routines during software
annotation and to replace the original implementation with
the generated transactor code. The automated task separation
facilitates this kind of replacement by allocating every software
routine to a separate source file.

TLM wrapper for annotated hardware: In contrast to
software, models that represent hardware are assumed to repre-
sent slave components, providing functionality that is separated
out from the original software implementation. Therefore, the
generated TLM-2.0 HW wrapper module only provides a target
socket as its functional interface. The TLM wrapper holds
the annotated controller and data-path model described in
III-D2 as its sub-component and provides a thread process
that executes that model. As shown in Figure 7, the wrapper
module also allocates a buffer for storing inputs and outputs
of the wrapped hardware block. The input parameters that do
arrive sequentially, each within a single TLM-2.0 transaction,
are stored in this buffer until all inputs have been send by
the initiator and the wrapped functionality can be executed.
Analogously, the outputs are buffered as well and sent back
to the initiator in single TLM-2.0 transactions. The layout of
the buffer (size and address offsets) are derived from a struct
type that is also generated during the task separation step. We
use the TLM-2.0 base protocol with the blocking transport
interface for communication. A generic b transport method is
defined in a base class which is available from a library. As
in the SW case, the use of the base class reduces the amount
of code that needs to be generated. However, the details of
the wrapped hardware block, like input and output parameter
numbers and types, can not be considered in the base class’
generic b transport implementation. Therefore, the generated
wrapper needs to provide methods for reading and writing

parameters. These methods are used as callbacks from the
generic b transport method.

Integration: The timing and power annotated execution-
models for HW and SW are integrated with the remaining
timing and power characterized platform elements. In the
example platform model in Figure 2 these are: a TLM-2.0
router and a system memory model. For the MP3 decoder
example design we take these models from [18], wrap them
in TLM-2.0 modules manually, customize their timing be-
haviour, and extend them to monitor their power behaviour as
described in Section III-D3. The router model is configured to
provide the required number and type of sockets for connecting
the platform elements: a pass-through target socket that is
connected to the initiator socket of the SW wrapper module
and three initiator sockets for passing TLM commands to the
three TLM targets (HW, IP, and memory). As the design only
contains a single master, no arbitration logic is needed inside
the router.

F. Simulation and Tracing

During virtual system execution the extra-functional model
(Section III-C) aggregates and transforms the annotated cycles
and average switched capacitances of tasks mapped to SW,
HW, and IP components into traceable power information.
Depending on the workload different execution paths of the
functional model, leading to different extra-functional traces,
are possible. After simulation, the collected information can be
illustrated in a power-over-time diagram of the entire system
or as a power-breakdown per task or platform component (see
Figure 9).

Our annotations can be traced at different levels of gran-
ularity to allow a user-defined trade-off between simulation
speed and accuracy. On the most abstract level tracing res-
olution is on task closure granularity. In this mode, extra-
functional information is accumulated along the task execu-
tion sequence, also crossing component boundaries, includ-
ing communication via service nodes. This tracing implicitly
reschedules the system to a pure sequential execution, omitting
possible partial order relationships expressed in the parallel
application model. The next level of granularity is on commu-
nication granularity. Extra-functional properties are accumu-
lated and traced when accessing ports of service nodes, i.e.
when inter-task communication between platform components
is performed. For a deeper analysis of the timing and power
behaviour traces on basic block granularity of a CDFG for
HW and SW is also possible.

Analysis of timing and power traces allows an evaluation
of the chosen application mapping, the performance of the
architecture and the effects of the synthesis constraints. Differ-
ent design configurations or iterations with adjusted mapping,
platform composition and constraints allow multi-objective
design-space exploration.

IV. EXPERIMENTAL RESULTS

Applying the proposed methodology to our example MP3-
decoder design resulted in the virtual platform shown in
Figure 8. The virtual platform model consists of five TLM-2.0
modules: a SW wrapper with annotated software implementing
the main decoder functionality, a HW wrapper containing an
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Fig. 8. MP3-decoder Virtual Platform

annotated model of a hardware DCT, a memory for storing the
encoded input data, an AC97 related output component, and
a router for managing bus transfers between the components.
While the annotated SW MP3 decoder and HW DCT modules
were generated from the input specification as described in
Sections III-D1 and III-D2, the memory, router, and output
modules represent IP models whose internals are partly taken
from SCML2 [18] and whose timing and power behaviour
is made observable by adding monitors as described in Sec-
tion III-D3. The power annotations are based on average values
obtained from characterisations of corresponding models using
a 65nm technology. In accordance with the platform model
depicted in Figure 2, two power islands do exist in the virtual
platform.

The virtual prototype was used to compare different imple-
mentation variants. These variants include different operation
sequences of SW decoder and HW DCT and different configu-
rations of the power islands. The main goal of the exploration
was to put our methodology to a test, surveying whether a
power and timing estimation of the complete system is feasibly
and whether it is capable to show the effects of different system
configuration. In order to assess the benefit of moving the DCT
to hardware, we also examined a platform where the DCT is
implemented in software instead of custom hardware. Table I
lists the different prototypes that have been analysed. The

TABLE I. PLATFORM VARIANTS

ID Description Parameters Simulation Factor1

PM1 SW only PI0=(205MHz, 1.2V) 137

PM2 HW DCT, sequential PI0=(200MHz, 1.2V) 142

PI1=(200MHz, 1.2V)

PM3 HW DCT, parallel PI0=(200MHz, 1.2V) 163

PI1=(115MHz, 1V)

power island configurations shown in Table I are sufficient to
meet the real-time constraints of the system. We used about
1.1 seconds of audio data as input when simulating a platform
variant. The simulation of every virtual platform model variant
just took about three minutes, as shown by the simulation
factor in Table I. Variant PM1 that implements the DCT in
software requires a frequency of 205MHz in order to fulfill
the timing requirements imposed by the output component.
The frequency can be slightly reduced in platform model
PM2 when the DCT is performed in hardware and executed
sequentially. When parallelising the execution of software and

1defined as simulation time
simulated time

hardware DCT (PM3), the frequency of the power island
containing the CPU can not be further reduced.

Table II shows the estimated timings and power con-
sumptions for the different platforms, focusing on the PCM
synthesis of a single frame. The PCM synthesis covers task
T N6, service node SN3 and task T N7. When synthesising
a single frame, task T N6 request the execution of task T N7
via service node SN3 for 72 times. The exploration shows

TABLE II. TIMING AND POWER FOR PCM SYNTHESIS OF A FRAME
(2X36 SAMPLES, EACH WITH 32 SUB-BANDS)

ID Task Time Average Power Error

[ms] [mW] [%]2

PM1 DCT (72xT N 7) 1.16 9.51 3

rest (T N 6, SN 3) 4.48 6.39 3

PM2 DCT (72xT N 7) 0.04 1.81 4

rest (T N 6, SN 3) 5.35 6.49 3

PM3 DCT (72xT N 7) 0.07 0.72 4

rest (T N 6, SN 3) 5.35 6.49 3

that the DCT executes much faster when mapped to a custom
hardware block. The gained speed-up is minimal though, as the
functionality of the PCM synthesis that remained in software
consumes most of the execution time. Furthermore, bus trans-
fers for communication with the HW DCT add up to the cost.
The average power with respect to the execution time shows a
noticeable reduction for the DCT task T N7 when moving
it from software to hardware. Parallelising the HW DCT
allows to reduce frequency and voltage of its power island.
Though this increases the time required to perform the DCT
functionality, it further reduces its power consumption. Thus,
platform PM3 shows the best balance between performance
and average power consumption.

Figure 9 shows power over time traces for the tasks and
services involved in PCM synthesis. The traces have been
retrieved from platform variant PM3 and illustrate the extra-
functional behaviour during the decoding of the first two
frames. Due to the fact that it implements a rather small
portion of the decoding algorithm, the custom hardware is
idling most of the time. By contrast, the router also shows
activity when data traffic occurs because the software reads
from the memory or sends data to the output component. The
CPU, which displays the highest power consumption, is even
more active, as several parts of the decoding algorithm are
solely performed by software and require no interaction with
other components of the platform.

V. CONCLUSION

In this paper we presented a framework allowing rapid
virtual prototyping of heterogeneous embedded HW/SW sys-
tems under consideration of timing and power aspects. The
presented flow considers custom hard- and software as well as
third party IP components. For each of these different types
we have used state-of-the-art research tools for estimation and
source-level instrumentation of timing and power properties

2Absolute error of average power consumption compared to power-aware
ISS simulation for the software (T N6, T N7 in PM1) and gate-level
simulation for hardware (SN3 in PM1, PM2 and PM3 & T N7 in PM2

and PM3).
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Fig. 9. Power over time traces obtained from Virtual Platform (PM3)

for individual components. A generated SystemC TLM-2.0
prototype allows a fast and unitary simulation of the complete
system, thereby helping the designer to identify and eliminate
performance bottlenecks and power issues. Our framework for
rapid virtual prototyping at ESL can be used for early trade-
off between different design alternatives considering different
platforms, mapping alternatives, and power configuration/man-
agement strategies.

In addition to improving the simulation performance of
the presented techniques, our future work will address explicit
support for software run-time systems and multiple concurrent
applications. This allows the fast and accurate evaluation of
extra-functional system properties at high levels of abstraction,
while faithfully representing low-level effects induced by task
scheduling, hardware interrupts and dynamic power manage-
ment strategies, like clock and power gating of temporarily
unused subsystems. With this, an early optimisation and func-
tional validation of such dynamic effects under real workload
scenarios will become feasible.
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