
Synthesis of Glue Logic, Transactors,

Multiplexors

and Serialisors from Protocol Specifications.

DJ Greaves

University of Cambridge, Computer Laboratory

Cambridge, UK.

David.Greaves@cl.cam.ac.uk

MJ Nam

University of Cambridge, Computer Laboratory

Cambridge, UK.

mjn31@cl.cam.ac.uk

Abstract—Today’s system-on-chip (SoC) systems must be
designed as quickly as possible by integrating IP blocks from
diverse suppliers. In this paper, we present a new automata-
based algorithm that automatically synthesizes glue logic
for SoC fabrication and Transaction-level modelling (TLM)
transactors for SoC modelling. Our approach introduces
a new encoding for state variables which captures data
conservation property and supports simple point-to-point
connections as well as those the perform functions such as
multiplexing, filtering and serialising.

I. INTRODUCTION

The large scale and complexity of today’s system-on-

chip (SoC) demand inventive techniques and tools that

simplify the design and verification process. There are sev-

eral approaches to shorten time-to-market, and widely used

approaches are IP reuse and transaction level modelling

(TLM) [7]. IP Reuse simply means reusing some pieces

of the existing designs. TLM is an electronic system level

(ESL) modelling concept that allows designers to abstract

hardware signals to higher-level operations. At the TLM,

functional calls can be used to execute read/write opera-

tions, and also the functionality can be modelled using a

higher-level descrption and more abstract data objects. IP

reuse enables the team to leverage the cost and verification

across multiple designs and is proven to increase design

productivity. TLM has been also increasingly adopted

for advanced SOC design and verification to address the

limitation of pure RTL modelling methodologies.

The key element of the reuse of IP blocks and TLM

is to make the IP blocks as close to plug-and-play as

technically possible. Manually adapting these interfaces

is tedious and may cause errors, hence, there is a need for

automated interface synthesis both in the same level and

the mixed-level communications. This paper is aimed at

automatic interface synthesis adapting two incompatible

interfaces in the same level or in the mixed-level. A

common framework is presented that can be used both

for automatic synthesis of glue logic between IP blocks in

SoC design, between TLM models during modelling and

for and of initiator and target TLM to net-level transactors

during mixed mode simulation of a SoC. The framework

extends the well-known product synthesis method by

ranging over symbolic dead/live values. We also show how

the technique can be applied to multi-way connections that

implement multiplexing and/or serialisation.

TLM Client
(Initiator)

TLM
Target

CPU RAM

TLM to net
XACTOR

Glue logic

TTY
Model

OCP
BVCI bus

UART RTL IP Block

ISA Bus

Deserialising
XACTOR

TLM call

RS-232
data

TLM
system bus

putchar(c)

net-level

net-level

baud

Fig. 1. Example using three (denoted with asterisks) applications of
our method.

Our contributions are the symbolic extension to the

product method (§IV) and its use for transactional-level

models (§VI).

Figure 1 illustrates a typical situation where our tech-

nique can be used in three different places as part of a

system model and for synthesis. A high-level model of a

CPU connects to its memory and I/O sub-systems using

TLM calls. While one I/O component of interest is a

legacy UART with ISA connections, the SoC architecture

uses the OCP BVCI ports on IP blocks, therefore, there

must be a net-level glue logic interfacing between BVCI

and ISA. Also, we need a transactor connecting the net-

level BVCI port to the TLM processor model. This paper

shows how to generate both of the glue-logic and the trans-

actor. The third application of our technique is to generate

a high-level model of a receiving UART that makes a

software call to the workstation putchar method for

each character deserialised. Our technique works with

any mix of synchronous and asynchronous participants,

provided all synchronous participants share the same clock

domain. The first two cases mentioned above deal with a

communication bewteen one synchronous and one asyn-

chronous participant (BVCI is a synchronous protocol.),

and the third case is between two synchronous participants

(both ends of the serial link were clocked from the same

baud rate generator).

II. RELATED WORK

Automated interface converter generation has been ad-

dressed in the literature from different perspectives. We

focus on work done in the context of small subset of real

hardware design based on Finite State Machine (FSM)

models.

In the early work [2], protocols were presented as

FSMs, and their cross product was used to construct

a converter. This approach was later extended, and be-

came the foundation of much work in interface synthesis

problem. Sangiovanni-Vincentelli et al [11] synthesized a

converter FSM, based on selecting the non-deadlocking

paths through the cross product of a pair of FSMs. These

machines can be composed synchronously, where they

both move at once, or asynchronously, where they take it

in turns. Interface synthesis using a SAT solver to populate

a fictional FPGA was presented in [10].

There have been approaches to extend FSM-based con-

verter problem with datapath issues. The early work by

Gajski defined ‘Finite State Machine with Datapath’ [9]

in a semi-formal way, and the paper [6] inspired by

this work proposed more formalized definitions of the

notions of assignments and statuses. In the paper [8], the

work was extended with datapath width adaptation. The

authors of [1] introduced the data path state machine which

captures data path dependencies in the converter problem

between two synchronous hardware modules with data

communication protocols.

Transactor generation methods for cross-level communi-

cation (TLM-RTL) has been proposed in [3] [4] [5]. These

approaches are also based on finite automata. [3] proposed

a methodology where protocols manually described in a

formal language, Property Specification Language (PSL)

are transformed into a FSM, followd by the synthesis

of simulation code, while Extended Finite State Machine

(EFSM) are exploited in [4]. The methods proposed in

both papers require designers to fully describe the for-

malism of the protocols. [5] presented a technique to

automate the transactor generation for RTL IP components

to be reused in TLM systems. The protocol information

are extracted from testbenches by exploiting the EFSM

models. This methodology assumes that RTL testbench is

implemented with RTL IP components, that is a manual

process.

III. PROTOCOL DESCRIPTION

In this section, we show the structure of the system

that we deal with. A system consists of a number of

components that desire to communicate with each other.

The basic unit of concurrency is a finite-state automaton

(FSA). Each component is connected via a net-level or

TLM interface that obeys an associated protocol specified

by a protocol FSA, of which we have full knowledge. The

protocol automata, in turn, receive input from unspecified

circuitry elsewhere in their component (later called fv)

Protocol P = Loop of (ρ) where
ρ = Eq of α ∗ α list // Parallel assignment

| Seq of ρ list // Sequencing
| Disj of ρ list // Non-deterministic branching
| Next // Wait one clock (same as Eq nil.)

where α is an integer expression ranging over the interface nets (Table II).

TABLE I
ABSTRACT SYNTAX FOR THE PROTOCOL CAPTURE LANGUAGE USED

IN OUR EXPERIMENTS, GIVEN AS AN ML-LIKE DATASTRUCTURE.

and, from our point of view, these inputs can be changed at

any time. According to context, we sometime use the term,

‘participant’ to denote one of the participating protocol

automata and sometimes to also range over the joining

automaton.

In general, many different input language constructs

are useful for protocol and transactor specification. These

include a wide range of commercial and experimental

temporal logic and assertion languages. In our experi-

ments, we used a combination of automatic and manual

conversion from various sources to a common protocol

representation with abstract syntax tree shown in Table I.

Each protocol, P is represented as an infinite loop of a

node ρ that is a recursively defined structure using three

forms. An ‘Eq’ node defines a list of pairs of expressions

which must be pairwise equal when the node is executed.

For example, if one half of a pair is an output or local

variable and the other half is an expression that is a

function of inputs, then they are made equal with an

assignment that copies the expression to the output or

local. If one half is an input and the other is a constant,

then the node can only be executed when the input has

that value. This is a direction-agnostic style of participant

description, in the style of IP-XACT [12]. Whether a

particular net is an input or output varies according to

the direction of instantiation of the associated interface.

A ‘Seq’ node defines ordering of events and a ‘Disj’

node defines forking paths. A fourth node ‘Next’ is used

for synchronous protocols where a clock cycle must be

consumed while no part of the interface changes, but this

is shorthand for ‘Eq nil’. Expressions may be paired

with user predicates that must be satisfied at the time

the expression is evaluated. Each participating protocol is

readily compiled into a protocol automaton whose state

is the interface nets augmented with a program counter

variable that ranges over the ‘Seq’ nodes and any extra

local state that might be needed. For a synchronous

product, transitions are taken on the active edge of the

clock and for asynchronous product, at any time. Hence,

a protocol FSA is defined as a tuple,

M =< Σ, V, S, Sinit, Sidle,∆ > where,

- Σ: a non-empty set of symbols (the input alphabet),

- V : a set of state variables that each range either over a

concrete enumeration or a fixed, finite set of symbolic

expressions,

- S: a finite set of states defined by the cross product

of V ,

- Sinit ∈ S: a initial state

- Sidle ⊂ S: a set of idle states (includes initial state)

- ∆ : S × Σ → S: a state transition function

The initial predicate Sinit holds for only one setting of

V that corresponds to the start of day, reset state. Some

protocols have more than one idle sate. An example is the

two-phase handshake that attaches meaning to changes of

net value and has two idle states: P idle = Req==Ack.

The conventional way to represent states and signals of

FSM in RTL is with boolean vectors. In this work we

introduce symbolic values. Each variable of our FSA has

either a symbolic or a concrete value. Concrete variables

range over a finite enumeration type. Symbolic variables

are registers each of some width in terms of bits, but the

bit values are run-time data. During our procedure (i.e. at

compile time), symbolic variables are assigned either dead

(denoted with ⊥) or live with some symbolic expression

α. Borrowing terminology from optimising compilers, a

symbolic variable becomes live when a new value is stored

in it and is killed to dead at its last read before the next

write.

The input alphabets Σ, that are also Moore output

functions of other connected FSAs are predicates over the

concrete and symbolic values of the other state vectors.

Certain predicates are routing and filtering conditions

needed for certain connection patterns. The combinations

of values out of our interests can be abstracted away by

assigning predicates to them.

Once an FSA is defined, it is relatively trivial to map

the FSA form to synthesisable RTL, a structural netlist, or

net-level RTL. In generated SystemC TLM models, how-

ever, threads instead of signals pass between components.

SystemC transactional modelling can be projected as a

FSA quite easily if we make the restriction that every

TLM method call is non-reentrant and called from only

one point, in which case every return is just a jump. To

make the projection, we introduce a call active flag into

the converter state vector for every TLM interface. This

boolean variable is initially clear, and it is set for a target

entry point when the thread is logically ’inside’ the joining

FSA, and it is set for an initiating upcall when the thread

is abroad. The formal parameters and return values to the

calls are just additional symbolic or concrete variables that,

for simplicity, are only used in one direction of the call and

hence they are part of the state vector of the one FSA that

writes to them (i.e. they are updated by its NSF, except for

the death of symbolic variables, which as already stated,

is an operation performed by the reader).

Our procedure automatically creates a certain amount of

state for the converter in proportion to the product of the

participants’ states, however, some combinations require

additional states such as holding registers in the converter.

For instance, any converter that behaves like a mailbox or

FIFO queue requires additional internal storage. In these

cases, our approach requires the user to add sufficient state

resources to fulfil these needs, but tends to avoid using

excess such resources when not needed, and fails when

insufficient resources were made available.

In order to generate a joining machine for the mixed-

level communications, we also should consider asyn-

chronous and synchronous issues. There are two styles

of hardware glue logic: asynchronous and synchronous.

Asynchronous systems do not use a shared clock be-

α = ⊥ (dead)
| Dn (n-bit register)
| α | α′ (bitwise OR)
| α << N (constant left shift)
| kill(α) (kill expression)
| (α, Puser(α′)) (expression guarded by predicate)

TABLE II
ABSTRACT SYNTAX FOR EXPRESSIONS HELD IN SYMBOLIC VALUES

AT COMPILE TIME.

tween the participants whereas there is such a net in

a synchronous solution. Asynchronous protocols include

the Centronix parallel port, and other similar protocols

based on a four-phase handshake, such as the VME bus.

Synchronous protocols, such as AHB and OCP BVCI

are commonly used in SoC design. The TLM style is

asynchronous but commonly transactors for synchronous

protocols are needed, hence requiring the product of an

asynchronous and a synchronous participant.

IV. DATA-CONSERVING CONGRUENCE

For common transactors and pieces of glue logic, we

simply require that the result be data conserving: i.e. that

it does not drop or repeat any item of data. More-advanced

joining patterns include the demultiplexer, the multiplexer,

the filter, the serialiser and the deserialiser. We implement

these as generalisations of the data conserving product.

Our main contribution is a unification algorithm that

implements common data movement patterns. For concrete

nets, there is a natural congruence between an arc of an

FSA that drives the net with an arc of a receiving FSA

that is guarded by that net being driven to that condition.

For symbolic nets, we implement data movement, where

a live symbolic value is reduced directly to dead or

to a form with less live data that will then be further

reduced. Each reduction may be associated with a user-

provided predicate that ranges over the actual contents of

the symbolic variable at run time. These guards enable

common filtering, routing and multiplexing operations to

be expressed.

For brevity, we present only a few forms for the

congruence algorithm to range over (Table II), but a richer

system should be provided for serious use.

Where a symbolic variable goes live in the input specifi-

cation it takes on a user-provided value of α. For instance,

for serialising or deserialising a 32-bit value over an 8-

bit bus, the 8 bit bus would go live with D8 and the

32-bit bus would go live with ((((E8 << 8)|E8) <<
8)|E8) << 8)|E8. Where a destination should only accept

data that conforms to some predicate then it will go live

with (Puser condition(Dn), Dn).
The congruence procedure C (Figure 2) accepts input

and output abstract syntax trees for the symbolic argu-

ments, α and ω, where ω may receive some or all of the

live data from α. C returns a triple containing actions to

effect the transfer, a guard expression that must hold if

the transfer is to be performed and a remainder α′, that

represents the left over contents of the input register after

executing the commands. Actions are just assignments. In

simple cases, α′ = ⊥. If unification fails, then the returned

guard is false.

let rec C = function

| (Dn, D′

m
) → ([D′

m
:= Dn], n=m, ⊥) // Width match

| (α, Pu(ω)) →
let (c, g, α′) = C(α, ω)

in (c, g ∧ Pu(α
′), α′) // Predicate

| kill(α) →
let (c, g, α′) = C(α, ω)

in (c, g,⊥) // Kill

| (αl | αr, ω) →
let (c, g, α′) = C(αl, ω)

in (c, g ∧ (α′ = ⊥), αr) // Serialise

| (αl, ωl | ωr) →
let (c, g, ω′) = C(α, ωr)

in (c, g ∧ (ω′ = ⊥), ωl) // Deserialise

| (α<<N , ω) →
let (c, g, α′) = C(α>>N , ω)

in ([(α>>N)/α]c, g ∧ (α′ = ⊥),⊥) // Shift out

| (α, ω<<N) →
let (c, g, α′) = C(α, ω)

in ([(ω<<N)/ω]c, g ∧ (α′ = ⊥),⊥) // Shift in

Fig. 2. Core algorithm of the data-conserving congruence/matching
that generates guarded commands to move data from α to ω (ML-like
pseudocode).

The order of serialisation is syntax-directed in this

simple version of the algorithm. The left-hand operand of

every source disjunction is sent first and the right-hand

operand is received first, allowing the same expression

to denote both the sending and receiving end of a seri-

aliser/deserialiser pair.

Some data is not conserved by the converter. It is locally

consumed. This occurs in filters and where data has been

tested with a predicate and is no longer needed (such as

high-order address bits). The kill(α) construct is used in

these cases. For convenience, it behaves as an identity

function in terms of its return value, allowing us to write

the address decoding predicates for the BVCI to ISA glue

(32 to 20 bit for memory and 32 to 16 for I/O) as

Pismem(A) = kill(A >> 12) == 0xFF0

Pisio(A) = kill(A >> 16)== 0xFF10

V. OVERALL PROCEDURE

Our procedure (Figure 3) starts with a master XML file

where the user lists the participants that need connecting.

Our tool instantiates the interfaces with their associated

protocols from a library held in the form of Table I along

with user predicates. Net directions for a net-level interface

are specialised according to whether the overall interface

is an input or an output. The net-level inputs to a target

are the outputs of an initiator, and vice versa, except for

certain nets, such as reset and clock, that are always inputs

and sourced from external third parties. A TLM port must

be specialised to be either an invokable target (entry point)

or an initiator that invokes a remote method (upcall). We

expect that commonly the participants are selected from a

library (e.g. in IP-XACT style) of standard protocols and

IP blocks.

RTL
(verilog)

Interface 1Protocol 1

Interface 2Protocol 2

Interface 3Protocol 3

Participants

Synthesisable
SystemC

TLM
SystemC

3. Select
Preferred
Design

2. Live
Path Selection

1. Successor
Search

Additional
Resources

Composite State
Vector Encoding

Concrete 1

Symbolic 1

Concrete 2

Thread
Minimisation

Initiator/target

TLM/Net-level

Forward/Reverse

Port Specialisations Master
XML
File

Fig. 3. Flow Diagram for our Method.

As well as instantiating protocols and interfaces, the

master XML file may invoke additional resources, includ-

ing holding registers and the state bit. Additional resources

are typically not provided with a protocol automaton that

restricts their pattern of use, hence they can be freely used

in the converter if needed.

A composite state vector is created that consists of the

concatenation of the state vectors of the protocol automata

of the participating components, the predicates of client

FSAs and of the user-provided resources. An encoding

converts the composite state vector to a single integer, n,

so that it can be used to index an array, recording which

states have been processed.

In phase one, starting from the value of n that represents

the reset state of all machines, successors are explored

recursively until the reachable state space is discovered.

The product of automata can be formed in three basic

ways: synchronous form, asynchronous turn taking form

or stuttering synchronous form, where each participant

non-deterministically moves or not, provided at least one

does. A synchronous product is appropriate when all of the

participants are synchronous. Asynchronous turn-taking

form might seem appropriate for asynchronous partici-

pants, but cannot be used since our data conservation

rules require that, in a single transition of the product

machine, a symbolic register in one participant goes live

1. Q = { Initial state }; Result = ∅;

2. select s ∈ Q-Result; Q := Q - { s };

3. B := {(s, s′)|∀σ ∈ P(fv).∀mc ∈ P(M).δ =⋃
m∈mc

Em(s, σ)fv ∧ s′ = δ/s}
4. T := {s′′|∀n ∈ Z

+.∀(s, s′) ∈ B∧δ = Cn(s, s′)∧s′′ =
δ/s′}
5. Q := Q ∪ T-R; R := R ∪ T;

6. if Q=∅ then return R else goto 2

Fig. 4. Successor product forming for phase 1.

while the register the data was sourced from, generally

in another participant, goes dead. This is not possible

within the asynchronous product, so we use the stuttering

synchronous product.

Figure 4 outlines the product search algorithm, where

fv is all possible settings of the client inputs (including

autonomous go dead/live changes), and δ/s denotes up-

dating state s with changes δ. The algorithm maintains a

queue of states to explore, seeded from the initial state.

For each state, for every possible change of external

inputs, for every possible stuttering combination (mc) of

participants, the successors are found and added to the

results and queue if not already considered. Note that T
includes s because no input changes and no execution of

any participants are parts of the respective powersets. The

intermediate potential transitions set, B, is processed by

the symbolic congruence function C, to produce the final

set of successors. For efficiency, in our implementation,

those with manifestly invalid guards are deleted at this

stage, rather than later on. We also save the commands

from the algorithm, rather than running it again in a

subsequent phase, but for clarity of presentation, this is not

shown. Instead Cn(s, s′) denotes all changes to symbolic

variables needed for a data conserving transition from

state s to s′ achieved with n successive applications of

the congruence algorithm (Fig. 2) with their commands

composed and conjunction of guards. The search over

increasing n is terminated as soon as invalid guards are

generated.

Em(s, σ) denotes the changes produced by stepping

participant m ∈ M in state s with external inputs σ.

In phase two, we find the live states of the product

machine by eliminating all those that lead only to dead

ends. The method used is to create successive iterations

of the product machine where each state is only retained

if any of its immediate successors were present in the

previous generation. When two iterations are the same,

only infinite paths remain. Then, we form the intersection

over each setting of fv of the result of eliminating sub

loops that do not satisfy the idle state predicate of at

least one participant. This uses a depth-first search from

the initial state that records what idle states have been

encountered at what level and discards any back arc to a

state that records the same pattern of idle states.

In phase three we generate a basic-block machine by

collapsing successive product states where outputs are

changed but no input is tested. A basic block is a sequence

of assignments to outputs with a conditional branch to

successor basic blocks as the last stage. The basic block

while(1)

{ // Wait in next line only present when synchronous.

wait (posedge clock);

switch(pc)

case 10:

if (g1) { v1=e1; v2=e2; ... pc=20; }

if (g2) { ... pc=34; }

break;

case 20:

...

case ...:

}

Fig. 5. Typical structure of raw transactor code before thread optimi-
sation.

while (1)

{

do { sc_wait(0, SC_NS); } while (callstate != active);

RC = remote_port.call(ARGS);

callstate = idle;

}

Fig. 6. Additional thread to make a TLM initiating port using its own
dedicated thread (unoptimised).

machine will typically have a number of branches to

different successors that cannot be distinguished by their

branch condition. Indeed, a number of them may be

unconditional. If there are any unconditional ones then

all of the conditional ones are discarded. If there are

only conditional branches, they are collated according to

equivalent branch conditions. In each group of arcs that

share the same guards, any of the members would result

in a correct design and we are free to select the most

desirable of them. A rank function M = 3∗C−10∗G+D
generates a figure of merit for each arc, where G is the

number of clauses in the guard expressions, D is the

number of differences in state variables and C is the

number of data movement operations. A higher value of

M loosely denotes an arc that performs more useful work.

Hence, for each guarding condition shared by a number

of arcs, we retain only the highest ranked behaviour.

The generated converter is a finite-state machine that

can be readily output as an RTL or SystemC infinite loop

containing a case statement that dispatches over a variable,

PC, which ranges over the integer codings of the utilised

product states. For a synchronous converter, the loop is

made to wait for a clock edge at the start of each iteration

by inserting the appropriate target language construct. For

medium to large converters, the range of values and hence

number of bits in the PC may become excessive even

though it is sparsely used, so it must be re-encoded for

hardware or SystemC implementation. The general form

is illustrated in Figure 5. Of course, we also output the

appropriately handed (input, output or local) declarations

for the participant nets so the converter can be installed

directly as glue logic in a system on chip implementation.

VI. TLM OUTPUT GENERATION

Our second contribution explains how we modify one

or more of the interfaces of our net-level converter to be

a TLM transactor.

The raw form from phase 3 consists of one thread

that communicates using shared variables for all I/O. We

RC tlm_target(ARGS)

{

args = ARGS;

callstate = active;

do { sc_wait(0, SC_NS); } while (callstate != idle);

return RC;

}

Fig. 7. A stub to make a blocking TLM entry point (unoptimised).

while(1)

{

switch (pc)

{

case 10:

if (callstate == active) { C10cmds; }

if (g1) ...

break;

case 90:

if (g2) { C90cmds; callstate = idle; pc = 10; }

break;

}

}

Fig. 8. Typical structure of raw transactor code before thread optimi-
sation.

convert certain ports so that they invoke or can invoke

TLM-style methods, where the method calls can optionally

be conveyed over TLM2.0 convenience sockets. For each

of the participants that was a TLM protocol, there is

a corresponding call state variable assigned or tested in

the machine. For initiator participants the call state will

be assigned active by the converter (in one of its ‘v=e’

assignments) and tested to see whether it has returned idle

(in one of its ‘if (g)’ tests). On the other hand, for a

target participant, the call state variable is tested for being

active and assigned back to idle by the glue machine.

To render the converter as a SystemC initiator style

transactor a thread must make the TLM call. Initially,

we consider providing a separate thread for this and then

explain how the original thread could be used instead, in

some cases, as an optimisation.

As shown in Figure 6, the new thread for the initiator

executes code consisting of an outer infinite loop that waits

for the original thread to set the call active state and then

makes the call. On return from the call it clears the active

state flag. The code for the new thread is completely

boilerplate, except for the name of the TLM method it

calls and the arguments passed, which can be configured

in a variety of ways (e.g. from IP-XACT) and in our

experiments these were taken from the XML interface

description of the TLM participant. Note, the zero wait in

the unoptimised version could be replaced with a longer

wait that would improve efficiency when our subsequent

optimisation fails or, better, as kindly pointed out by a

reviewer, we could usefully make callstate a SystemC

event that would then be visible to the scheduller.

Similarly (Figure 7), for a TLM target entry point, we

first off let the initiator invoke a boilerplate stub that sets

the call active flag and then spinlocks, waiting for it be

set idle again by the main thread.

Now we optimise where possible, so that the main

thread for a target is eliminated with its work being per-

formed by the initiator’s thread when it would otherwise be

spinning. Additionally, in some cases, where a transactor

is both a TLM initiator and a client, our optimisation may

RC tlm_target(ARGS)

{

callstate = active;

pc = 10;

switch (pc)

{

case 10:

C10cmds;

if (g1) ...

break;

case 90:

if (g2) { C90cmds; return RC; }

break;

}

}

Fig. 9. Using a TLM target’s thread to execute the converter automaton.

STROBE

DATA8

ACK

STROBE

DATA8

ACK

STROBE

DATA8

ACK

DEMULTIPLEXOR
CONVERTER

PUTCHAR(char c)

TLM
Target

CENTRONIX
TRANSACTOR
CONVERTER

STROBE

DATA8

ACK

PUTCHAR(char c)

TLM
Target

SERIALISING
TRANSACTOR
CONVERTER

STROBE

DATA4

ACK

D8/c

active/call

DEAD/c

idle/call

TLM CALL WITH ONE ARGUMENT
STATE DIAGRAM

STROBE

DATAx

ACK

FOUR PHASE HANDSHAKE
NET-LEVEL PROTOCOL TIMING DIAGRAM

EXPERIMENT 1 EXPERIMENT 2

EXPERIMENT 3

PUTCHAR(char c)
TLM
Target

MAILBOX
STYLE

CONVERTER
EXPERIMENT 4

c = GETCHAR()
TLM
Target

TABLE III
PARTICIPATING PROTOCOLS AND EXPERIMENTAL CONFIGURATIONS.

enable all of the internal work as well as the initiating

upcall to be performed on the thread provided by the

client. Using pattern matching on the abstract syntax tree

of the converter code (i.e. before it is emitted as SystemC)

we detect where one thread is spinning doing nothing,

while another thread is working and the other thread needs

do nothing when the first thread is not spinning. Figure 8

can be optimised to become Figure 9 where the pattern

matching has detected that only one state waits for the

callstate to be active (state 10) and that there is only

one state that sets it back to idle (state 90), and that the

idle setting state transfers control only back to the active

waiting state.

Where multiple TLM ports exist, these peephole opera-

tions can be applied in some order, but one might preclude

another.

Although our code fragments show the optimisations for

the blocking style of transactional modelling, generating

the non-blocking style follows a similar pattern, with

false being returned instead of spinning at a target and

making repeated calls until success for an initiator.

VII. EXPERIMENTAL RESULTS

Experiments with protocols and interfaces are sum-

marised in illustrated in Table III.

Experiment 1 took the product of a TLM client with

signature putchar(char c) with a net-level output

Exp Participants Product Converter SystemC
concrete no. states no. states no. lines
states no. explored live paths

1 4× 6 = 24 72 71 1070
2 4× 6 = 24 123 123 1848
3 6× 6× 4 = 144 575 575 14198
4 4× 4× 2 = 32 325 324 7534

TABLE IV
EXPERIMENTAL RESULTS

port using the centronics-style four-phase handshake.

Experiment 2 was a serialising version of experiment 1,

where the net-level port was only four bits wide and hence

two transfers are needed for each TLM call.

Experiment 3 was a net-level demultiplexor, where a

four-phase input port connected to a pair of four-phase

output ports and traffic was routed according to a user

predicate that examined the least significant bit of the data.

Experiment 4 was a mailbox component with two

blocking TLM entry points, one for writing a character

and the other for reading back. This experiment requires

an additional resource, a holding register, but an additional

state bit resource to record whether the holding register is

live or dead was not needed, since such a bit is intrinsic

to the encoding of symbolic variables that take on two

symbolic values.

The columns of the results table (Table IV) show the

number of concrete states of each participant, the number

of states explored, which is larger owing to symbolic

values, the number of states retained owing to being on

live paths that loop through idle states and the number

of lines of SystemC generated. The results indicate that

no deadlocking paths were deleted in phase 2 for these

participants considered. The relatively large output files

arise owing to all possible interleavings of external events

being explicitly represented.

The results table presented at the conference will in-

clude lines for the three components of Figure 1 and

perhaps report on some real-world tests.

VIII. CONCLUSION

We have extended the product technique for glue logic

generation so that it builds data paths for run-time data

values, including multiplexors, filters, serialisers and de-

serialisers. (The filter is a demultiplexor with an internal

port that just invokes kill(α) on the data it receives.) We

have demonstrated automatic synthesis of TLM modelling

components within the same framework.

Future work is to perfect input from IP-XACT and

integrate our tool as an Eclipse ‘tightly-coupled gen-

erator’. This would enable, for instance, the interface

net names and the numerical constants in the address

decoder predicates to be sourced from other generators

during SoC compilation. Also, optimisations to reduce

the output complexity are required. These can be based

on any technique that combines converter states that are

observably equivalent.

Another requirement in practice is some form of ‘brand-

ing’ because currently there is nothing to stop the glue

from crossing over the address and data busses in a write

operation where each have the same width.

Instead of implementing the thread optimisations as pat-

tern matching peepholes on the AST for the converter, they

might better be implemented by compiling the converter

to an assembly-like language and inserting the relevant

transfers of control (entry labels, subroutines calls and

return statements) in the assembly code. Additionally,

the phase 3 heuristic that selects between the suitable

converter machines can be enhanced to make these op-

timisations more readily applicable. For instance, on a

TLM server, the call may go idle at various points without

altering the correct behaviour, but if it goes idle at an early

point, while there is still ‘work to do’ then the optimisation

cannot be applied.

A useful improvement to the congruence algorithm that

could assist with hardware timing closure would be to

prohibit certain data paths. For instance, the solution to

Experiment 4 transfers data directly between the input and

outputs in the case that both are active at once, whereas

a simpler design with shorter critical path would always

pass the data through the holding register.

REFERENCES

[1] “Synthesis and optimization of interface hardware between ip’s
operating at different clock frequencies,” in ICCD ’00: Proceedings

of the 2000 IEEE International Conference on Computer Design.
Washington, DC, USA: IEEE Computer Society, 2000, p. 519.

[2] J. Akella and K. L. McMillan, “Synthesizing converters between
finite state protocols,” in ICCD ’91: Proceedings of the 1991

IEEE International Conference on Computer Design on VLSI in

Computer Processors. Washington, DC, USA: IEEE Computer
Society, 1991, pp. 410–413.

[3] F. Balarin and R. Passerone, “Functional verification methodology
based on formal interface specification and transactor generation,”
Design, Automation and Test in Europe Conference and Exhibition,
vol. 1, p. 213, 2006.

[4] N. Bombieri and F. Fummi, “On the automatic transactor generation
for tlm-based design flows,” High-Level Design, Validation, and

Test Workshop, IEEE International, vol. 0, pp. 85–92, 2006.

[5] N. Bombieri, N. Deganello, and F. Fummi, “Integrating rtl ips into
tlm designs through automatic transactor generation,” in DATE ’08:

Proceedings of the conference on Design, automation and test in

Europe. New York, NY, USA: ACM, 2008, pp. 15–20.

[6] D. Borrione, J. Dushina, and L. Pierre, “Formalization of finite state
machines with data path for the verification of high-level synthesis,”
in SBCCI ’98: Proceedings of the 11th Brazilian Symposium on

Integrated circuit design. Washington, DC, USA: IEEE Computer
Society, 1998, p. 99.

[7] M. Burton, J. Aldis, R. Günzel, and W. Klingauf, “Transaction
level modelling: A reflection on what tlm is and how tlms may be
classified,” in FDL, 2007, pp. 92–97.

[8] V. D’silva, A. Sowmya, S. Parameswaran, and S. Ramesh,
“A formal approach to interface synthesis for system-on-chip
design,” University of New South Wales, Sydney, Australia,
Tech. Rep. UNSW-CSE-TR-304, 2003. [Online]. Available:
citeseer.ist.psu.edu/582933.html

[9] D. D. Gajski and L. Ramachandran, “Introduction to high-level
synthesis,” IEEE Des. Test, vol. 11, no. 4, pp. 44–54, 1994.

[10] D. Greaves, “Automated hardware synthesis from formal specifica-
tion using sat solvers,” RSP, vol. 00, pp. 15–20, 2004.

[11] A. L. Sangiovanni-Vincentelli, T. A. Henzinger, L. de Alfaro, and
R. Passerone, “Convertibility verification and converter synthesis:
two faces of the same coin,” iccad, vol. 00, pp. 132–139, 2002.

[12] S. C. (www.spiritconsortium.org), “IP-XACT version 2.0,” 2006.
[Online]. Available: www.spiritconsortium.org

This paper was presented at Forum on Description

Languages 2010, FDL’10, Southampton, UK. This version

has BibTeX entries corrected in 2019.

