
Using a .NET Checkability Profile to Limit Interactions between Embedded
Controllers

David J. Greaves∗, Daniel Gordon,
Atif Alvi †, Tope Omitola

Computer Laboratory, University of Cambridge

Abstract

Within a closed domain—such as a railway train, chem-
ical production line, vehicle or home of the future—
concurrent applications running in embedded controller
units (ECUs) and on servers share many common sensors,
actuators and feedback paths through the physical part of
the domain, while having to abide by common, basic live-
ness and consistency rules to ensure proper operation of
that domain. This paper suggests that all ECUs must ex-
port a summary of their behaviour using a restricted subset
of .NET bytecode and that the programming constructs used
by all participating controllers must abide within a common
upper bound so that automated formal checking of domain
as a whole is possible. The upper bound is defined as a
Checkability Profile.We describe the ROM and RAM costs
of implementing this approach in one of our prototypes: a
CD/DVD player for the home of the future.

Keywords: CLR, .NET, Pervasive Computing, Incremen-
tal Model Checking, Application Digest, Feature Interac-
tion.

1 Introduction

CIL (Common Intermediate Language) bytecode is used
in the Mono and .NET systems (www.mono-project.com)
and has been standardised (ECMA-334). A wide variety
of compilers exist and the resulting binary files may be run
on any CLR (Common Language Runtime) execution plat-
form. In this paper, we propose to use CIL to reflect the be-
haviour of embedded firmware so that interactions between
embedded controllers may be predicted. We also show how
to embed assertions in the bytecode that must hold when a
device joins a community and which can ensure safe opera-
tion under network failure.

Prior work in automated checking of co-operating con-
trollers has frequently assumed that the population of con-

∗David.Greaves@cl.cam.ac.uk
†Supported by the Higher Education Commission of Pakistan.

trollers is static and that sufficient system testing or formal
checking is applied before the system goes live. In a fu-
ture of pervasive computing, the population of concurrent
applications that wish to share a common pool of sensors
and actuators will be dynamic. The example used later in
this paper is of an audio-visual and HiFi system in a home,
where devices containing embedded applications may be
added or removed at anytime. A technology is required that
enables real-time or near real-time checking of the system
safety and liveness properties so that little or no delay is
introduced to the system evolution.

Formal proof methods require that the complete system,
including sensors, actuators, applications and real-world
feedback effects, is modelled using a common formal-
ism. Unfortunately, there is no widely-accepted or widely-
applicable formalism that is amenable to automated reason-
ing. Indeed, there is a trade off between expressibility and
checkability in the selection of a formalism, because when
the language is more expressible, undecidability is intro-
duced. There are two fundamental dimensions to the com-
plexity of a computer program: the formal model of the
code and the amount of the code. Standard formal models
include finite-state, pushdown, linear, octagon, Peano and
Turing complete. Measures for the amount of code have
less rigorous mathematical definitions, but one can count
the number of instructions in a given language, or number
of states and transitions or growth order, and so on. Given
a system description in one of these formalisms and some
safety and liveness checks that need to be dispatched, one
must manually select the best combination of formal proof
methods, such as model checking, predicate abstraction,
symbolic trajectory analysis and automated theorem prov-
ing. It is not our aim in this paper to define actual checka-
bility profiles. Instead, we use only one, namely the finite
state profile, along with a framework that can encompass
other profiles in the future. We envisage that all partici-
pating embedded and server-based applications in a domain
will conform to a common checkability profile and hence
be checkable, provided an appropriate checking server is as-
sociated with the domain. This approach is similar to code

Host / Server

Domain
Manager

ECU

Sensor

Actuator

Plant
Model

Sensor

SensorActuator

Actuator

Plant
Model

Application
Bundles

...

ECU

ECU

Checker

Domain boundary
(eg CAN bus or IP subnet)

New ECU
with ROM’d

bundle

New
Actuator
Pebble

New
Sensor
Pebble

New
Bundle for

Host/Server

Departures

Arrivals

Real-world
feedback
effects

Figure 1. Domain of Sensors, Actuators
and Applications under the scruitiny of the
Checker on the Domain Controller.

profiles currently used in safety-critical systems for Ada and
C++ [1, 7] but differs because we concentrate on the formal-
ism needed to execute the programs rather than the syntactic
constructs used to write them.

In general terms, we expect profiles to be arranged in a
partial order, with a given automated checker at the domain
manager being able to check all programs below and in-
cluding a given complexity. This assumption motivates the
use of CIL bytecode as the description language. Given the
relatively long lifetime of certain hardware devices, suchas
control valves and television sets, we expect checking ca-
pabilities to grow greatly while they are deployed. Using
a scale of complexity profiles over a full language, such as
CIL bytecode, we make the system future-proof, allowing
future application programs to get arbitrarily close to being
undecidable, while still checkable when connected to old
equipment.

2 Proposed Architecture

In our approach, space is divided into domains and de-
vices are prevented from sending commands over the net-
work in a domain until their internal application(s), the
canned application bundle(s), has/have been validated by a
domain manager. In order to do this, they offer anapplica-
tion digestwhich is a description of their active behaviour,
so that automated reasoning techniques can be run before
granting a bundle the right to send commands. There are
many potential forms of application digest: in this work
we investigate the costs of reflecting the key behaviour of
the device using CIL (.NET) bytecode, lightly embedded in

XML, over HTTP.
As illustrated in Figure 1, a domain corresponds to a

community of participating applications that are sharing re-
sources and which may interact in various intended and un-
intended ways. A simple domain is typically a physical
space, such as a house, vehicle or factory. We have con-
sidered the need for nested and dynamic domain bound-
aries, but that is beyond the scope of this paper. The man-
ager uses a summary of the behaviour of each component to
check whether the components are compatible. Each com-
ponent may also offer assertions that it wishes to be held in
any domain it joins. Finally, there are a number of stand-
ing rules of each domain, including one that prohibits com-
mand conflicts. In a basic approach, devices join a domain
using a first-come, first-served discipline, where assertions
over domain behaviour introduced by one device may pro-
hibit the joining of a subsequent device. Using priorities
and ejection, the dependence on arrival order can be arbi-
trarily reduced, but further discussion of that is also beyond
the scope of this paper.

To make effective use of today’s automated reasoners,
such as model checkers, we must reduce the complexity
of applications and write them in a stylised way that con-
forms to a target checkability class. We use an architecture
where, as far as possible, networking complexity is served
from a standard library, calledtuplecoreand the I/O devices
contain as much functionality as possible. The I/O devices
are calledpebbles. They include all sensors and actuators.
We use the termapplication bundleto denote an applica-
tion written in this way. The term was used because our
current checking technology converts the application to a
list of concurrent, finite-state rules.

To fit within our initial, finite state, checkability class,
bundles additionally posses the following properties:

1. All network naming and binding operations are per-
formed by rewriting the bundle before launching it.

2. All variables have a discrete range.

3. All dynamic storage allocation is done in a start-up
phase, before a main process loop is entered (this in-
cludes forking threads).

4. All array sizes and heap and stack use are determined
before the main process loop of a thread.

However, we envisage these restrictions will be relaxed in
future checkability classes.

Pebbles themselves are self-contained hardware or soft-
ware objects that fulfil a certain task. A Pebble can repre-
sent a fairly large chunk of functionality: it could be a hard-
ware component, such as a wall-mounted keypad or a fire
alarm klaxon, or it could be an entirely virtual component
hosted somewhere on the network, such as a speech recog-
niser. Pebbles do not invoke operations on or interact with

Unbound
bundle
(.net)

Ontology
server

Domain manager

Rewrite
formals

with actuals.

Reasoner
(model

checker)

Rehydrator

Execution platform (CLR)

HTTP
FROM
ROM

HTTP
FROM

FILESERVER

Tentative
bound
bundle

Reject Other bundles from
domain

Figure 2. Rehydration of a bundle.

other pebbles—interaction is left to bundles. Pebbles are
like a combination of a device and its device driver. An ap-
plication digest may be exposed by a pebble to describe its
internal reactive behaviour or known effects on other peb-
bles.

Application code supplied in the ROM as part of a de-
vice may already be bound to control the local pebbles in-
side that device. Other bundles may be supplied inunbound
form, ready to be hosted on servers in the domain should
they be needed. We use the termrehydrationto denote the
process of taking a bundle of code, rewriting formal device
addresses in the code with bindings of actual devices, and
firing up the rewritten bundle on a server (Figure 2). The
code that implements dynamic binding is therefore an ‘out-
of-band’ system-wide service and so not checked on the fly.
The bundle itself is consequently simplified and much eas-
ier to check. An unbound bundle might be rehydrated sev-
eral times, each time with different bindings, to control a
multitude of similar pebbles in a domain.

Each ECU contains a network interface, TCP/IP stack
and a tiny web server. The webserver serves XML
and canned stylesheets for when the XML is viewed in-
side a browser. The webserver could also export pic-
tures for visual user interfaces. Platforms beacon every
few seconds using an XML message containing basic de-
vice information, sent on the local UDP broadcast address
(or equivalent mechansim on the CAN fieldbus). These
infrastructure subsystems provide the basic facilities of
UPnP to enable device location, registration and descrip-
tion of internal pebbles, bundles and infrastructure com-
ponents [6]. Beaconed information is stored as soft-state
in the domain manager using the Protéǵe ontology server
(http://protege.stanford.edu/) and deduction rules
in the ontology server can trigger rehydration. For exam-
ple, presence of a smoke sensor and a klaxon can start a fire
alarm service.

Adding this level of functionality to the lowest-level

Pushlogic Other languagesPushlogic
compiler

.net
Compiler

Bound
bundle

Unbound
bundle

Device ROM

mono
ilasm

coff
extractor

Native
H8S

object
files

To domain
fileserver

Figure 3. Tool Flow.

components in a system is questioned on cost grounds.
However, studies have shown that the major cost is XML
parsing [5] which is avoided in our solution, where code
running from low-level ROM only emits XML. We report
the full costs for an actual device in § 4.

3 Reflecting the Embedded Code

Although we advocate reflecting the behaviour of bun-
dles using CIL bytecode, we retain freedom of implemen-
tation within the actual ECU. It can either execute the exact
same bytecode that is reflect as the application digest, or
it can execute a binary/JIT version of the same, or it can
execute a more elaborate program that bi-simulates the re-
flected program in terms of externally visible activity.

In our practical work so far, the devices export their CIL
code verbatim as their application digest (Figure 3). CIL
executable code is relatively concise and its metadata table
structure is also highly compact. The metadata consists of
symbol tables containing definitions of fields, types, meth-
ods, classes, custom attributes and so on. The digest is ex-
ported over the network using HTTP GET commands to the
embedded web server. The exported files are an XML en-
coding of the CIL.text region from their coff file format
and the XML is generated on-the-fly from the canned bi-
nary image of the bundle. The pebble descriptions are also
XML strings and, likewise, are generated on the fly from a
ROM data structure.

When a CIL bundle starts, static fields occurring in the
bytecode that are flagged with CILcustom attributesare
mapped to tuplecore variables for network I/O. Custom at-
tributes are the defined way of extending CIL. They allow
embedding of non-functional information. The attributes
are revealed during code reflection but during runtime exe-
cution the code itself is structured to always obey any con-
straints designated by the attributes. We use attributes to
denote the allowable range of variables and to describe the

default behaviour of components when network disconnec-
tion occurs, so that we can reason about fault conditions.
Custom attributes are also used for thread sensitivity infor-
mation to specify which threads to unblock on which tu-
plecore events (button pressed, packet arrived and so on).

Assertions are either summaries of the current bundle or
else integrity requests about the domain behaviour that must
be met before the bundle (or entire device/service) joins the
domain. A number ofsystem standing assertionsare de-
fined for all domains prior to system start-up. These are suf-
ficient to avoid feature interaction. Assertions are encoded
as methods that are not necessarily called from the main
thread or any thread forked from it. The simplest assertion
method returns a non-blocking 0 or 1 for fail/pass. This is
suitable for safety predicates. If desired, they can be turned
into run-time monitors using a simple library. Liveness as-
sertions can take this form too but can only be checked with
static tools. Assertions with a temporal component to them
need to block on some event that the library or reasoner can
detect and treat as a next state operator. A dummynext()
function is provided for that purpose. Temporal path quan-
tifiers are likewise coded as higher-order functions that take
their own type as an argument.

4 CD/DVD Player Prototype

We have constructed a number of prototypes for a home
of the future. Here we report on the software costs associ-
ated with implementing our approach in a CD/DVD player.

The player has no audio or video output facility of its
own. Instead, it routes its output through back-panel AV
and Ethernet sockets. It has two physical buttons on its
front panel that direct its output over the Ethernet. The but-
tons are permanently labelled with room names: kitchen
and lounge. Suppose there is a second such player, perhaps
elsewhere in the house. There is a clear possibility that both
devices can be asked to send their media to a common out-
put device that might only be able to handle one stream at a
time. This sort of problem is commonly called afeature in-
teractionand it frequently arises, in one form or another, in
pervasive computing environments. Feature interactions are
manifest either as oscillations or violations of safety and/or
liveness conditions [2]. The case of two conflicting media
streams directed at one target is a safety issue. A standing
safety condition of the domain is that there are no conflicts
between applications. Therefore, if a second application
counter-commands a first, the first should be amenable to
this situation in terms of its programmed behaviour, i.e. it
must have a way of backtracking. For instance, it might
compensate by stopping to send its stream. For the player, a
liveness rule might dictate that there is always some route to
opening the media drawer; otherwise the owner may never
get his disc back.

Our prototype was constructed using the box, power sup-
ply and front panel from a commercial CD player but with
the mechanism and main circuit board replaced using an
ATAPI DVD drive and a 10 MHz Hitachi H8S processor
with NE2K Ethernet port. We had 1 Mbyte of RAM on
our processor card, but a commercial product needs to use
as little RAM as possible to minimise silicon area. Mask
ROM is generally far less expensive than RAM and our
ROM use, shown in Table 1, is not considerable. (ROM
code footprints for windows CE are around 0.5 to 1.0 Mbyte
(msdn2.microsoft.com/en-us/library/aa913762.aspx)).

The player usesminiclr, a cut-down common language
runtime we developed that executes CIL bytecode where the
support for each possible .NET instruction can be condition-
ally included or excluded from the machine. A static scan
of the bytecode determines which of the 208 CLR instruc-
tions are needed in the ROM image for the player. Most of
the real work was implemented in native C code in the tu-
plecore and the pebbles and so only 25 different instructions
are needed for the player. It has to support only static fields,
integer arithmetic, boolean connectives and comparison of
enumeration types. Missing instructions include those for
handling floating point, pointers, exceptions and objects.
No garbage collection is required since there is no dynamic
storage allocation (beyond bundle start-up). The bytecode
was generated with the SPL1 Pushlogic compiler [3] that
guarantees finite-state code and which also generates de-
fault code to handle execution conflicts between different
bundles, performing what it calls apushback.

As illustrated in Figure 4, the player contains the follow-
ing architectural components:

• Display Interface PebbleA VFD display for hours,
minutes, seconds and miscellaneous status.

• Keypad PebbleThirteen push-to-make keys.

• Timer Pebble A standard device present on all Auto-
HAN execution platforms.

• Mechanism PebbleThe CD/DVD mechanism.

• Bound Bundle CIL bytecode bundle: already
checked.

• Unbound Bundle CIL bytecode bundle for use once
authenticated.

• Infrastructure Network interface, tuplecore, miniweb
web server, miniclr bytecode interpreter.

The architectural components of the device have only two
things in common: first, that they are physically imple-
mented inside the same casing and so share common re-
sources, such as the microprocessor and power supply, and
second, that they are joined together to function as a whole
by the bindings of the canned application.

Transport Controls Keypad Play LED Pause LED

EJECT PLAY PAUSE STOP LOUNGE KITCHEN

Keypad
Pebble

Emedded OS

Miniclr: CIL Interpreter

CD/DVD Mechanism

Multimedia
Stream

Rear Panel
Outputs

Home
Ethernet

Ethernet
MAC/PHY

Power Supply

CPU
Counter/

Timer
Timer

Pebble

Bound
Bundle

Unbound
Bundle

Canned Application Bundles Display
Pebble

Tuplecore

TRACK INDEXMIN:SEC

H8S 16/32
bit processor.

Mechanism
Pebble

BEDROOM OTHER

802 DHCP AutoIP

Beaconing ARP RTP

UDP TCP

MiniWeb

.xslIP

Figure 4. CD/DVD Player Block Diagram

When the device is switched on, each non-infrastructure
component beacons on the network interface and registers
itself with network services. The bound application con-
tains hardwired addresses for the local pebbles and can thus
commence execution without contacting the domain man-
ager over the network. It is authorised to do so since it has
no pro-active behaviour over the network on external peb-
bles. The pro-active behaviour of the device is to send me-
dia streams to the labelled designations, lounge and kitchen.
These operations are not allowed until after the device has
been checked for feature interaction by the domain checker.
In addition, these functions require binding of the buttonsto
their targets. Therefore, the unbound bundle implements the
additional functions once rehydrated. As shown in Figure 2,
it is fetched by the domain manager, rewritten with device
bindings and then run on any suitable host, provided it is
compatible with the other bundles, their constraints and the
standing constraints of the domain. The player itself could
potentially run this bundle as well, once rewritten, but we
instead run it on another CLR at the domain manager. The
tuplecore library gives sufficient location transparency for
the same bundle bindings to be used in either location.

Table 1 shows the ROM and statically allocated RAM
use for each software component of the player. The TCP/IP
implementation waslwip from SICS configured to use 16
pbufs and 8 TCP connections. Since tuplecore and beacon-
ing use UDP, the maximum number of TCP connections
needed for the infrastructure is just 1, assuming one do-
main manager is reading just one reflected segment at once.
When a web browser is also directed at the player, it can
use two connections because it may suspend XML fetching

Figure 5. Prototype DVD/CD Player.

while getting an embedded stylesheet.
The heap space used was tracked by annotating the mem-

ory manager to log active use on a serial port and this is plot-
ted in Figure 6 as the player booted, beaconed and had its
canned files read out by the domain manager. A total of up
to 5 KB was used. 3 KB was used on the stack. The largest
RAM consumer was the Ethernet packet buffers, and one-
third of this was devoted entirely to handling IP fragmenta-
tion, hence commonly wasted. Overall, we predict our sys-
tem will comfortably run on a processor with 32K RAM,
which is less than is commonly devoted just to the anti-jog
buffer in a portable CD player.

5 Checking Procedure

Although we are advocating an architecture for generic
checkability, in this section we demonstrate a specific
checking result for the player. A number of proof tools

Name Description ROM RAM
crt.o C runtime system 396 0.3% 0

Pioneer.o Main,Keypad Pebble, Upcalls 6832 5.8% 40
libc.o C library 3340 2.8% 16

socket.o Sockets library 4572 3.9% 4
threads.o Thread library 1680 1.4% 8
cdrom.o Mechanism Pebble 4382 3.7% 4
timer.o Timer Pebble 260 0.2% 0
isapnp.o Address binding 4824 4.1% 0
pbuf.o Buffer handling 2586 2.2% 3316

tcpudp.o TCP + UDP protocols 19023 16.3% 18
netif.o Layer 2 protocols 1478 1.2% 12
mem.o Memory allocator 1814 1.5% Fig 6

ip.o IP protocol 5526 4.7% 7396
arp.o ARP protocol 3342 2.8% 4

ne2k.o Ethernet driver 4200 3.6% 26
autoip.o Auto IP protocol 1004 0.8% 0
libcio.o RS232 debug port 466 0.4% 0
vdf.o Vacuum Display Pebble 1126 0.9% 2

tuplecore.o Tuplecore library 18473 15.8% 1176
ramfs.o Web server and filesystem 10508 9.0% 4

bcreflect.c Bundle reflection 3476 2.9% 0
miniclr.o CLR interpreter 16930 14.5% 12

Subtotal machine code + RAM total 116238 100%
pioneercanned.o IL bytecode 26052 0

Canned html and stylesheets 4384
miniclr.o CLR opcode tables 2052

Total ROM Code 148726

Table 1. ROM and RAM Memory Use Breakdown (excluding stack)

Figure 6. Player Heap Memory versus Time
(bytes).

specifically exist for checking CIL bytecode, but we used
software that converts CIL programs to hardware circuits
and then checked the resulting circuits.

Formal methods applied to digital electronics have been
successful at checking large finite state machines. In ad-
dition, there has been much study of generating hardware
designs from software programs, including CIL programs
generated from C# [4, 8]. These algorithms attempt to re-
duce arbitrary software code to hardware finite-state ma-

chines. The basic techniques require that the code sequence
behind the main entry point consists of a linear or unwind-
able, non-blocking, start-up path that forks all other threads,
performs all binding operations and allocates all static ar-
rays and all of the dynamic storage that is going to be used,
followed by an infinite process loop which implements a
labelled transition system (LTS).

Our domain manager collects the application digests, in
CLR form, from every ECU and server, converts them each
to LTS form and then performs input chain and cone-of-
influence reductions. These reductions greatly minimise the
aggregate LTS size. They find certain sub-machines that
can be replaced with unspecified inputs and by removing
anything that cannot have any effect on the proof goals.

Execution of CIL constructor ‘.ctor’ methods is in-
cluded in the start-up path. The start-up path is split off
from the main process loop by running an interpreter on the
code up to the first blocking primitive or to the top of the
first loop that cannot be unwound (for reasons of it being
infinite or the number of trips depending on run-time data
values). The main process loop of each thread is converted
to LTS form by defining a sequencer. The sequencer is an
automaton with a state defined for each blocking primitive
and for each .NET program label that is the destination for

more than one flow of control. The I/O operations and op-
erations on local variables performed by the program are all
recorded against the appropriate arcs of the sequencer.

The bound bundle from the player contains 9539 CIL
instructions. However, these are all deleted by cone-of-
influence and input chain trimming. The unbound bundle
contains only 72 CIL instructions, many of which are only
executed when the bundle is hydrated. The unbound bundle
has a state space of just 27 states. This bundle was read by
the domain manager and replicated 99 times to generate an
artificial scenario containing 100 players. The domain man-
ager currently uses finite-state model checking using either
Spin, NuSMV or its own BDD package. With NuSMV ver-
sion 2.3.3 on a 1.3 GHz linux platform, a conflict between
the bundles was found in 5.8 seconds using just over a mil-
lion BDD nodes. Arithmetic operations in the bound bundle
are only used to increment and decrement track numbers,
and hence the bundle may be classified as linear. A tighter
classification is finite-state, since the track numbers are lim-
ited to the range 0 to 99. In future work we will experi-
ment with other checkers and perhaps define corresponding
checkability classes.

6 Conclusion

The API to our networked DVD/CD player is much like
that for previous DVD/CD players from HomeAPI, UPnP or
HAVi, but we have restricted the XML parsing to save RAM
costs. The overheads associated with the other non-binary
coded protocols, such as HTTP, are clearly not prohibitive.
Indeed, complete webservers are reported running in 64K
address maps (www.d116.com). Implementing full UPnP
with XML parsing is probably too complex for cheap ECUs
[5, 9], so we avoided it.

High-integrity systems that are correct by con-
struction are an alternative, such as using Pacc
(www.sei.cmu.edu/pacc), but these cannot handle
dynamic and ad hoc systems. Unlike approaches that effec-
tively define a syntactic subset of a given language, the use
of CIL allows any language which has a suitable compiler
to be used. Proof carrying code enables a particular proof
to be reproduced at a later date, whereas our approach
restricts the code such that a large number of automated
proofs are readily possible. Whereas previous approaches
have required system evolution to be restricted and integrity
to be maintained by non-electronic means, our approach
supports fully automatic maintenance of system evolution.

The tuplecore and pebble abstractions allow a com-
plex, distributed system containing complex software to be
viewed in potentially simple terms, with correspondingly
simplified application bundles. We are able to expose the
essential behaviour of the system for automated reasoning
without getting side-tracked with complex networking and
binding code.

Because rehydration is controlled using formal rules held
in an ontology server, we can reason in advance about cer-
tain evolution steps, thereby reducing the amount of real-
time checking needed,

Furture work will look at precomputing information
from application digests to assist with rapid incremental
model checking and assume/guarantee reasoning, since for
large systems we know that LTS model checking will be-
come unacceptably slow.

Although we do not need the whole CLR on the player, a
motivation for reflecting the code using a standardised byte-
code is that additional features may be needed on other ex-
ecution platforms and code reflected by all such platforms
can be checked within a common framework at the domain
manager. The embedded code in our examples was .NET/-
Mono CIL code generated from a special compiler that en-
sures the structure of it will meet our first generation check-
ing requirements, which are finite state. However, we en-
visage that our technique can be generalised in the future by
relaxing the compiler constraints or enhancing the checker
capability. In other words, we envisage variouscheckabil-
ity classesto be defined, as automated checking capabilities
develop, with devices using increasingly broader forms and
structures of bytecode being acceptable to classes defined
later in time.

References

[1] Ada Rapporteur Group. Ravenscar profile for high-integrity
systems. ISO/WG9 AI95-00249. Technical report, Ada Rap-
porteur Group, 1995.

[2] M. Calder, M. Kolberg, E. H. Magill, D. Marples, and
S. Reiff-Marganiec. Hybrid solutions to the feature interac-
tion problem. In D. Amyot and L. Logrippo, editors,FIW,
pages 295–312. IOS Press, 2003.

[3] D. Greaves and D. Gordon. Using simple Pushlogic. InWE-
BIST 06:Proceedings of the second international conference
on web information systems and technologies, 2006.

[4] E. Grimpe and F. Oppenheimer. Extending the systemc syn-
thesis subset by object-oriented features. InCODES+ISSS
’03: Proceedings of the 1st IEEE/ACM/IFIP international
conference on Hardware/software codesign and system syn-
thesis, pages 25–30, New York, NY, USA, 2003. ACM.

[5] H. Hayakawa, T. Koita, K. Sato, and A. Fukuda. Adaptation of
sonica for p2p architecture. InIMSA’07: IASTED European
Conference on Proceedings of the IASTED European Confer-
ence, pages 82–87, Anaheim, CA, USA, 2007. ACTA Press.

[6] Microsoft. Universal plug and play device architecture, ver-
sion 1.0. Technical report, Microsoft, 2000.

[7] MISRA. Misra: Development guidelines for vehicle based
software. MIRACV10 0TU. Technical report, MISRA, 1994.

[8] S. Singh and D. Greaves. Describing hardware with parallel
programs. InDesigning Correct Circuits, 2008.

[9] T. Tranmanh, L. M. G. Feijs, and J. J. Lukkien. Implementa-
tion and validation of upnp for embedded systems in a home
networking environment. InCommunications, Internet, and
Information Technology, pages 279–284, 2002.

