
A Novel Design Flow for Fault-Tolerant Computing
Jonathan Kimmitt

Dept of Computing and Technology
Anglia Ruskin University

Cambridge, England
Email: jonathan.kimmitt@anglia.ac.uk

George Wilson
Dept of Computing and Technology

Anglia Ruskin University
Cambridge, England

Email: george.wilson@anglia.ac.uk

David Greaves
Computer Laboratory

University of Cambridge
Cambridge, England

Email: djg11@cam.ac.uk

Abstract—This paper presents a new hardware synthesis flow,
which generates an output verifiable in a field-programmable gate
array. It demonstrates the relevance of fault-tolerant synthesis as
required by demanding, sustainable, safety-critical applications.
Although general-purpose in capability, the technique is partic-
ularly applicable for modern processor implementations, where
the consequences for undetected errors are usually catastrophic.

I. INTRODUCTION

As commercial pressures force micro-chip manufacturers to
migrate to every smaller geometries, full logic reliability can
no longer be assumed due to statistical variability and single
event logic upsets. Furthermore, as mass-production products
consume more and more fabrication capacity, new designs are
forced onto smaller geometries, whilst at the same time costs
such as mask making become prohibitive except for the largest
production runs. Hence the use of field-programmable gate
arrays (FPGA) with very low geometries is inevitable even in
safety-critical projects such as medical and aerospace.

A. Conventional Approaches

The conventional approach to the problem of statistical
variability as a cause of failure through timing hazards is to
simply scale the transistors and logic primitives of the previous
generation, and develop more sophisticated Monte-Carlo Spice
simulation [1] and noise-aware static-timing analysis [2]. This
is a valid approach, but the downside is that very little of the
speed benefit of the smaller transistors will feed into the final
performance because of the large variability. A consequence
of this is that, although prices have come down, maximum
clock speeds have barely improved in the last half-decade.

B. Failure statistics

The problem of logic upsets is of great importance in
FPGAs used in aerospace applications. According to Swift [3],
worst case (1200km, 65° inclination satellite orbit) results
for an XQR4VLX200 (the largest Xilinx [4] device in the
available range of 90nm geometry process) are summarised
in Table I. The smaller RAM cell is easier to upset than
the flip-flop, but techniques such as forward error correction
and scrubbing may be used. An upset in a critical flip-flop
may require a full reset, which can result in service outage or
possible loss of synchronisation with associated systems.

C. Asynchronous double-rail logic

A niche technique popular in academic circles but not
particularly prevalent commercially is the use of asynchronous
(i.e. without requiring a clock) logic making use of double
rail indication of success (see for example [5]). Any function,
after a change in its inputs, will return a signal on either
of its outputs to indicate completion. The rest of the circuit
always waits for a definite outcome of an earlier calculation.
One disadvantage is that the correct timing of the circuit
depends in general on the delays in local paths relative to
the delays in global paths. Hence it is not robust against
aggressive automatic timing optimisation which is an essential
requirement of ultra deep sub-micron design(UDSM) where
digital cell libraries may have hundreds of cells of various
functions and particularly different drive strengths.

D. The chosen approach

This paper aims to improve the fault tolerance of systems
by utilising the ever-increasing number of transistors on the
latest CMOS processes, whilst at the same time countering
the effects of UDSM statistical variability due to atomic
and quantum effects. As downward price pressures mandate
smaller, thinner components year-on-year, the lifetime of elec-
tronic devices is decreasing even though inherent defectivity
is also decreasing. The occasional fault might be acceptable
in a consumer product, assuming it can be detected and put
right with little or no user intervention. It would not be
allowed in high-cost, critical infrastructure, such as transport,
medicine, aerospace or military applications. Although double-
rail asynchronous techniques can be directly used in FPGA, for
the purposes of this paper the meaning of the signals is adapted
as shown in Table III. Correct operation is signalled by com-
plementary signals, incorrect by common-mode signals. The
overall scheme is then incorporated into a timing-driven flow,
and then demonstrated in FPGA. The method is illustrated in
conjunction with the y86 educational processor [6].

II. METHODOLOGY

A. Conventional Methodology

A typical FPGA flow, such as that provided by Xil-
inx [7] consists of steps which are superficially similar to
an application-specific integrated circuit(ASIC) flow, namely
synthesis, mapping, placement, routing and design rule check-
ing. In this context, the synthesis stage is open, the mapping

TABLE I: XQR4VLX200 upsets [3]
Event Frequency

functional interruption 0.09/year
block RAM upset 13.9/day

flip-flop upset 0.8/day

TABLE II: Custom flow code statistics
Module Line Count

Verilog Grammar 1950
Semantic Checks 2000

BDD [15] package 600
Recognising Library 525

Flattening 450
Double Rail Conversion 100

Optimisation 1050
ABC [16] wrapper 350

Edif Output 300

stage is semi-proprietary, and the remaining steps are fully
proprietary. If Xilinx synthesis technology(XST) is used, the
input to the whole process will be VHDL [8] or Verilog
HDL [9], and the remaining steps are opaque. If third-party
synthesis is used the input to the process must be in Electronic
design interchange format (EDIF [10]).

B. Description of the proposed new approach

In the proposed new approach, the fault-tolerance is intro-
duced in between synthesis and mapping. There are several
reasons for this. Firstly, the format of the gate level netlist is
easier to process as there are fewer alternatives to consider.
Secondly it is highly desirable to be able to debug the process
of introduction of fault-tolerance, and several effective Verilog
simulators are available. Thirdly it is very easy to convert gate-
level Verilog to EDIF as required by the mapping phase, and
fourthly the uniformity of the gate-level description reduces
the number of fault-tolerant cells that will have to be specially
designed.

C. Detailed discussion of the conversion to fault-tolerance

The custom flow sits in the overall flow as shown in Fig 1.
The entirety of the custom flow, apart from certain libraries
listed below, is written in OCAML [11], in order to provide
type-safety in conjunction with efficiency and economy of
expression. Code size statistics are mentioned in Table II.
Except where referenced, the code was created by the first
author, apart from the Verilog grammar where the Backus-
Naur formalism [12] written in bison [13] was converted from
Verilator [14] to ocamlyacc format.

1) Optimistic and pessimistic gates: The internals of a dual-
rail gate require clarification; referring to Table III again, it
is apparent that the definition of logic gate is not unique.
The purpose of stuck indications is not only to detect internal
inconsistency, but also to forward a fault indication from a
logic device’s fan-in cone. If the gate forwards any fault at
any input, the design will be optimum for fault detection,
so can be described as a pessimistic gate. It can be shown
by simple fault simulation that this logic is optimum for
detecting faults. However there is a problem with initialisation
of the circuit should it consist entirely of this kind of gate.
Should it power on in the unknown state, approximately half
of the flip-flops will start in the fault state, which is not
useful. In the fan-out cone of the reset input to the design,
we want the reset indication to dominate over the unknown

Merge
HDL

Xilinx
Synthesis

Technology

Conversion
to fault-tolerant

netlist

Xilinx
EDIF import

map,place
and route

Fig. 1: Modified FPGA flow
TABLE III: Double rail logic encoding

State Encoding
00 stuck low
01 logic low
10 logic high
11 stuck high

indication. So in order to reset the idea of an optimistic gate
is introduced, which during reset will convert any state, into a
valid state. In this version of the flow we do not have access to
synthesis data structures so it is not easy to generate the reset
fan-out cone. Therefore the remainder of the discussion will
consist of logic networks made only with optimistic gates. It
is necessary to have suitable reset structures in RTL to force
initialisation of critical flip-flops. This will be true anyway for
well conditioned designs.

2) Recognition of the library primitives: It is necessary to
recognise when the flow synthesis reaches a leaf cell (also
known as a library primitive) in order to prevent over-flattening
of the netlist. The Verilog syntax ‘celldefine is available for
this purpose, however Xilinx libraries do not use it. This
approach is to use the pseudo-code in Table IV. The operations
are explained as follows. Firstly the location of the libraries
is defined. The library directory is then scanned to identify
suitable leaf cells. Any special cells used in the design are then
manually added in. Finally, the library is constructed with the
results shown in Table V. At this stage the special cells needed
for flattening and also for EDIF output are identified. The
identification is made by an analysis of the underlying function
of the Verilog. This final stage marks every cell successfully
identified as a library primitive.

3) The Flattening process: The input to this stage is the
synthesised output of the synthesis, typically done by XST. In
Table IV, the Verilog file processor timesim.v would be the
output from running XST on the module processor. Alternative
front-ends HANA [17] or ODIN2 [18] could also be used

TABLE IV: Library recognition and Flattening Pseudo-code
library env /home/arucad/Xilinx/13.1/ISE DS/ISE/verilog/src/unisims/
scan library
vparse /home/arucad/Xilinx/13.1/ISE DS/ISE/verilog/hdlMacro/AND8.v
vparse /home/arucad/Xilinx/13.1/ISE DS/ISE/verilog/hdlMacro/OR8.v
read library
vparse processor timesim.v
gen flat arch verilog processor
write arch flat processor
quit

TABLE V: Output from the library recognition stage
883 library cells detected
113 non-inverting buffers detected
Using library buffer BUF B1(.O(out),.I(in));
1 inverting buffers detected
Using library inverter INV N1(.O(out),.I(in));
1 power sources detected
Using library power source VCC (.P(out));
1 ground sources detected
Using library ground source GND (.G(out));
1 tri-state buffers detected
Using library tri-state buffer BUFE B1(.O(out),.E(in),.I(en));

depending on the source syntax. In general the output format
will be hierarchical. It is conceptually easy to convert to a flat
netlist but there are a number of subtle issues. Flattening the
Verilog netlist (represented internally as a hash table) takes
place by means of a standard recursive descent algorithm.
It is likely that the synthesis process will have introduced
feed-throughs, assigns or partial busses which cause problems
for an optimum approach. Instead a context-free algorithm is
used which places a buffer of appropriate direction on every
hierarchical boundary. A later optimisation stage is relied on
to remove the redundant elements. Flattening stops when a
previously identified library cell is encountered or a sub-circuit
which is identified as behavioural (such as a block-RAM).

4) Conversion to double-rail logic: The input to this phase
is the flat netlist internally generated by the flattening phase.
Only a few primitives will be present. The fault-tolerant
version of each primitive is assumed to have been hand-
designed or otherwise previously generated. Suppose there
exists a primitive AND2(.O(Y), .I0(A), .I1(B)) (which trivially
represents the boolean function Y = A.B). This is then mechan-
ically converted into F AND2(.O({F Y,Y}), .I0({F A,A}),
.I1({F B,B})) where F Y is the complement of Y, any other
value represents a fault. It is apparent that the fault-tolerant
netlist will be considerably larger than the assumed good
netlist. However the requirement for inversions is virtually
eliminated because AND,OR,NAND,NOR gates are freely
available just by permuting the inputs and/or outputs. It is
apparent that only detecting errors has been discussed, not
correcting them. So the new logic would have to be used inside
a higher-level protocol, such as voting logic. By contrast triple
modular redundancy [19] has not been explored because the
physical fault model considered in this work suggests defects
will be local and rare. Therefore it makes more sense for a
higher-level of protocol to discard the output of a known bad
block, from a physical decision point which is well away from
the putative fault origin.

5) Optimisation: After conversion and flattening there will
be a degree of unwanted logic, due to the naive nature of the
flattening process and due to chains of logic which have been
individually converted. For efficiency of verification it is es-
sential to optimise the netlist before entering the opaque stage
of the Xilinx flow, or alternatively the putative ASIC flow.

TABLE VI: C code for smoke-test
int array[4] = {0xd, 0xc0, 0xb00, 0xa000};

int smoke test(int *Start, int Count)
{

int sum = 0;
while (Count) {

sum += *Start;
Start++;
Count–;

}
return sum;

}
int main(void)
{

return smoke test(array, 4);
}

Since gate-level optimisation algorithms are non-trivial, the
ABC [16] library of mapping routines is used. In this library
the optimisation flow itself consists of a number of stages,
including conversion of the input to a network, transformation
into logic, conversion into and-inverter graph(AIG) form, and
finally mapping. In the ABC flow hierarchical netlists are dep-
recated so requiring another stage of flattening. In theory the
mapping library could be directly generated from the library
primitives. At this stage this has not been done because of the
complex internal assumptions of the ABC library. The Verilog
netlist interface has a number of limitations, particularly in the
area of flip-flops, so the solution is to bypass this stage and go
directly into ABC as a network. If the flip-flops are anything
other than simple D-types with a global clock, the network
does not represent this functionality directly and so they are
tracked separately in the main database. The result of this
is that redundancies in clock, clock enable, and preset/clear
networks will remain until the back-end flow. However this
a small part of the total. The final network is restored to
internal netlist format as well as restoring the flip-flop name
and control signals which will be needed later.

6) Output: The resulting netlist can be written as structural
Verilog for use in simulation, or as an EDIF netlist. The
Verilog presents no difficulty as it is the internal format;
the EDIF is another structural format which differs chiefly
in that it lists each net with the cells that it connects to,
instead of listing each cell with the nets that it connects to. To
make a valid EDIF netlist for subsequent Xilinx processing,
appropriate input or output pads must be added to every
primary pin. The possibility of a bidirectional pin is not catered
for in this flow. If wanted, it could be added manually using
the ngdbuild feature of the Xilinx tools to merge EDIF netlists.

III. RESULTS

The results of using the methodology on the y86 proces-
sor [6] are shown below. This is a relatively low-level register-
transfer level(RTL) description. This methodology lacks a way
of optimising blocks as RAMs inside ABC. A workaround
is to bring the RAM up a level of hierarchy and implement
it inside a top-level structural framework. This allows the
processor with its dual-rail logic to be optimised down to gate-
level primitives without having to worry about maintaining bus
connections at the boundaries of black boxes.

TABLE VII: Compiled assembly code for smoke-test
/* $begin code-yso */
/* $begin code-ysa */
Execution begins at address 0
.pos 0
start: irmovl cstack, %esp # Set up stack pointer
irmovl cstack, %ebp # Set up base pointer
call main # Execute main program
halt # Terminate program
gcc version 3.4.6 Wed Mar 7 14:30:18 2012

global array
data section
.align 2
array:
.long 13
.long 192
.long 2816
.long 40960
text section
global smoke_test
smoke_test:
rrmovl %ebx, %ecx # 88 *movsi_1/1 [length = 2]
pushl %ecx # 89 *pushsi1/1 [length = 1]
mrmovl 8(%esp), %eax # 3 *movsi_1/3 [length = 5]
mrmovl 12(%esp), %edx # 4 *movsi_1/3 [length = 5]
xorl %ebx, %ebx # 87 *movsi_xor [length = 2]
L7:
andl %edx, %edx # 55 *cmpsi_ccno_1 [length = 3]
je L6 # 56 *jcc_1 [length = 2]
mrmovl (%eax), %ecx # 68 *movsi_1/3 [length = 3]
addl %ecx, %ebx # 69 *addsi_1/1 [length = 2]
irmovl $4, %ecx # 70 *movsi_1/2 [length = 5]
addl %ecx, %eax # 71 *addsi_1/1 [length = 2]
irmovl $-1, %ecx # 86 *movsi_or_else [length = 3]
addl %ecx, %edx # 73 *addsi_1/1 [length = 2]
jmp L7 # 84 jump [length = 2]
L6:
rrmovl %ebx, %eax # 44 *movsi_1/1 [length = 2]
popl %ebx # 78 popsi1 [length = 1]
ret # 79 return_internal [length = 1]
global main
main:
irmovl $4, %ecx # 30 *movsi_1/2 [length = 5]
pushl %ecx # 31 *pushsi1/1 [length = 1]
irmovl $array, %ecx # 32 *movsi_1/2 [length = 5]
pushl %ecx # 33 *pushsi1/1 [length = 1]
call smoke_test # 12 *call_value_0 [length = 5]
popl %edx # 39 popsi1 [length = 1]
popl %edx # 40 popsi1 [length = 1]
ret # 37 return_internal [length = 1]

The stack starts here and grows to lower addresses
.pos 0x100
cstack:
/* $end code-ysa */
/* $end code-yso */

A. Preparing the pre-synthesis simulation

The pre-synthesis simulation, also known as the RTL simu-
lation, requires the processor RTL as mentioned above, a test
bench, a dual-port RAM (either behavioural or Xilinx specific)
and the software to be tested. For the smoke test (that is, the
trivial program that attempts to prove some function, but if it
fails provides ease of debugging) the C code shown in Table
VI is used. On the y86, instructions and addressing modes are
drastically cut down from the x86 processor series, requiring
manual modification of x86 compiler output for instructions
or modes that are not valid. The alternative adopted here is
to remove the invalid instructions from the compiler register-
transfer expressions. However only a subset of C will be
supported (For example the only addressing mode is 32-bits).
The output of the modified compiler is shown in Table VII. It
is apparent that the C code needs to be topped and tailed with
a machine-specific initialisation. If the code download feature
of the y86 inside the testbench is utilised the execution of this
program will result in the 4-word sum ABCD(hex) being left
in a register. The exercise can be repeated with the same result
on the output of the flow.

B. Applying the tool-chain

Applying the tool-chain described above produces a report
of the form Table VIII. The corresponding result without the
double-rail logic is in Table IX. As expected the number of

flip-flops is doubled, the number of combinational gates will
be more than doubled (provisional results). A naı̈ve transistor
count is available by multiplying the instances of a given
cell in column 5 by the transistor count of a basic CMOS
implementation in column 6, with a resulting ratio of 2.9:1.
These results do not include the overhead of deciding what
to do when an error is detected. This overhead will vary
by application but it could be substantial. However as gate
densities reach beyond millions of gates per square millimetre,
this is unlikely to be a deciding factor.

1) FPGA results: To obtain the FPGA overhead, the Xilinx
EDIF flow is run, resulting in the report files as shown in
Table X. and Table XI. In this architecture, the slice usage
ratio rises by about 5:1. This is not surprising since this is
a generic, not an FPGA-specific flow, so assumptions about
the mapping of the logic do not necessarily carry over to
LUT based architectures. In particular the LUT architecture
performs poorly when many signals fan in to a flip-flop. This
will inevitably be the case when trying to detect logic faults
coming in from a wide fan-in cone and pass them on to the
next stage via a flip-flop pair. A configurable logic block(CLB)
normally has two flip-flops. In this technique the CLB will
only hold one bit of (4-state) information instead of the usual
two. However in most designs the size is dominated by on-chip
memory. The user can choose whether to replicate the double
rail feature in RAM or not. To reduce overhead using the
parity feature would be preferable. By contrast the overhead
reported by Miller [19] using triple modular redundancy is 9:2
for LUTs and 3:1 for flip-flops(excluding the processor, which
was a hard macro and therefore not very realistic).

2) Timing: The timing tables come from the place and
route(PAR) results. The reports are shown in Tables XII. and
XIII. Degradation is approximately 2:1 which is acceptable.
Again, the latency is expected to increase once a higher level
protocol to deal with the consequences of an error has been
added.

IV. BENEFITS

It can be seen that the introduction of the current methodol-
ogy carries a substantial area penalty and some speed penalty.
But there are benefits:

A. Security

1) Confidence in the computation: In the early days of
computing it was assumed a computer would either produce
the correct result(as defined by its programming), or crash in a
visible manner, such as the well-known blue screen of death.
The intermediate scenario, where nothing visible goes wrong
but the output is not correct either, will become increasingly
common as delay faults [20] become more difficult to detect.
Using dual-rail logic, the computer positively asserts that all
is well on every clock cycle, and any faults will become
apparent after a latency only determined by the sequential
depth between input and output. In most designs this value is
rather low in order to achieve high throughput. The recovery
mechanism would be application dependant. In an engineering

TABLE VIII: Usage report for y86 (double-rail technology)
name ios primary sequence instances transistors total truth table

XOR2 3 xor 152 4 608 O = I0 and not I1 or not I0 and I1
GND 1 binnum 784 2 1568 G = 0

RAMB16 S9 S9 18 empty 8
NOR2 3 nor 12936 4 51744 O = not I0 or I1
NOR3 4 nor 5586 6 33516 O = not I0 or I1 or I2
NOR4 5 nor 859 8 6872 O = not I0 or I1 or I2 or I3

NAND2 3 nand 1064 4 4256 O = not I0 and I1
NAND3 4 nand 255 6 1530 O = not I0 and I1 and I2
NAND4 5 nand 87 8 696 O = not I0 and I1 and I2 and I3
FDPE 5 memory posedge if 775 12 9300 Q = q out

MUXF5 4 empty 6 4 24 O = 0
FDCE 5 memory posedge if 775 12 9300 Q = q out
AND2 3 and 9496 6 56976 O = I0 and I1
AND3 4 and 1730 8 13840 O = I0 and I1 and I2
AND4 5 and 337 10 3370 O = I0 and I1 and I2 and I3
AND5 6 and 90 12 1080 O = I0 and I1 and I2 and I3 and I4
AND8 9 and 8 18 144 O = I0 and I1 and I2 and I3 and I4 and I5 and I6 and I7
VCC 1 binnum 259 2 518 P = 1
FD 3 memory posedge 2 6 12 Q = q out

BUF 2 buf 518 4 2072 O = I
OR2 3 or 4137 6 24822 O = I0 or I1
OR3 4 or 2183 8 17464 O = I0 or I1 or I2
OR4 5 or 364 10 3640 O = I0 or I1 or I2 or I3
OR8 9 double 84 18 1512 O = I0 or I1 or I2 or I3 or I4 or I5 or I6 or I7
INV 2 not 3790 2 7580 O = not I

Grand Total 252444

TABLE IX: Usage report for y86 (normal/non double-rail technology)
name ios primary sequence instances transistors total truth table

XOR2 3 xor 397 4 1588 O = I0 and not I1 or not I0 and I1
GND 1 binnum 50 2 100 G = 0

RAMB16 S9 S9 18 empty 8
FDCE 5 memory posedge if 775 12 9300 Q = q out
AND2 3 and 6434 6 38604 O = I0 and I1
AND3 4 and 141 8 1128 O = I0 and I1 and I2
AND4 5 and 28 10 280 O = I0 and I1 and I2 and I3
AND5 6 and 4 12 48 O = I0 and I1 and I2 and I3 and I4
AND8 9 and 15 18 270 O = I0 and I1 and I2 and I3 and I4 and I5 and I6 and I7
VCC 1 binnum 17 2 34 P = 1
FD 3 memory posedge 1 6 6 Q = q out

BUF 2 buf 3754 4 15016 O = I
OR2 3 or 1743 6 10458 O = I0 or I1
OR3 4 or 11 8 88 O = I0 or I1 or I2
OR4 5 or 49 10 490 O = I0 or I1 or I2 or I3
OR8 9 double 150 18 2700 O = I0 or I1 or I2 or I3 or I4 or I5 or I6 or I7
INV 2 not 3665 2 7330 O = not I

Grand Total 87440

TABLE X: Y86 device summary (double-rail logic)
Device Utilization Summary:

Number of External IOBs 539 out of 640 84%
Number of LOCed IOBs 539 out of 539 100%

Number of RAMB18X2s 6 out of 148 4%
Number of Slices 8055 out of 17280 46%
Number of Slice Registers 1552 out of 69120 2%

Number used as Flip Flops 1552
Number used as Latches 0
Number used as LatchThrus 0

Number of Slice LUTS 18506 out of 69120 26%
Number of Slice LUT-Flip Flop pairs 18506 out of 69120 26%

TABLE XI: Y86 device summary (normal logic)
Device Utilization Summary:

Number of External IOBs 539 out of 640 84%
Number of LOCed IOBs 539 out of 539 100%

Number of RAMB18X2s 6 out of 148 4%
Number of Slices 1527 out of 17280 8%
Number of Slice Registers 776 out of 69120 1%

Number used as Flip Flops 776
Number used as Latches 0
Number used as LatchThrus 0

Number of Slice LUTS 3895 out of 69120 5%
Number of Slice LUT-Flip Flop pairs 3895 out of 69120 5%

situation, it might be enough to just hit the reset button and
start again. In an engine management system, it would make

sense to switch to the backup system automatically based on
the good/fault output status.

2) Inscrutability: In systems such as smart cards, the se-
curity of the secret keys depends on the lack of a suitable
cryptographic attack. Where access to the power line is avail-
able, on some smart-card designs the power drain will depend
on the internal logic state. If the device can be made to execute
the same algorithm repeatedly, it is possible to infer the secret
keys or dramatically reduce the search space by measuring the
power consumption profile. This situation naturally arises as a
result of the different rise and fall times of NOR and NAND
gates. However with dual rail logic, an equal number of flip-
flops are high and low, and we can make NOR and NAND
structures from the same transistor topology. Other software-
base obfuscation measures are still required.

3) Harsh environments: In ionising radiation intensive en-
vironments, a gradual shift in the transistor threshold will
occur which will affect timing and symmetry and eventually
lead to failure. To alleviate this problem a dose of radiation can
be pre-applied under controlled conditions to try to ensure all
transistors will shift by the same amount. However the effects

TABLE XII: timing (double-rail logic)
Constraint | Check | Worst Case | Best Case | Timing | Timing

| | Slack | Achievable | Errors | Score
--

Autotimespec constraint for clock net qq_ | SETUP | N/A| 72.181ns| N/A| 0
clock | HOLD | 0.056ns| | 0| 0

TABLE XIII: timing (normal logic)
--

Constraint | Check | Worst Case | Best Case | Timing | Timing
| | Slack | Achievable | Errors | Score

--
Autotimespec constraint for clock net qq_ | SETUP | N/A| 33.598ns| N/A| 0
clock | HOLD | 0.042ns| | 0| 0

--

of radiation dose are unpredictable in operation and having a
positive confirmation of correct operation is valuable.

B. Adaptive clocking

Since there is a definite go/no-go status at all times, the
clock speed/voltage scenario can be adjusted to match the
temperature and process. A more expensive system could also
control temperature. All that is needed is a worst case program
to execute which utilises the deepest combinational paths, and
a model of how the delay varies with environment. Because of
difficulties with global skew, clock-gating is usually replaced
by flip-flop enables in FPGAs, unless there are overriding
power consumption reasons. In this case extra control modes
might be needed to bring the worst case logic into operation.
Calibration may be done by varying the clock rate until
a failure occurs. With a good environmental model and a
suitable safety factor, a high level of confidence combined
with optimum relative power consumption may be obtained.

V. LIMITATIONS

The flow thus described only handles flat netlists. These
are unwieldy and memory intensive when large designs are
employed. The support for a full hierarchical flow is a topic
for further research. More investigation is needed to determine
the optimum design to minimise area overhead and maximise
fault coverage. A new tool option is needed to mix double rail
gates of different truth tables to ensure proper initialisation
without unnecessary masking of faults.

VI. CONCLUSION

It has been shown that the introduction of double-rail
logic into a digital synthesis flow is suitable for computer
automation, and can be integrated with current FPGA tools.
The use of 4-states rather than 2 is robust for detecting single-
event upsets and hard faults caused by defects and out-of-
tolerance PVT conditions. It is applicable to defects caused
by hard radiation and electro-migration as well. The solution
is also highly symmetrical and thus robust against differential
power-line crypto-analysis. The main disadvantages relate to
increased power consumption, higher silicon cost, and reduced
speed. These disadvantages would weigh heavily in consumer
applications but typically would not be significant in critical
systems where the electronics is a small proportion of the total
cost and safety is paramount.

REFERENCES

[1] M. Maxim A Gheorghe, “A novel physical based model of deep-
submicron CMOS transistors mismatch for Monte Carlo SPICE
simulation,” Circuits and Systems 2001 ISCAS 2001 The 2001 IEEE
International Symposium on, vol. 5, pp. 511—-514 vol. 5, 2001.

[2] I. Nitta, T. Shibuya, K. Homma, F. Laboratories, F. Limited, and F. V.
Limited, “Statistical Static Timing Analysis Technology,” Fujitsu, vol.
523, no. October, pp. 516–523, 2007.

[3] G. Swift, C. Carmichael, and G. Allen, “Virtex-4QV static SEU
characterization summary,” JPL Publication, 2008.

[4] H. Quinn, K. Morgan, P. Graham, J. Krone, and M. Caffrey, “A
review of Xilinx FPGA architectural reliability concerns from Virtex to
Virtex-5,” 2007 9th European Conference on Radiation and Its Effects
on Components and Systems, pp. 1–8, 2007.

[5] C. LaFrieda, B. Hill, and R. Manohar, “An Asynchronous FPGA
with Two-Phase Enable-Scaled Routing,” 2010 IEEE Symposium on
Asynchronous Circuits and Systems, pp. 141–150, 2010.

[6] R. E. Bryant and D. R. O. Hallaron, “Verilog Implementation
of a Pipelined Y86 Processor,” 2011. [Online]. Available: http:
//csapp.cs.cmu.edu/public/waside/waside-verilog.pdf

[7] I. Xilinx, “Virtex-5 FPGA User Guide,” p. 385, 2008.
[Online]. Available: http://www.xilinx.com/support/documentation/user
guides/ug190.pdf

[8] C. Delgado Kloos and P. T. Breuer, Formal Semantics for VHDL, ser.
The Kluwer international series in engineering and computer science,
P. T. Breuer and C. D. Kloos, Eds. Kluwer Academic Publishers,
1995, vol. 76.

[9] M. Gordon, “The Semantic Challenge of Verilog HDL,” The
Proceedings of Tenth Annual IEEE Symposium on Logic in Computer
Science, pp. 136–145, 1995.

[10] P. Stanford and P. Mancuso, EDIF Electronic Design Interchange
Format, Reference Manual for Version 2 0 0. Electronic Industries
Association, Washington D.C., 1989.

[11] D. Remy and J. Vouillon, “Objective ML: An effective object-oriented
extension to ML,” Theory and Practice of Object Systems, vol. 4, no. 1,
pp. 27–50, 1998.

[12] R. S. Scowen, “Extended BNF-a generic base standard,” in Software
Engineering Standards Symposium, vol. 3, no. 1, ISO/IEC 14977.
Citeseer, 1993, pp. 6–2.

[13] C. Donnelly and R. Stallman, “Bison The Yacc-compatible Parser
Generator,” 2006. [Online]. Available: http://www.gnu.org/software/
bison/manual/bison.pdf

[14] W. Snyder, “Verilator-3.805,” 2010. [Online]. Available: http://www.
veripool.org/ftp/verilator doc.pdf

[15] J.-C. Filliatre, “Binary decision diagrams (BDDs),” 2010. [Online].
Available: http://www.lri.fr/∼filliatr/ftp/ocaml/bdd/

[16] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” in Computer Aided Verification. Springer, 2010, pp.
24–40.

[17] P. Ahmad, “HDL Analyzer and Netlist Architect,” 2011. [Online].
Available: http://sourceforge.net/projects/sim-sim/

[18] P. Jamieson, K. Kent, and F. Gharibian, “Odin II - An Open-source
Verilog HDL Synthesis Tool for CAD Research,” (FCCM), 2010 18th,
2010.

[19] G. Miller and C. Carmichael, “Single-Event Upset Mitigation Design
Flow for Xilinx FPGA PowerPC Systems,” System, vol. 1004, pp.
1–28, 2008.

[20] E. Chmelaf, “Fpga interconnect delay fault testing,” International Test
Conference 2003 Proceedings ITC 2003, pp. 1239–1247, 2003.

