
High-Level Hardware Specifications
Keynote Talk

DJ Greaves
Tenison EDA, University of Cambridge∗

Abstract

Programmers are good at writing single-threaded func-
tional and imperative code. Everybody is good at writing
and understanding rules. Why do hardware engineers per-
sist in writing massively parallel code using little more than
RTL?

I argue that mainstream automatic generation of hard-
ware from software designs and formal specifications is in-
evitable, but we ask why does the road seem so hard ?

1 Design Style Review

Programmers are good at writing single-threaded functional
and imperative code. Everybody is good at writing and un-
derstanding rules. It is well known that concurrent systems
are hard to think about, so why do hardware engineers per-
sist in writing massively parallel code using little more than
RTL?

The current holy grail for hardware and SoC development
is a tool flow to allow stepwise refinement from very-high
level, formal or behavioural models. These high-level mod-
els may accurately reflect the contents of RAM memories
and ‘user’ registers in terms of the interactions between
hardware and software, or possibly be higher still, taking
us into the zone known as codesign.

Codesign of embedded software and custom application-
specific instruction set processors (ASIPs) is today a reality
for certain tasks that were previously handled with standard
DSP processors, but this methodology has far from perme-
ated the mainstream of SoC design.

One thing that hardware designers need from their design
entry language is very-fine control down to the net and gate
level of synthesis. But they need this only rarely. The suc-
cess of Verilog and VHDL is that this level of coding is
supported, as well as higher levels, including mainstream
RTL.
∗djg@cl.cam.ac.uk

Designers commonly use the behavioural elaboration com-
ponents of Verilog and VHDL, where an imperative pro-
gram (using blocking assigns (Verilog) or variable assigns
(VHDL)) describes their intent. But the normal synthesis-
able subset limits them to updating each variable with eactly
one thread, and introducing each thread manually to gen-
erate a small number of gates (say 500 typical max). Fi-
nally, each thread is enabled once per clock cycle and the
tool chain gives zero support for synchronised data transfer
between threads. The only non-RTL feature normally avail-
able is pausing in the middle of the process loop and waiting
for a clock edge. Handle-C from Celoxica is more powerful
in some ways, because it has blocking interprocess commu-
nication along channels [8], but again the exact number of
clock cycles used and overall timing of the system are sim-
ply syntax driven, with hardly any scheduling being done
by the tool. In my own department, SAFL [10] is broadly
similar, but uses a subset of ML as the hardware description
language.

A mainstream commercial venture from Synopsys was the
Behavioural Compiler product. Here, the much-loved syn-
thesis semantics of VHDL and Verilog are slightly changed
to provide new functions. A neat and very desireable fea-
ture was the free-floating port groups, where the compiler
could insert its own pipeline delays, provided it preserved
the relative timing of control signals within a nominated set
of signals that make up the port. Of course, overloading
a much-loved language to give parts of it a new meaning
is hard to sell idea. It’s why people have referred to C++
a write-only language. To be fair, the tool also greatly ex-
panded the synthesisable subset beyond what was supported
before, but here I think they ran into a problem encountered
by other high-level synthesis providers: uncertain expecta-
tions. The users can no longer be sure what the tool will
generate or how to debug it. The CEO of one company
offering a C to Hardware tool complained to me that his
tool always generated a chip the size of a baseball field.
Nonetheless, these objections echo the remarks of the nean-
derthal 1960’s programmers who were frightened of aban-
doning predictable and comfortable assembly programming
and moving to FORTRAN.

A number of C to Verilog compilers do exist. I have written
one. This will accept basically all of C, except for floats
and pointers that cannot be resoloved to a particular array
at compile time. Multiple user threads are supported, but
one is not forced to use them everywhere, as in Verilog and
VHDL. Instead any variable can be updated any thread and
I even got as far as adding a test-and-set for semaphores.

I think all of these compilers operate by performing a sym-
bolic evaluation of the whole program as far as they wish to
go, and the writing out the result as a single logical cycle of
the system. In my compiler, I stopped symbolic evaluation
at user-inserted barrier instructions or where the equality of
array subscripts could not be determined at compile time.
The logical cycle is then mapped to physical time-space re-
sources such as ALUs and RAMs using various heuristics
and user inputs. In my compiler, the user can decide on the
number of RAMs and port functions on each RAM and then
map each variable or array into a chosen RAM as desired.
Without a mapping, the rule was that each array became
a single-ported SSRAM and each scalar a number of flip-
flops.

Bringing such a product to the EDA market place is not
easy, as the experience of a small number of notable start-
ups has shown. Indeed, there are both technical and com-
mercial barriers to adoption. With a 90nm mask sets at
$1.2M a throw, changing the design flow is always a risk,
and one must still make provision for legacy and third party
IP. In my view, those who are currently adopting SystemC
for architectural exporation will inevitably start using small
amounts of hardware synthesis from C in the future.

2 Bridging the Behavioural Design Gap

VTOC is a tool from Tenison EDA that converts an RTL
hardware design in Verilog or VHDL to an executable C++
model. It is mainly being used for rapid-prototyping, so that
programming teams for SoC are able to test out their soft-
ware without depending on any hardware: neither a tapeout
or other emulator.

The users of VTOC aspire to the behavioural modelling and
stepwise refinement methodology, but today most of the
conversion from spec to RTL is done by hand using real
engineers. However, the use of SystemC for architectural
exploration is in trial at a number of companies and certain
have used VTOC to generate a SystemC model from the
RTL to plug back up into the architecural model for proof
of concept or design iteration.

VTOC is cycle-accurate at the register level, which implies
it is also accurate at the bus transaction level (BTL) and
memory view level (MVL), but it is actually these second
two aspects that the programmers want, since they have no
knowledge of the internal registers anyway. In the future,

VTOC may abandon register-level modelling but preserve
BTL and MVL. This is a research topic inside Tenison.

With Alan Mycroft, I have coined the term ‘erosion’ to
mean the opposite of refinement. What Tenison is doing
is eroding the RTL details away so that the programmers
get a completely accurate model that should conform to the
design spec if the RTL coders got it right.

3 Declarative Design

Most of the hardware designs I have worked on are used to
ship data. Quite frequently, in a buggy RTL design, the last
bit of a packet may get corrupted, or perhaps the byte after
a frame-alignment boundary may get duplicated. These are
data conservation errors. A basic rule for data handling is
that the data is preserved by default, regardless of its actual
value. The use of such rules leads us to consider a declara-
tive design system.

A lot of real hardware design involves stitching together
sub-modules, bought in as external IP. Common bus struc-
tures for SoC, such as AHB [7] from ARM, can help, but
really we should use a design language where components
can be joined to each other with flow control and bus width
conversion as primitive, automatic operations. A small stan-
dard library of protocol conversions will indeed handle most
common situations, including FIFO buffering and crossing
clock domains. Note: such a language will only be suc-
cessful if all existing design methodologies are also easily
available (i.e. gate level, RTL and behavioural elaboration).
New research on behavioural type systems to describe the
terminals of structural components for software systems [6]
can be adapted to automatic synthesis of structures for in-
terconnecting ports of various types.

In recent years, a number of papers have presented synthe-
sis from formal methods [1, 3, 4, 2]. Although this seems to
be the right track, there is much work to do, including all as-
pects of integration with existing design flows. For success
we need fine-grained mixing.

We might go further and think of a whole gammit of use-
ful features to pile into a system design language. These
include advanced abstract data types such as sets, and com-
plex algorithms such as stable-marriage scheduling. Af-
ter all, most of system design comes down to trading off
time and space, by which I mean, generating a schedule of
the available resources (space) that runs with the lowest la-
tencey (time).

So I have argued that a small number of appropriate threads
with upcalls and so on are much easier to think about (i.e.
staff who can deal with them are less costly) than today’s
massive user-level parallelism in today’s HDLs. But I fur-
ther believe that declarative programming with rules is po-
tentially easier (provided all other, prior methodologies are

2

also seamlessly available!). The good thing about rules is
that they do not come in any order and rules from disparate
sources are easily aggregated. The resulting system is either
unbuildable (rules inconsistent) or generatable as a counter-
example from a model checker or other planning engine. I
have done a small amount of work on this under the title Or-
angepath [9]. For instance, I directly used the output from
a SAT solver to generate the programming bit-stream for
a fictional FPGA. The resulting hardware did the job, but
only the inner core of the SAT solver perhaps knew how,
why or which bits of the resulting design were totally un-
neccessary!

Right now, I am experimenting with a system design lan-
guage (called H2) where the use can describe various facets,
such as protocols, interfaces, structural compositions and
basic nodes. A basic node might be a flip-flop or ALU,
that can only serve one purpose at a time. Facets can be
specified in a wide variety of ways, from direct imperative
programming, through regular expressions, to macro gen-
eration from the results of an integer linear programming.
The user brings together a number of such facets and a
model checker (or other planning tool) generates a sched-
ule of their use which is compatible with all the pertaining
declarative rules.

4 Conclusion

In summary, I believe that automated reasoning (AR) will
play a much greater part in tomorrow’s system design flow.
Today it is limited to theorem proving for (semi-)automatic
checking of hand-engineered designs, but while silicon ca-
pacity remains cheaper than brainpower there is no reason
why systems should not be completely generated by AR
planners. Although these techniques apply to codesign de-
cisions at the highest level, there is also a major role for
them to play at intermediate levels of abstraction, such as
generating schedules.

References

[1] Behavioural Transformation for Algorithmic Level IC
Design IEEE Trans CAD Vol 8 No 10, 1998.

[2] DSS: A Distributed High-Level Synthesis System. J
Roy, N Kumar, R Duta, R Vemuri. IEEE Design and
Test of Computers June 1992.

[3] An Approach to the Synthesis of HW and SW in
Codesign. V Carchiolo, M Malgeri, G Mangioni. Pro-
ceedings IEEE/IFIP/ACM 5th International Work-
shop on Hardware/Software Codesign, Braunschweig
(Germania), 24-26 March 1997.

[4] Prototyping of VLSI Components from a Formal

Specification Roderick McConnell. Inria Report PI-
865.

[5] Confluence tutorial and reference manual. Tom
Hawkins. http://www.launchbird.com.

[6] Behavioral Types for Component-Based Design. Ed-
ward A. Lee and Yuhong Xiong. Memorandum
UCB/ERL M02/29. EECS, Berkeley.

[7] AHB bus AMBA Specification. Arm Limited.
[8] Page I. and Luk W. Compiling Occam into Field-

Programmable Gate Arrays. Seemingly unpublished,
available
from ftp://ftp.comlab.ox.ac.uk/pub/Documents/techpapers/Ian.Page/ hw-

comp.ps.gz

[9] Greaves, D.J. Generic System Synthesis for Eternal
and Ubiqui-
tous Systems. Computer Laboratory SRG Talk. Slides
http://www.cl.cam.ac.uk/users/djg/wwwhpr/optalk/obj/index.html

[10] Mycroft, A. and Sharp, R.W. Higher-Level Tech-
niques for Hardware Description and Synthesis. In-
ternational Journal on Software Tools for Technology
Transfer, 2003 (to appear).

3

