
Structured Hardware Design

Six lectures for CST Part Ia (50 percent).

Easter Term 2005.

(C) DJ Greaves.

1

Preface

There are a few more slides here than will be

used in lectures. No Verilog is examinable: it is

provided for reference use in part Ib. The first

ten or so slides are revision of material from

digital electronics.

At least 10 minutes or so of each lecture will

be devoted to example material, including pre-

vious exam questions, for which there are no

slides in this handout.

2

Books related to the course

Suggested books include:

Bignell & Donovan. ‘Digital Electronics’ Del-

mar Publishers.

W.Ditch. ‘Microelectronic Systems, A practi-

cal approach.’ Edward Arnold. The final chap-

ters with details of the Z80 and 6502 are not

relevant to this course.

Floyd. ‘Digital Fundamentals’ Prentice Hall

International.

T.J. Stoneham. ‘Digital Logic Techniques’

Chapman and Hall. This is a basic book and

relates more to the previous course on Digital

Electronics.

Randy H Katz. ‘Contemporary logic design.’

3

Encoder and Decoder
(Revision)

Priority Encoder

Q
2

d0
d1
d2
d3

Q0Q1d0 d1 d2 d3

1 1

1 0

0 1

0 0

x x x 1

x x 1 0

x 1 0 0

x 0 0 0

module priencoder(d, Q);
output [1:0] Q;
input [3:0] d;
assign Q = d[3] ? 2’d3: d[2] ? 2’d2: d[1] ? 2’d1: 2’d0;

endmodule

Binary to Unary Decoder

Q
2

d0
d1
d2
d3

Q0Q1 d0 d1 d2 d3

1 1

1 0

0 1

0 0

1

1 0

1 0 0

0 0 01

0 0 0

0 0

0

module decoder(Q, d);
input [1:0] Q;
output [3:0] d;
assign d0 = (Q==2’d0); assign d1 = (Q==2’d1);
assign d2 = (Q==2’d2); assign d3 = (Q==2’d3);

endmodule

4

Multiplexor (Revision)

Multiplexor

Y

d0
d1
d2
d3

S0S1d0 d1 d2 d3

1 1x x x 1

S
2

x x x 0 1 1

1

0

Y

1xx x 1

xx x 0 1

1

0

1x xx1

x xx0 1

1

0

xx x1

xx x0

1

0

0

0

0

0

0

0

0

0

module multiplexor(d, S, y);
input [1:0] S;
input [3:0] d;
output y;
assign y = (S==2’d3) ? d[3]: (S==2’d2) ? d[2]:

(S==2’d1) ? d[1]: d[0];
endmodule

Distributed Multiplexor (Tri-State)

A Y

EN

AEN Y

0

1

Z

1

0

0

1 1

0

Z

1

0

A Tri-state Buffer A

EnA

B

EnB

C

EnC

D

EnD

Tri-state wire must
be driven at one point
at a time only.

Makes a distribted multiplexor

Here only one bus wire is shown, but generally
32 or 64 wires are present in a tri-state bus

Truth Table

Verilog: bufif(Y, A, en)

Y

5

Barrel Shifter

3

d0
d1
d2
d3
d4
d5
d6
d7

q0
q1
q2
q3
q4
q5
q6
q7

sh

6

Open Drain (open collector)

+5 Volt

Y

Ground Ground Ground Ground

Pull Up
Resistor

a1 a2 a3 a4

Wired-or bus line

Distributed OR gate.

7

Leds and Switches
Interfacing

GND

VCC

Pullup
resistors

Light emitting diodes
(LEDs)

Switches

Current limiting
resistors

8

Bistable Revision

The bistable is the most basic electronic store

for one bit.
Vo

Vin

Vo
Vin Metastable Point

Adding a pair of inputs makes an RS latch
Q

Q

s

r

S

R Q

qb
s

r

9

Flip-Flop Revision

Making a transparent latch from an RS latch:

G

enable

D Q

Q

enable

D

G

D Q

qbs

r

db

Putting two together we get the D-type:
D

Clock

Q
X

Y

SlaveMaster

clock

QD
D Q

A more optimal circuit:
Q

Clock

D

X

Y

Slave

Master
QD

D Q

In this course, we go upwards from the D-type
towards systems.

10

Adding a Clock Enable and
Synch Reset

Adding a clock enable

D

Clock

Data in

Q Output

Clock enable

DData in Q Output

Clock enable

Clock

CE

LOGIC SYMBOL AN EQUIVALENT CIRCUIT

1

0

always @(posedge clk) q <= (clock_en) ? data_in: q;

alternatively

always @(posedge clk) begin
if (clock_en) q <= data_in;
...
end

Adding a Synchronous Reset

D

Clock

Data in
Q OutputDData in Q Output

Synchronous Reset

Clock

SR

LOGIC SYMBOL AN EQUIVALENT CIRCUIT

1

0

Synchronous Reset

0

always @(posedge clk) q <= (sr) ? 0:data_in;

11

A Broadside Register

Broadside
register

N N

Clock

QD

D

Clock

D

D

D

Q0

Q1

Q2

Q(N-1)

D0

D1

D2

D(N-1)

A broadside register of N bits is made out of

N D-types with a commoned clock input. It

can hold 2N different values.
12

A Broadside Register -
Verilog

Broadside
register

N N

Clock

QD

D

Clock

D

D

D

Q0

Q1

Q2

Q(N-1)

D0

D1

D2

D(N-1)

parameter N = 8;

reg [N-1:0] br_q;

always @(posedge clk) begin

br_q <= data_in;

end

13

A broadside two-to-one
multiplexor

MUX2N

N
N

Select

DT

DF
Y

Select

Y0

Y1

Y(N-1)

DT0

DF0

DT1

DF1

DT(N-1)

DF(N-1)

wire [N-1:0] Y, DT, DF;

assign Y = (Select) ? DT: DF;

14

Shift Registers

An n-bit shifter

D Q D Q D QSerial in

Clock input

Q[0] Q[1] Q[n-1]Q[2]

DSerial in

Clock input

Q

n

Adding a parallel load

D QSerial in

Clock input

Q[0] Q[1]

PLParallel Load

Clock input

Q

n

P

n

DSerial in

D Q D Q

Q[n-1]

Parallel Load

P[0] P[1] P[n-1]

parameter N = 8;

reg [N-1:0] Q;

always @(posedge clk) begin

Q <= (PL) ? P: (Q << 1) | D;

end

15

Synchronous Datapath - A
Fragment

din D reg1

clock

D reg2

g

We swap the values between a pair of registers

if the guard is false, but a broadside multiplexor

introduces a new value into the loop when the

guard is enabled.

reg [7:0] reg1, reg2;

always @(posedge clock) begin

reg1 <= (g) ? din: reg2;

reg2 <= reg1;

end

16

A Dual-Port Register File

Write Address

Data in Data out A

clock

N N

A

Read Address B

A

Read Address A

A

Data out B

N
Write Enable

(wen)

// Verilog for a dual-read ported register file.
input [3:0] write_address, read_address_a,

read_address_b;
reg [7:0] regfile [15:0]
always @(posedge clk) begin

if (wen) regfile[write_address] <= din;
end

wire [7:0] data_out_a = regfile[read_address_a];
wire [7:0] data_out_b = regfile[read_address_b];

Ex: Draw out the full circuit at the gate level!

17

Read/Write Memory (RAM)

Address In

Data Bus

Enable Input
(active low)

Valid data
High-ZHigh-Z

Read Cycle - Like the ROM

Write Cycle - Data stored internally

Read or write
mode select

Address In

Data Bus

Enable Input
(active low)

Data must be valid
here to be stored.

High-Z

High-Z

Read or write
mode select

Data In and Out

Address In

Enable Input
(active low)

E

Addr

Data

N

A

RAM
R/WbRead or write

mode select

Each data bit internally stored in an RS latch.

18

Read Only Memory (ROM)

The ROM takes A address bits named A0 to A<A-1> and produces data
words of N bits wide. For example, if A=5 and D=8 then the ROM
contains 2**5 which is 32 locations of 8 bits each. The address lines
are called A0, A1, A2, A3, A4 and the data lines D0, D1, ... D7

Address In

Data Out

Enable Input
(active low)

Valid data
High-ZHigh-Z

The ROM’s outputs are high impedance unless the enable input
is asserted (low). After the enable is low the

output drivers turn on. When the address has been stable
sufficiently long, valid data from that address comes out.

The ROM contents
are placed inside during

manufacture or field
programming.

Data Out

Address In

Enable Input
(active low)

E

Addr

Data

N
A

ROM
PROM

or
EPROM

Access Time

Ouput Turnon Time

MASKED PROGRAMMED means contents in-

serted at time of manufacture.

FLASH PROM uses static electricity on float-

ing transistor gates.

19

Non-volatile Technologies

Name Persistence Read Speed Write Rate
RAM Volatile Same as SRAM Same as SRAM

BB-RAM Non-volatile Same as SRAM Same as SRAM
Mask PROM Non-volatile Same as SRAM Not possible

EPROM Non-volatile Same as SRAM 10 us/byte
Sn-W PROM Non-volatile Same as SRAM 10 us/byte

EAROM Non-volatile Same as SRAM 10 us/byte

Name Erase Time Comment
RAM not needed

BB-RAM not needed Battery Life
Mask PROM Not Possible

EPROM 20 Mins Needs UV window
Sn-W PROM Not possible

EAROM 100 ms/block write cycle limit

20

Memory Banks

A15..1 A15..1

A15..1 A15..1

A15..1 A15..1

A15..1 A15..1

A17..16

8
D7..0
D15..8

ce

A D

ce

A D

ce

A D

ce

A D

ce

A D

ce

A D

ce

A D

ce

A D

8 ROM DEVICES

EACH ROM DEVICE IS
32768 BYTES CAPACITY

BANK ORGANISATION
128K locations of 16 bits

21

GD GD GD GD GD GDData

Address Input

Binary to unary decoder

WE*

CE*

output
enable

G

QD

Transparent latch
schematic symbol

D

G

Q

Transparent latch implemented from gates.

Unlike the edge-triggered flip-flop, the transparent latch
passes data through in a transparent way when its enable

input is high. When its enable input is low, the output stays
at the current value.

22

Synchronous FIFO Memory

FIFO Queue

N N

DIN

WRCLK

WREN RDEN

RDCLK

HF FFEF

DOUT

23

DRAM

Refresh Cycle - must happen sufficiently often!

A DRAM has a multiplexed address bus and the address is presented in two halves, known as row and
column addresses. So the capacity is 4**A x D. A 4 Mbit DRAM might have A=10 and D=4.

When a processor (or its cache) wishes to read many locations in sequence, only one row address
needs be given and multiple col addresses can be given quickly to access data in the same row. This
is known as ‘page mode’ access.

EDO (extended data out) DRAM is now quite common. This guarantees data to be valid for
an exteneded period after CAS, thus helping system timing design at high CAS rates.

Multiplexed Address

Data Bus Valid data
High-ZHigh-Z

Read Cycle (write is similar)

Read or write
mode select

Row Address Col Address

Row Address Strobe (RAS)

Col Address Strobe (CAS)

Row Address Strobe (RAS)

Col Address Strobe (CAS)

No data enters or leaves the DRAM during refresh, so it ‘eats memory bandwidth’.
Typically 512 cycles of refresh must be done every 8 milliseconds.

Data In and Out

Multiplexed Address In

Row Address Strobe (RAS) RAS

MAddr

Data

N

A

DRAM

R/Wb
Read or write
mode select

Col Address Strobe (CAS) CAS

Modern DRAM has a clock input at 200 MHz

and transfers data on both edges.

24

Crystal oscillator clock
source

33pF

Ground

33pF

1M

RC oscillator clock source

Ground

C

R Vo

Vin

Schematic
Symbol

Shmitt Inverter

25

Clock multiplication and
distribution

VCO

Clock distribution H tree

1000MHz

100 MHz

Divide 10

External
clock
input

PLL Circuit

Outside
the
chip

Inside
the
chip

H tree layout

Power-on reset

Ground

C

R

Reset output

Supply

Active low

Vo

Vi

26

Driving a heavy current or
high-voltage load

Ground

Control input

High Voltage Supply

Back
EMF

protection
diode

Power
MOSFT

transistor

Load may be
directly connected
or driven through a
mechanical relay

Transistor active area could be 1 square cen-

timeter.

27

Debouncer circuit for a
double-throw switch

A

B

Output

Output

A

B

Gnd

+5Volt supply rail

Pullup
Resistors

Bounces

Switch

28

ALU and Flags Register
Function Code

4

N

N

N

Carry In

ALU

A-input

B-input

Output

C

N

Z

V

Flags Clock

Flags
register

input [7:0] A, B, fc;
output [7:0] Y;
output C, V, N, Z;

always @(A or B or fc)
case (fc)
0: { C, Y } = { 1’b0, A }; // A
1: { C, Y } = { 1’b0, B }; // B
2: { C, Y } = A+B; // A+B
3: { C, Y } = A+B; // A+B
4: { C, Y } = A+B+cin; // A+B+Carry in
5: { C, Y } = A-B // and so on

...
endcase

assign Z = (Y == 0); assign N = y[7];

29

ALU and Register File

Function
Code

4

8

Carry In

8 bit
ALU

A-input

B-input

Output

4 bit
counter

Register file
16 registers

of 8 bits

4

A

8

D

Carry Out

Q
Din

8

B

A

Clock source

FUNCTION GEN

Zero
detect

8

FUNCTION GEN

for F code

for A input

An example structure using an ALU and regis-

ter file.

Ex: Program the ROM function generators to

make one large counter out of the whole reg-

ister file.
30

Multiplier

Flash multiplier - combinatorial implementa-

tion (e.g. a Wallace Tree).
n

m

n+m

n+m-1 if signed

Sequential Long Multiplication

RA=A
RB=B
RC=0
while(RA>0)
{

if odd(RA) RC=RC+RB;
RA = RA >> 1;
RB = RB << 1;

}

31

Micro Architecture for a
Long Multiplier

Ready

Clock input

C
16B

Start

D Q

A

8

D Q C

8

8

A
RA

RC

/2D Q

8
B

RB

x2

x

y

fc

p

ReadyStart
fcp

y
x

FSM

8

16

bit 0
q

q

16

8

32

Booth’s multiplier

Booth does two bits per clock cycle:

(* Call this function with c=0 and carry=0 to multiply
x by y. *)

fun booth(x, y, c, carry) =
if(x=0 andalso carry=0) then c else

let val x’ = x div 4
val y’ = y * 4
val n = (x mod 4) + carry
val (carry’, c’) = case (n) of

(0) => (0, c)
|(1) => (0, c+y)
|(2) => (0, c+2*y)
|(3) => (1, c-y)
|(4) => (1, c)

in booth(x’, y’, c’, carry’)
end

Ex: Design a micro-architecture consisting of

an ALU and register file to implement Booth.

Design the sequencer too.

33

Logic Symbol

Internal Structure Block Diagram

Address

Data
N

A

System Clock

Reset Input

Interrupt Request
Operation
Request

Read/Notwrite

Wait

I

W

R/Wb

Opreq

R

Microprocessor

Operation Request

Read/notwrite

Data Bus

Address Bus

Bus Control

Clock

ALU

MUX

Addresses

Dual Port
Register

File

Write

Execution Unit

Control Unit

Instruction
Register

Instruction
Decoder

Control Wires To
All Other Sections

Mux 2

Program
Counter

Execution address
incrementor

Clock

Clock
Clock

MUX2

Function code Load or Store

System
Clock

Reset
PC

Reset

OPERAND EA
IR

34

D Q

GND

VCC
Broadside latch

Broadside
tri-state

Microprocessor

D0

D1

D2

Part of data
bus

Part of
address bus

A12

A13

A14

A15

R/Wbar

OPREQ

Pullup
resistors

Light emitting diodes
(LEDs)

Write to
leds

Read from
switches

D3

D4

D5 Switches

Example of memory address decode and simple

LED and switch interfacing for programmed IO

(PIO) to a microprocessor.

35

A D8/A16 Computer

Control
Unit

Execution
Unit

+ ALU

Memory

Static RAM

16 kByte

UART
Serial Port

Address bus
(16 bits)

Data bus
(8 bits)

(Micro-)Processor

Rs232 Serial Connection

Register File
(including PC)

D0-7

D0-7

D0-7

Clock Reset

R/Wb

Memory Map
decoder circuit

Often a ‘PAL’
single chip device.

A15

A14

A13

R/Wb
R/Wb

A0-13

Enb

Enb

Enb

1 K Byte ROM
Read Only Memory

A0-9

A0-2

R/Wb
R/Wb

ROM_ENABLE_BAR

UART_ENABLE_BAR

RAM_ENABLE_BAR

D0-7

36

Memory Address Mapping

ROM /CS

RAM /CS

UART /CS

A14

A15

------- ----- -----------------------
Start End Resource
------- ----- -----------------------
0000 03FF EPROM
0400 3FFF Unused images of EPROM
4000 7FFF RAM
8000 BFFF Unused
C000 C001 Registers in the UART
C002 FFFF Unused images of the UART
------- ----- -----------------------

module address_decode(abus, rom_cs, ram_cs, uart_cs);
input [15:14] abus;
output rom_cs, ram_cs, uart_cs);

assign rom_cs = (abus == 2’b00); // 0x0000
assign ram_cs = (abus == 2’b01); // 0x4000
assign uart_cs = !(abus == 2’b11);// 0xC000

endmodule

37

PC Motherboard, 1997 vintage

SIMM 4

SIMM 3
SIMM 2
SIMM 1

COM1

COM2

USB IDE-1

IDE-2

Floppy

BIOS ROM

Pentium
CPU

CACHE RAMPSU

KYBD

PCI1

PCI2

PCI3

ISA
16 BIT
SLOTS BATTERY

PRINTER Cache
Control

IDE &
Floppy

General
glue

Clock Regulator

Main memory DRAM

38

P
a

ra
lle

l
P

o
rt

Address

Data

device select/cs

Strobe

Read/Writebar
r/wbar

Acknowledge

Parallel Data

Busy

D25 Parallel (Centronix) Port

Strobe_bar

Acknowledge

Parallel Data

Busy

Valid Data For Transfer To Peripheral Device

Ready for next data

Parallel Port Interface Logic

Flow control: New data is not sent while
the busy wire is high.

CPU
BUS
SIDE

3
9

Serial Port (UART)

DO D1 D2 D3 D4 D5 D6 D7
LOGIC 1

LOGIC 0

Start
Bit

(zero)

Stop
Bit

(one)

Address

Data

chip select/cs

Serial Input

Serial Output

Baud
Rate

Generator

Read/Writebarr/wbar

Interrupt Int

Voltage
convertors 25-Way D connector

for Serial Port.

Most computers
just use a 9 way connector
these days.

40

Keyboard and/or PS/2 port
+5 Volt Fuse

Ground

Clock wire

Data Wire

Power wire

Ground wires

PS/2
Connector

1

2

34

5

6

PS/2 Keyboard/Mouse Cable
 1. Clock
 2. Ground
 3. Data
 4. Spare
 5. Power +5Volts
 6. Spare

Open drain/collector wiring using two signalling

wires.

The 1394 Firewire and USB ports are essen-

tially the same as PS2 at the physical layer.

41

Ethernet

MAC

PHY

TX-DATA
TX-CLK

RX-DATA
RX-CLK
CS/COL

RX QUEUE

TX QUEUE
RJ45 Socket

(4 of 8 pins used)

TransformersProcessor Bus
Address

Data

device select/cs

Read/Writebarr/wbar

IRQinterrupt

42

Canonical Synchronous FSM

FSM

Clock

Mealy Outputs

Inputs

D

Clock

D

D

D

Q0

Q1

Q2

Moore Outputs

LOOP-FREE
COMBINATORIAL
LOGIC BLOCK

I0

I1

I(M-1)

M

I2

CURRENT STATE FEEDBACK

STATE FLOPS

LOOP-FREE
COMBINATORIAL
LOGIC BLOCK

LOOP-FREE
COMBINATORIAL
LOGIC BLOCK

Moore
Outputs

Mealy
Outputs

Inputs

FSM = { Set of Inputs, Set of states Q, Transiton function D)

An initial state can be jumped to by terming one of the inputs a reset.

An accepting state would be indicated by a single Moore output.

In hardware designs, we have multiple outputs of both Mealy and Moore style.

43

Canonical Logic Array

Inputs Outputs

OR
(sum)
array

AND
(product)

Array

44

Combinational Logic
Minimisation

There are numerous combinatorial logic cir-

cuits that implement the same truth table.

Where two min-terms differ in one literal, they

can alway be combined:

(A & ~B & C) + (A & ~B) --> (A & ~B)

(A & ~B & C) + (A & ~B & ~C) --> (A & ~B)

Lookup ‘Kline-McClusky’ for more information.

45

Karnaugh Maps are convenient to allow the hu-
man brain to perform minimisation by pattern
recognition.

(A & ~C) + (A & B) + (B & C) -->

(A & ~C) + (B & C)
A

B

C

Often, there are don’t care conditions, that
allow further minimisation. Denote with an X
on the K-map:

A

B

CX

(A & ~C) + (A & B) + (B & C) -->

A + (B & C)

Lookup ‘ESPRESSO’ for more information.

46

Sequential Logic
Minimisation

A finite state machine may have more states
than it needs to perform its observable func-
tion.

1

1

0
0

0

2

2

2

1

1

A Moore machine can be simplified by the fol-
lowing procedure

1. Partition all of the state space into blocks of
states where the observable outputs are the same
for all members of a block.

2. Repeat until nothing changes (i.e. until it closes)
For each input setting:

2a. Chose two blocks, B1 and B2.
2b. Split B1 into two blocks consisting of those

states with and without a transition from B2.
2c. Discard any empty blocks.

3. The final blocks are the new states.

47

Timing Specifications

Clock

Data in
D Q oiutputQ

Q oiutput

Data in

Clock

Hold time

Propagation delay

Setup time

48

Typical Nature of a Critical
Path

Clock

A

B

C

D
Setup

Margin

Period = 1/F

Clock

D Q

D Q

A
B

C
D

Clock speed can be increased while margin is

positive.

49

Johnson counters

D Q3D Q2D QA

Clock

Q1 Q2 Q3

Q1 Q2 Q3

50

P
ip

e
lin

in
g

Data in
D Q

D Q

D Q

D Q

D Q

D Q

Synchronous global clock
signal

Another input

Yet another input

An output

Yet another output

Another output still

Large loop-free combinatorial logic function

Data in
D Q

D Q

D Q

D Q

D Q

D Q

Synchronous global clock
signal

Another input

Yet another input

An output

Yet another output

Another output still

Loop-free combinatorial logic
function - second half

Desired logic function

Desired logic function - pipelined version.

D Q

D Q

D Q

D Q

Loop-free combinatorial logic
function - first half

5
1

Cascading FSMs

FSM

Mealy Outputs
Inputs

Moore Outputs

FSM

Mealy Outputs

Moore Outputs

FSM

Inputs

Clock

Moore

Mealy

Inputs

52

How Not To Do It

D Q D Q D Q D Q
 Shift Register

D QD QD QD QD Q

Five Bit BroadsideRegister

Divide
by 5

counter

Parallel data out

Serial in

Clock input

An example that uses (badly) a derived clock:

a serial-to-parallel converter

reg [2:0] r2;
always @(posedge clock) r2 <= (r2==4)?0:r2+1;
wire bclock = r2[2];

reg [4:0] shift_reg;
always @(posedge clock)

shift_reg <= serial_in | (shift_reg << 1);

reg [4:0] p_data;
always @(posedge bclock) p_data <= shift_reg;

Care is needed when gating clocks.

53

A Gated Clock

D

Master
Clock

D

Synchronous subsystem requiring
gated clock

J

K

Enablebar
Enable expression

OR’ing with a negated enable works cleanly.

Use this to power down a sub-section of a chip

or when synchronous clock enable becomes costly.

54

Clock Skew

D Q

Delay

D Q

Delay

D Q

Delay

Data input Data outputQA QB

Clock

a) A three-stage shift register with some clock skew delays.

D Q

Delay

Data input QB

b) System interconnection with clock skews

Delay

c) A solution for serious skew and delay problems ?

D Q

Delay

QB
Delay

D Q

Delay

QB
Delay

Clock

D Q

Delay

Data input QB
Delay

D Q

Delay

QB
Delay

D Q

Delay

QB
Delay

Clock

55

Crossing an Asynchronous Domain
Boundary

Receiving clock domainTransmit clock domain

TX clock RX clock

Guard signal

Command or info
bus

N

Good to have
a second D-type

1. The wider the bus width, N, the fewer the number of transactions per second needed and the greater
the timing flexibility in reading the data from the receiving latch.

2. Make sure that the transmitter does not change the guard and the data in the same transmit clock cycle.

3. Place a second flip-flop after the receiving decision flip-flop so that on the rare occurances when the first
is metastable for a significant length of time (e.g. 1/2 a clock cycle) the second willpresent a good clean
signal to the rest of the receiving system.

All real systems have many clock domains and

frquently implement this style of solution.

56

Dicing a wafer

(Chips are not always square)

57

A chip in its package, ready for
bond wires

DIE

PIN

PACKAGEBOND PADCAVITY

IO and power pads

Connections
to and from
core logic

Pad power
supply

Pad
Electronics

Supply
Pad

Ground
Rail

Signal
Bond
Pad

Edge of Die

Power Rail

Ground
Pad

CORE AREA

58

Die cost example

Area Wafer dies Working dies Cost per working die
2 9000 8910 0.56
3 6000 5910 0.85
4 4500 4411 1.13
6 3000 2911 1.72
9 2000 1912 2.62

13 1385 1297 3.85
19 947 861 5.81
28 643 559 8.95
42 429 347 14.40
63 286 208 24.00
94 191 120 41.83

141 128 63 79.41
211 85 30 168.78
316 57 12 427.85
474 38 4 1416.89

59

A taxonomy of ICs

Standard
Parts

Digital Integrated Circuits

ASICs Field
Programmable

Parts

FPGA

e.g.

Xilinx
Spartan

Array
Logic

(PALs)

e.g.
22V10Commodity

Parts

SOC
FPGAs

e.g
Altera

Excalibur

Semi
Custom

Standard
Cell

Full
Custom

Semi
Custom

Standard
Cell

Full
Custom

e.g.
LAN

Interface
Controllere.g.

Memories

Rarely
Used

e.g.
Toys

60

Field Programmable Gate Arrays

CLB

SWITCH
MATRIX

CLB

SWITCH
MATRIX

CLB

SWITCH
MATRIX

CLB

SWITCH
MATRIX

CLB

SWITCH
MATRIX

CLB

SWITCH
MATRIX

CLB

SWITCH
MATRIX

CLB

SWITCH
MATRIX

CLBCLB CLB

CLB

SWITCH
MATRIX

CLB

CLB

SWITCH
MATRIX

SWITCH
MATRIX

Bond
pad

IOB

Bond
pad

IOB

Bond
pad

IOB

Bond
pad

Bond
pad IOB

Bond
pad IOB

Bond
pad IOB

Edge of die

61

A configurable logic block for a
look-up-table based FPGA

General
inputs

Combinatorial
function
generator

D Q

D Q

Clock input

First output

Second Output

Programmable
multiplexers

This CLB contains one LUT and two D-type’s.

The output can be sequential or combinational.

Seven LUT inputs: 27 = 128

The LUT can be a RAM of 128 locations of

two bits.

62

FPGA: Example I/O Block

Bond PAD

Input buffer

Input

Output

Tristate
control

Output
enable

Programmable
multiplexor

1

0

Output buffer

Connections
to

central
array.

Pictured is a basic I/O block.

Modern FPGA’s have have a variety of differ-

ent I/O blocks: e.g. for PCI bus or 1 Gbps

channel.

63

Power
supply

pin

Clock
signal

Clock
input

General
purpose
inputs

Product
line

Term
line

Output
pad

(can also
be input).

Output
enable

product
line

Ground
pin.

The cross
points in

these shaded
regions

are
programmable

points

Macro-
cell

Macro-
cell

Macro-
cell

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

64

Contents of the PAL macrocell

Input
buffer

Clock Net

I/O Pad

Tristate
output pad

Programmable
multiplexor

D-type
flip-flop

D Q
Main input
S-of-P

Output enable
term

Feedback to
array

65

Example programming of a PAL
showing only fuses for the top

macrocell

pin 16 = o1;
pin 2 = a;
pin 3 = b;
pin 4 = c

o1.oe = ~a;
o1 = (b & o1) | c;

-x-- ---- ---- ---- ---- ---- ---- (oe term)
--x- x--- ---- ---- ---- ---- ---- (pin 3 and 16)
---- ---- x--- ---- ---- ---- ---- (pin 4)
xxxx xxxx xxxx xxxx xxxx xxxx xxxx
xxxx xxxx xxxx xxxx xxxx xxxx xxxx
xxxx xxxx xxxx xxxx xxxx xxxx xxxx
xxxx xxxx xxxx xxxx xxxx xxxx xxxx
xxxx xxxx xxxx xxxx xxxx xxxx xxxx
x (macrocell fuse)

66

Delay-power style of technology
comparison chart

Delay (ns)

Power per
gate (mW).

0.1 1.0 10 100 1000

1

10

100 ECL

TTL

CMOS

Lines of constant
delay-power product

1980

1990

2000

0.01

0.1

CMOS

1970CMOS

Technology device propagation power product
---------- ------- ----------- ------ -------

1977 CMOS HEF4011 30 ns 32 mW 960 pJ
1982 ECL sp92701 0.8 ns 200 mW 160 pJ
1983 CMOS 74hc00 7 ns 1 mW 7 pJ
1983 TTL 74f00 3.4 ns 5 mW 17 pJ
1996 CMOS 74LVT00 2.7 ns 0.4 mW 1.1 pJ

2-Input NAND gate. 74LVT00 is 3V3. On-chip logic is much faster.

67

Logic net with tracking and input
load capacitances

Parasitic
input

capacitance

Track to substrate
capacitance proportional

to total track length (area)

Driving
Gate

Driven
gates

68

An example cell from a
manufacturer’s cell library

Simulator/HDL Call

NAND4 Standard Cell

4 input NAND gate with x2 drive

Schematic Symbol

NAND4X2(f, a, b, c, d);

ELECTRICAL SPECIFICATION
Switching characteristics : Nominal delays (25 deg C, 5 Volt, signal rise and fall 0.5 ns)

Inputs Outputs

O/P Falling O/P Rising

A
B
C
D

F
F
F
F

(ps) ps/LU ps ps/LU

142
161
165
170

37
37
37
37

198
249
293
326

33
33
33
34

Min and Max delays depend upon temperature range, supply voltage, input edge speed and process
spreads. The timing information is for guidance only. Accurate delays are used by the UDC.

: (One load unit = 49 fF)

Parameters

Input loading

Drive capability

Pin

a
b
c
d

f

Value

2.1
2.1
2.1
2.0

35

Load units

Load units

Units

a

b

c

d

f

Logical Function

F = NOT(a & b & c & d)

Library: CBG0.5um

X2

CELL PARAMETERS

69

Current digital logic technologies

1994 - First 64 Mbit DRAM chip.

• 0.35 micron CMOS

• 1.5 micron2 cell size (64E6 × 1.5 um2 = 96E6)

• 170 mm2 die size

1999 - Intel Pentium Three

• 0.18 micron line size

• 28 million transistors

• 500-700 MHz clock speed

• 11x12 mm (140 mm2) die size

2003 - Lattice FPGA

• 1.25 million use gate equivs

• 414 Kbits of SRAM

• 200 MHz Clock Speed

• same die size.

See www.icknowledge.com

70

Design partitioning: The
Cambridge Fast Ring

8

8

8

DRAM

CMOS
CHIP

(Standard
Part)

ECL
CHIP

Isolating
transformers

Ring
Connector

VCO
(analogue)

Interrupt
PAL

Standard data
buffers

Address PAL

Host
Bus

12.5 MHz

100 MHz

Designed in 1980.

ECL Chip 100 MHz, bit serial.

CMOS Chip 12.5 MHz, byte-wide data.

71

A Basic Micro-Controller

Microprocessor
(8 bit generally)

RAM
(e.g. 2 Kbytes)

OTP
EPROM

(e.g.

8 Kbytes)

Clock
Osc

Power Up
reset

Programmable IOCounters and
Timers UART

I/O wires OR external bus

Reset capacitorClock

Serial TX and RX

Internal A and D busses

Introduced 1989-85.

Such a micro-controller has an D8/A16 architecture and

would be used in a mouse or smartcard.

72

D
e

sig
n

p
a

rtitio
n

in
g

:
A

M
o

d
e

m
.

Telephone
line interface

Off-hook relay

Isolation
transformer A-to-D

D-to-A

Main
DSP

processor

Single-chip
processor

RS-232
line drivers

Computer
interface

Led indicators

Power supply
conditioning

Ring
detector

DSP
ROM

DSP
RAM

Directional
isolator

NV-RAM

DC power
input

In
1

9
8

0
w

e
u

se
d

a
m

ic
ro

c
o

n
tro

lle
r

w
ith

e
x

te
rn

a
l

D
S

P
c

o
m

p
o

n
e

n
ts.

7
3

Design partitioning: A Miniature
Radio Module

DAC

Carrier
Oscillator
2.4 GHzMicrocontroller

Baseband
Modem

Antenna

Data
Interfaces

RF
Amps

IF
Amps

ADC

FLASH
memory chip

Digital Integrated Circuit

Analog (RF) Integrated Circuit

Line
dri-
vers

Hop
Controller

www.bluetooth.org
www.csr.com

Multi-chip module or mini PCB

RAM

Introduced 1998.

74

1
9

9
8

:
A

P
la

tfo
rm

C
h

ip
:

D
3

2
/

A
3

2
tw

ic
e

!

Ethernet
block

USB
block

UART(s)

PCI bus
interface

I/O
Processor

ARM

DSP
processor

Special peripheral
function

DRAM
Interface

DRAM

Cache

Local
RAM

for DSP

Local
IO/BUS

Misc Peripherals
on the same PCB

Counter
Timer
Block

AtoD
channels

DtoA
channelsBus

Bridge

FIFO Bus Bridge

DRAM
Interface

10/100/1G
Ethernet

USB

Serial lines

PCI Bus

I/O pins
for special
peripheral
function

Analog Input

Analog Output
(e.g.) L/R audio

PSU
and test logic

etc

Control
Processor

ARM

Cache

Counter
Timer
Block

Bus
Bridge

Microcontoller
style GPIO

DSP
processor DMA

Controller

A D R/W

7
5

System on a Chip = SoC design.

Our platform chip has two ARM processors and two DSP proces-
sors. Each ARM has a local cache and both store their programs
and data in the same offchip DRAM.

The left-hand-side ARM is used as an I/O processor and so is
connected to a variety of standard peripherals. In any typical ap-
plication, many of the peripherals will be unused and so held in a
power down mode.

The right-hand-side ARM is used as the system controller. It can
access all of the chip’s resources over various bus bridges. It can
access off-chip devices, such as an LCD display or keyboard via a
general purpose A/D local bus.

The bus bridges map part of one processor’s memory map into that
of another so that cycles can be executed in the other’s space,
allbeit with some delay and loss of performance. A FIFO bus
bridge contains its own transaction queue of read or write oper-
ations awaiting completion.

The twin DSP devices run completely out of on-chip SRAM. Such
SRAM may dominate the die area of the chip. If both are fetching
instructions from the same port of the same RAM, then they had
better be executing the same program in lock-step or else have
some own local cache to avoid huge loss of performance in bus
contention.

The rest of the system is normally swept up onto the same piece

of silicon and this is denoted with the ‘special function periperhal.’

This would be the one part of the design that varies from product

to product. The same core set of components would be used for all

sorts of different products, from iPODs, digital cameras or ADSL

modems.

LEDs wired in a matrix to reduce
external pin count

A

B

C

D

E

P Q R S T

76

IR
H

a
n

d
se

t
In

te
rn

a
l

C
irc

u
it

Battery

Scan multiplexed keyboard

Single chip
containing

all semiconductors

Clock capacitor Infra-red
transmit
diodes

+

-

7
7

Scan multiplex logic for an LED
pixel-mapped display

Pixel

RAM
SCAN

MULTIPLEXED
DISPLAY
MATRIX

N bit
COUNTER

BINARY to UNARY
DECODER

Row

Addr

Data lilines
(zero for on)

CLOCK

A

D

2^N col lines

One col line is
logic one at a time.

You made one of these in the Ia H/W classes.

78

Addition of psudo dual-porting
logic

Pixel
RAM

SCAN
MULTIPLEXED

DISPLAY
MATRIX

N bit
COUNTER

BINARY to UNARY
DECODER

Row

A

D

Broadside
tri-state
buffer

Write
data

Write
address

WE

Write
strobe
bar

MUX2 N

You did this too!
79

Use of a ROM as a function
look-up table

A to D
convertor

Look-up table ROM

D to A
convertor

16 16

65536 by 16 ROM

Sample clock 44.1 kHz

12 inch speakers

Amplifer

A D

The ROM contains the exact imperfections of

a 1950’s valve amplifier.

80

Use of an SRAM to make the delay
required for an echo unit

A to D
convertor

D to A
convertor

16 16

Amplifer

A

D

Static RAM
65536 by 16 bits16 bit

synchronous
counter 16

RAMWE

RAMOE

ADOE

Timing generator
circuit

ADOE

RAMWE

RAMOE

Derived clock, 44.1 kHz

88.2 kHz

Read cycle Write cycle Read cycle

Clock 88.2

Clock 44.1

RAMWE

RAMOE

Counter Output N-1 N N+1

RAM data pins Old sample replay New sample write

81

Merge unit block diagram

DO D1 D2 D3 D4 D5 D6 D7

LOGIC 1

LOGIC 0

Start
Bit

(zero)

Stop
Bit

(one)

Bit spacing is reciprocal of
31.25 kbaud, which is
32 microseconds.

+

5V VCC

-

Logic level
output

Open collector
buffer

220R

220R

GND

5V VCC

LED

Photo-
transistor

+

-

Logic level input220R

GND

5V VCC

LED

Photo-
transistor

+

-

Logic level input220R Merged
midi output

Midi input
one

Midi input
zero

Midi
merge

function
to be

designed

Clock
1 MHz

module MERGER(out, in0,in1, clk);

MIDI serial data format

9n kk vv (note on)

8n kk vv (note off)

9n kk 00 (note off with zero velocity)

82

MIDI merge unit internal functional units

Serial
to par

Remove
status

FIFO Queue

Serial
to par

Remove
status

Queue

Par to
serial

Insert
running
status

Queue

Meger
core

function

Midi In 0

Midi In 1

Merged
midi output

8 24

8 24

8 24

24

24

24

83

The serial to parallel converter:

input clk;
output [7:0] pardata; output guard;

The running status remover:

input clk;
input guard_in; input [7:0] pardata_in;
output guard_out; output [23:0] pardata_out

For the FIFOs:

input clk;
input guard_in; input [7:0] pardata_in;
input read; output guard_out; output [23:0] pardata_out;
input read; output guard_out; output [23:0] pardata_out;

For the merge core unit:

input clk;
input guard_in0; input [23:0] pardata_in0; output read0;
input guard_in1; input [23:0] pardata_in1; output read1;
output guard_out; output [23:0] pardata_out;
input read; output guard_out; output [23:0] pardata_out;

Status inserter / parallel to serial converter are

reverse of reciprocal units

84

