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Abstract
The difficulty of effectively parallelizing code for multicore processors, combined with the end
of threshold voltage scaling has resulted in the problem of ‘Dark Silicon’, severely limiting per-
formance scaling despite Moore’s Law. To address dark silicon, not only must we drastically
improve the energy efficiency of computation, but due to Amdahl’s Law, we must do so without
compromising sequential performance. Designers increasingly utilize custom hardware to dra-
matically improve both efficiency and performance in increasingly heterogeneous architectures.
Unfortunately, while it efficiently accelerates numeric, data-parallel applications, custom hard-
ware often exhibits poor performance on sequential code, so complex, power-hungry superscalar
processors must still be utilized. This paper addresses the problem of improving sequential
performance in custom hardware by (a) switching from a statically scheduled to a dynamically
scheduled (dataflow) execution model, and (b) developing a new compiler IR for high-level syn-
thesis that enables aggressive exposition of ILP even in the presence of complex control flow.
This new IR is directly implemented as a static dataflow graph in hardware by our high-level
synthesis tool-chain, and shows an average speedup of 1.13× over equivalent hardware generated
using LegUp, an existing HLS tool. In addition, our new IR allows us to further trade area &
energy for performance, increasing the average speedup to 1.55×, through loop unrolling, with
a peak speedup of 4.05×. Our custom hardware is able to approach the sequential cycle-counts
of an Intel Nehalem Core i7 superscalar processor, while consuming on average only 0.25× the
energy of an in-order Altera Nios IIf processor.
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1 Introduction

Despite ongoing exponential growth of on-chip resources with Moore’s Law, the performance
scalability of future designs will be increasingly restricted. This is because the total usable
on-chip resources will be growing at a much slower rate, due to the recently identified problem
of Dark Silicon [6, 7]. Esmaelzadeh et al. identify two main sources of Dark Silicon:

1. Amdahl’s Law: With the exception of certain numeric, data-parallel applications, most
applications in the general-purpose domain lack sufficient explicit parallelism to make
full use of the ever increasing number of cores on chip [1]. Due to Amdahl’s Law, the
overall speed-up for such applications is strictly constrained by sequential performance.
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2. Utilization Wall: Even when an embarrassingly parallel application is not limited by
Amdahl’s Law, overall performance scaling will still be limited by the Utilization Wall [7,
17]: with each process generation, a decreasing fraction of on-chip transistor resources
may be switched at full speed at one time, in order to meet the power budget.

Recent work has exploited custom (and reconfigurable) hardware to improve the per-core
energy efficiency for the general-purpose application domain [17, 3]. Unfortunately, sequential
code often exhibits much lower performance in custom hardware than a typical out-of-order
superscalar processor [2, 3, 17]. For the general-purpose domain, sequential code involves
irregular memory accesses and complex control-flow (e.g. nested loops, data-dependent
branching). Currently the only means of achieving high performance on such code is through
the use of complex, inefficient out-of-order superscalar processors. Such processors exhibit
an exponential increase in power dissipation as performance increases [8].

This puts us between a rock and a hard place: without utilizing complex processors,
performance scaling is limited by Amdahl’s Law and poor sequential performance, but with
such processors, the Utilization Wall limits speed-up by limiting the total active resources at
any time. Esmaelzadeh et al. [6] focused on desktop, server and workstation domains, that
have a reasonable power budget of 20-200W. This problem is exacerbated even further when
we consider the increasingly important and rapidly growing portable computing domain,
where power budgets are further limited to only 0.5-5W.

Our goal is to enable much more pervasive utilization of custom or reconfigurable hardware
for general-purpose computation in order to mitigate the effects of dark silicon. For this, we
must (a) overcome the performance limitations on sequential code in custom hardware, (b)
without compromising its inherent energy-efficiency, while (c) requiring minimal programmer
effort (i.e. minimal or no alterations to the source code or programming language).

To this end, we develop a new compiler intermediate representation (IR), called the Value
State Flow Graph (VSFG), that exposes instruction-level parallelism (ILP) from sequential
code even in the presence of complex control-flow. The VSFG is also designed to be directly
implementable as custom hardware, replacing the traditionally used Control-Data Flow
Graph (CDFG) [16]. To test our new IR, we have implemented a new high-level synthesis
(HLS) tool-chain, that compiles from LLVM [13] to the VSFG, then implements it as a
Verilog hardware description. Unlike the statically-scheduled execution model of traditional
custom hardware, we employ the dynamically-scheduled ‘Spatial Computation’ model [3], in
order to match the dynamic scheduling advantages of out-of-order processors, allowing for
better tolerance of variable latencies and statically unpredictable behaviour.

2 Enhancing sequential performance in Custom Hardware

There are two main reasons that out-of-order superscalar processors are able to achieve
higher performance on control-flow intensive sequential code [15]:

Aggressive control-flow speculation to exploit ILP from across multiple basic-blocks, and
Dynamic execution scheduling of instructions, approximating the dynamic dataflow
execution model at runtime.

The Superscalar performance advantage: A Case Study. Listing 1 presents a code sample,
and Figure 1a presents its equivalent CDFG (blue blocks represent ‘if ’ statement operations,
while yellow blocks form the remainder of the for loop). Branch prediction in a superscalar
processor will be able to overcome the control-flow dependences between the three basic blocks
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Listing 1 Example C Code
for (i = 0; i < 100; i++)

if (A[i] > 0) foo ();
bar ();

(a) The CDFG for List-
ing 1.

(b) The VSFG for Listing 1.

Figure 1 The equivalent CDFG and VSFG for the code given in Listing 1.

composing the for-loop. Furthermore, branch prediction enables dynamic unrollling of the for-
loop, and exploitation ILP from across multiple iterations. Conventional processors make use
of a centralized in-order commit buffer (i.e. re-order buffer) to selectively commit executed
instructions in the correct CDFG order. In case of misprediction, executed instructions from
mispredicted paths can simply be discarded, preserving correct program state.

On the other hand, custom hardware lacks the mechanisms to perform such aggressive
control-flow speculation: unlike a conventional processor, there is no centralized commit
buffer that can be used for misspeculation recovery. In the case of some forward (i.e. if-else)
branches, it is sometimes possible to employ if-conversion to perform speculation by executing
both sides of the branch and then discarding the result from the false path. However, this
technique is limited to the simple cases where only data-flow is involved – the if branch
in Listing 1 may invoke a separate function with its own control and data flow, and hence
cannot simply be if-converted for speculation in hardware.

As it is not possible to perform speculation on backwards branches (i.e. loops) in custom
hardware, High-level synthesis tools attempt to overcome this limitation by statically unrolling
(as shown in Figure 2), flattening and pipelining loops in order to decrease the number of
backwards branches that would be dynamically executed, but this can significantly increase
the complexity of the centralized finite-state machines, resulting in very long combinational
paths that can overwhelm any gains in ILP [11, 9].

In addition to aggressive control-flow speculation, superscalar processors employ dynamic
execution scheduling, which helps in dealing with unpredictable behavior at runtime. In-
structions are allowed to execute as soon as their input operands, as well as the appropriate
execution resources, become available. Processors can even have multiple instances of the
same instruction (say from a tightly wound loop) in flight, with their results written to
different locations via register renaming. Using renaming, contemporary processors are able
to approximate the dynamic-dataflow model of execution, allowing them to easily adapt to
runtime variability to improve performance. For instance, even in the case that the load ("=
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Figure 2 The CDFG from Figure 1a with the loop unrolled 4 times.

A[i]") instruction encounters a cache miss, all the remaining operations that are in flight
from the multiple blocks and loop iterations may still execute in dataflow order - only those
operations that are dependent on the value of the load will be delayed.

On the other hand, custom hardware employs static execution scheduling, where the
execution schedule for operations is determined at compile-time, and implemented at run-time
by a centralized state machine. This means that such hardware can only be conservatively
scheduled for the multiple possible control-flow paths through the code, leaving it unable to
adapt to runtime variability that may occur due to data-dependent control-flow, variable-
latency operations, or unpredictable events such as cache misses.

The combination of these factors results in custom hardware exhibiting poor performance
when implementing general-purpose sequential code via high-level synthesis. Venkatesh et
al [17] generate custom hardware conservation cores from hot regions of sequential general-
purpose code to improve energy efficiency. However, their cores are at best only able to
match the performance of an in-order MIPS 24KE processor.

Matching Superscalar performance with the VSFG. To overcome the sequential perform-
ance issues of custom hardware, we propose two key changes during high-level synthesis:

Instead of using a static scheduling based execution model for custom hardware, a
dynamically scheduled execution model like Spatial Computation should be used [3], that
implements code as a static dataflow graph in hardware.
A new compiler IR is needed to replace the CDFG based IRs that are traditionally used
for hardware synthesis. This new IR should be based on the Value State Dependence
Graph (VSDG) [14] as it has no explicit representations of control-flow, instead only
representing the necessary value and state dependences in the program.

A new compiler IR for implementing spatial computation, called the Value State Flow
Graph (VSFG), has been developed based on the VSDG but modified for direct implementa-
tion in hardware as a static dataflow machine. The VSFG for Listing 1 is shown in Figure 1b.
Unlike the CDFG, there is no subdivision of operations into basic blocks, and consequently,
no notion of flow of control from one block to another. Instead, only dataflow dependences
are represented, along with a sequentializing state-edge (dashed line in Figure 1b) that
ensures that all side-effecting operations occur in the correct program order.

Instead of flow of control, the execution of operations is controlled through the use of
predicates (purple dotted line in Figure 1b) – boolean expressions generated based on the
control-flow of the CDFG. The VSFG is also a hierarchical graph – all loops and function calls
are represented as nested subgraphs. From the perspective of any level in the graph hierarchy,
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Figure 3 The VSFG from Figure 1b with the loop unrolled 4 times.

nested subgraphs appear as ordinary dataflow operations with their defined dataflow inputs
and outputs (including predicate and state). The only difference being that nested subgraphs
may exhibit a variable execution latency. As with other dataflow operations, multiple such
subgraphs may execute concurrently, so long as their dataflow dependences are satisfied.

The VSFG is a directed acyclic graph, so loops are implemented without introducing
explicit cycles in the graph by representing them instead as tail-recursive functions. As can be
seen from Figure 1b, the "Next iteration of the for-loop" is represented as a nested subgraph
in the same way as both the foo() and bar() functions. This presents a key advantage
when we try to extract ILP from across multiple iterations of a loop. Any of the nested
subgraphs in a VSFG can be flattened into the body of the parent graph. In the case of loops,
flattening the subgraph representing the tail-recursive loop call is essentially equivalent to
unrolling the loop. Figure 3 shows the for loop unrolled 4 times. Furthermore, as each loop
is implemented within its own subgraph, this type of unrolling may be implemented within
different subgraphs independently of others. Therefore, it is possible in the VSFG to exploit
ILP by unrolling each loop within a loop nest independently of the other loops. (Note that
in the actual hardware implementation, cycles must be reintroduced once the appropriate
degree of unrolling has been done for each loop).

Thanks to the explicit control predicates, is also possible to perform aggressive control
flow speculation by selectively controlling the execution of subgraphs. For instance, for the
foo() function subgraph, we may choose whether this function executes speculatively or not:
the predicate input to foo() may be used to only allow its execution when the predicate
is true, thereby providing no speculation. Alternatively, the function may start executing
irrespective of the predicate value. In this case, the predicate value will be passed into
the subgraph, where side-effect free operations may execute speculatively even before the
predicate value becomes available (all side-effecting operations will always be predicated).

Another advantage of having control flow converted in to boolean predicate expressions
is the ability to perform control dependence analysis to identify regions of code that are
control-flow equivalent and may therefore execute in parallel (provided all state and dataflow
dependences are satisfied). Consider the bar() function in the CDFG (Figure 1a). Despite the
aggressive branch prediction, a superscalar processor will not be able to start executing the
bar() function until it has exited the loop. Similarly, when the if branch is predicted-taken,
the superscalar processor must switch from executing multiple dynamically unrolled copies
of the for-loop and instead focus on executing the control-flow within foo(). This is because
a conventional processor can only execute along a single flow of control [12].

The VSFG on the other hand can use control dependence analysis to identify the control-
flow equivalence between the contents of the for-loop and the bar() function, and so long
as the dataflow and state-ordering dependences are resolved, the bar() function may start
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(a) Performance in Cycle Counts vs LegUp.

(b) Energy Consumption comparison vs LegUp and an Altera Nios IIf
in-order Processor.

Figure 4 Performance and Energy Comparison of VSFG, normalized to LegUp results.

executing in parallel with the for-loop. Similarly, the contents of the foo() subgraph can also
execute in parallel with its parent graph. If we combine this concurrency with loop unrolling,
it becomes possible in Figure 3 to execute multiple copies of the loop and foo(), in parallel
with the execution of bar()! This ability to execute multiple regions of code concurrently is
equivalent to enabling execution along multiple flows of control, and can potentially expose
greater ILP than even a superscalar processor.

3 Evaluation Methodology & Results

To evaluate our IR and execution model, we implemented a HLS toolchain to compile LLVM
IR to custom hardware. We present results for 3 versions of our VSFG hardware: VSFG_0
has no loop unrolling/flattening, VSFG_1 has all loops unrolled once, and VSFG_3 has all
loops unrolled thrice. We compare our results against LegUp [4], an established HLS tool
that utilizes the CDFG IR and static scheduling (Figure 4). The input LLVM IR to both
toolchains was optimized with ‘-O2’ flags, and with no link-time inlining or optimization.
All generated circuits were targeted for implementation on an Altera Stratix IV GX FPGA.

We also compare performance against two conventional processors: an Intel Nehalem
Core i7 Processor – simulated using Sniper from Intel [5] – as well as an Altera Nios IIf
processor, also implemented on the Altera Stratix IV FPGA (Figure 5). Both processors are
configured with perfect L1 caches and a hit latency of 1 cycle. Six of the benchmarks used
are part of the CHStone HLS benchmark suite [10], while two other are home grown: bimpa
is a neural network simulator, and epic is a matrix transpose function – both of the latter
wer selected specifically because they have complex and data-dependent control flow.

Our generated hardware achieves a geometric mean speedup of 1.55× (max 4.05×) over
equivalent hardware generated by LegUp (Figure 4a), and is able to better approach (in some
cases even exceed) the performance of the Intel Core i7 (Figure 5). While this performance
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(a) epic (×1K cycles) (b) adpcm (×1K cycles) (c) dfsin (×1K cycles) (d) bimpa (×1M cycles)

(e) dfadd (×1K cycles) (f) dfdiv (×1K cycles) (g) dfmul (×1K cycles) (h) mips (×1K cycles)

Figure 5 Performance Comparison (Cycle Count) vs an out-of-order Intel Nehalem Core i7
processor, and an Alteral Nios IIf in-order processor.

incurs an average 3× higher energy cost than LegUp, the VSFG-based hardware’s energy
dissipation is still only 0.25× that of a highly optimized in-order Nios IIf processor (Figure 4b).

4 Conclusion

We combine static-dataflow execution model with a new compiler IR in order to match the
sequential performance of superscalar processors in custom hardware. The hierarchical and
control-flow agnostic nature of the VSFG not only enables the exploitation of ILP from
across multiple levels of a loop nest, but also enables control-dependence analysis and allows
execution along multiple flows of control, potentially exploiting more ILP than is theoretically
possible for even superscalar processors.

Our results show a performance improvement of as much as 35% over LegUp, at a 3×
higher average energy cost. This performance is close to what is achieved by an Intel Nehalem
Core i7, while being only 0.25× the energy cost of an in-order Altera Nios IIf processor.
We believe that our new IR, coupled with the Spatial Computation execution model is a
promising step towards addressing the problem of dark silicon by facilitating the development
of high-performance custom hardware.
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