
Synthesizable Verilog
syntax and semantics

VFE Project

University of Cambridge Computer Laboratory

Version ���

January ��� ����

The Verilog Formal Equivalence �VFE� Project is funded by the
U�K� Engineering and Physical Sciences Research Council�



ii



Contents

Preface v

� Syntax �

��� Expressions � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Module items � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Event expressions � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Statements � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Cycle Semantics �

��� Examples � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Semantic Pseudo�Code � � � � � � � � � � � � � � � � � � � � � � ��

����� Pseudo�code instructions � � � � � � � � � � � � � � � � � ��

����� Example translations � � � � � � � � � � � � � � � � � � � ��

����� Macro�expansion of derived constructs � � � � � � � � � �	

����� The size of a statement � � � � � � � � � � � � � � � � � � �


����� Translation algorithm � � � � � � � � � � � � � � � � � � � ��

��� From pseudo�code to next�state assertions � � � � � � � � � � � ��

��� The meaning of a module � � � � � � � � � � � � � � � � � � � � ��

Bibliography ��



iv CONTENTS



Preface

Synthesizable Verilog is a subset of the full Verilog HDL 
�� that lies within
the domain of current synthesis tools �both RTL and behavioral��

This document speci�es a subset of Verilog called SV�� This subset is in�
tended as a vehicle for the rapid prototyping of ideas�

The method chosen for developing a semantics of all of synthesizable Verilog
is to start with something too simple � SV� � and then only to make it more
complicated when the simple semantics breaks� This way it is hoped to avoid
unnecessary complexity� It is planned to de�ne sequence of bigger and bigger
subsets �SV�� SV� etc�� that will converge to the version of Verilog used in
the VFE project� at Cambridge�

Di�erent tools interpret Verilog di�erently� industry standard simulators like
Cadence�s Verilog XL are based on the scheduling of events� Synthesizers and
cycle�simulators are based on a less detailed synchronous next�state seman�
tics�

It is necessary to give an explicit semantics to Verilog to provide a basis for
de�ning what it means to check the equivalence between behavioral proto�
types and synthesized logic� In the VFE project� equivalence will be formu�
lated in terms of the cycle based semantics� However� it is hoped eventually
to be able to establish that this is consistent with the event semantics used
by most simulators� Only a cycle based semantics is given here�

In addition to the immediate goal of de�ning equivalence between Verilog
texts� explicit semantics provide a standard for ensuring that di�erent tools
�e�g� simulators and synthesizers� have a consistent interpretation of the
language constructs�

�VFE stands for Verilog Formal Equivalence� This is our internal name for the EPSRC

project entitled Checking Equivalence Between Synthesised Logic and Non�synthesisable

Behavioural Prototypes �



vi Preface

Some of the features missed out of SV� are listed below� Consideration of
these omitted features may fatally break the style of semantics given here�

�� The syntax and semantics of expressions is not speci�ed in detail�

�� Module hierarchy is ignored� only a single module is considered�

�� Modules and sequential blocks cannot have local declarations�

�� Vectors� arrays� memories� gates� gate instantiations� drive strengths�
delays� and tasks are all omitted�

The semantics is speci�ed by translating the programming constructs to a
�semantic pseudo�code�� The pseudo�code is intended to provide a simpler
representation on which to de�ne both the event semantics and the cycle
semantics �only the latter is given here� see 
�� for an example of the former��
It is also hoped to be a �rst step towards a Verilog�VHDL neutral level
�though what� if anything� needs to be added to support VHDL has not
been investigated��

The cycle�based semantics given in Chapter � derives the state transforma�
tions corresponding to cycles by �symbolically executing� the pseudo�code
between timing controls ���constructs�� This approach is based on the algo�
rithm underlying David Greaves� CSYN compiler 
���

Acknowledgements

This work is funded by the U�K� Engineering and Physical Sciences Research
Council �EPSRC� as project GR�K�	���� The principal Investigator is Dr�
David Greaves�

This method of symbolic execution described in ��� is based on the algorithm
underlying David Greaves� CSYN compiler 
��� The examples here were
generated using a program built by Mike Gordon on top of Daryl Stewart�s
P���� Verilog parser and pretty�printer 
�� which� in turn� is implemented
using the syntax processing facilities of Richard Boulton�s CLaReT system

��� Errors in a �rst draft were pointed out by Daryl Stewart�

We are grateful to Synopsys� Inc� for providing us with their software and
for ongoing cooperation in de�ning the semantics of synthesizable Verilog�



Chapter �

Syntax

A complete speci�cation in SV� consists of a single module of the general
form�

module �module name� ��port name�� � � � ��port name���

function �function name��
input �name�� � � � � �name��
�statement�

endfunction���
function �function name��
input �name�� � � � � �name��
�statement�

endfunction

assign �wire name� � �expression����
assign �wire name� � �expression�

always �statement����
always �statement�

endmodule

The order in which the function declarations� continuous assignments and
always blocks are listed is not signi�cant�

For simplicity� SV� has no explicit variable declarations� A variable is a wire
if it occurs on the left hand side of a continuous assignment� otherwise it is
a register� Wires are ranged over by the syntactic meta�variableW� registers
are ranged over by R and both wires and registers are ranged over by V�
Details of Verilog�s datatypes �e�g� bit widths� are ignored in SV��

The results of functions are returned by an assignment to the function name
inside its body� Thus a function name is also a register name�

A port is an output port if it is a wire and occurs on the left hand side of a



� Syntax

continuous assignment or is a register and occurs on the left of a �blocking
or non�blocking� procedural assignment� Ports that are not output ports are
input ports�

In the BNF that follows� constructs enclosed between curley braces f and g
are optional�

��� Expressions

The structure of expressions is not elaborated in detail for SV��

It is assumed that wires and registers are expressions and that there is an
operation of substituting an expression E� for a variable V �which can be
either a wire or a register� in another expression E�� This is denoted by
E�
V � E��� Note that in standard Verilog such substitution is not always
possible� For example� r��� is legitimate� but substituting s	t for r results
in the illegal expression �s	t�����

For the purpose of giving examples� the normal expression syntax of Verilog
will be used�

��� Module items

Module items I in SV� are constructed from expressions �ranged over by E��
event expressions �ranged over by T � and statements �ranged over by S��

I ��� function F� �Function declaration�
input V�� � � � Vn�

S

endfunction

j assign W � E �Continuous assignment�
j always S �Always block�

The bodies of functions are not allowed to contain timing controls �see �����



��� Event expressions �

��� Event expressions

Event expressions T only occur as components of timing controls ��T �� They
can be used both to delimit synchronous cycle boundaries and to specify
combinational logic� Only the following kinds of event expressions are allowed
in SV��

T ��� V �Change of value�
j posedge V �Positive edge�
j negedge V �Negative edge�
j T � or � � � or T n �Compound sensitivity list�

��� Statements

The syntax of statements S is given by the BNF below� The variables R and
B range over register names and block names� respectively� n ranges over
positive numbers�

S ��� �� �Empty statement�
j R � E �Blocking assignment�
j R 
� E �Non�blocking assignment�
j beginf�Bg S�� � � � � Sn end �Sequencing block�
j disable B �Disable statement�
j if �E� S� felse S�g �Conditional�
j case �E� �Case statement�

E�� S�
���

En� Sn

fdefault� Sn��g
endcase

j while �E� S �While�statement�
j repeat �n� S �Repeat statement�
j for �R��E�� E� R��E�� S �For statement�
j forever S �Forever�statement�
j ��T � S �Timing control�



� Syntax

The following syntactic restrictions are assumed in SV��

�� Each register can be assigned to in at most one always block�

�� Every disable statement disable B occurs inside a sequential block
begin�B � � � end�

�� Every path through the body of a while� forever or for statement must
contain a timing control� This is checked by the symbolic exection
algorithm in ����

Other restrictions will be needed to ensure that the cycle semantics is con�
sistent with the event semantics�

Case�statements� repeat�statements and for�statements are regarded as ab�
breviations for combinations of other statements �see �������



Chapter �

Cycle Semantics

The semantics of a module is represented by a Mealy machine whose inputs
are determined by the input ports of the module and whose outputs are
determined by its output ports� The state vector of the machine consists
of the registers written by assignments in each always block together with
additional control registers� called program counters� Program counters will
be named pc� pc

�
� pc

�
� pc

�
etc� � a separate one for each always block� In the

initial state all program counters are assumed to be �� but the initial values
of other components of the state �i�e� the registers� is not speci�ed�

A purely combinational module will have exactly one state� so is equivalent
to a function from a vector of input values to a vector of output values�

A �Mealy� machine will be represented textually by a set of equations de�
scribing combinational logic together with next state assertions� These will
be written using a Verilog�like notation� Such a �meta�circular� use of Verilog
to describe itself is intended to be readable and informal� A more rigor�
ous symbolic representation of Mealy machines inside a formal logic will be
needed for equivalence checking�

An equation W � E asserts that the value of W is equal to the value of
expression E� For example� the equation�

out � in�	in


de�nes the combinational addition function�

Continuous assignments assign W � E are interpreted as equationsW � E�

A function declaration like

function F�

input V�� � � � Vn�

S

endfunction



� Cycle Semantics

generates an equation of the form

F�V�� � � � � Vn� � E�

where E is obtained by symbolically executing the function body S�

For example�

function f�
input a� b� c� d�
begin
f � a�
if �b�
begin
if �c� f � d� else f � �d�
end

end

generates the equation � f�a� b� c� d� � b � c � d � �d � a� How this
equation is derived is explained later�

Always blocks generate a set of next�state assertions involving the registers
in the block and a program counter �denoted by pc in the examples that
follow��

Next�state assertions will be represented with Verilog�like phrases of the form

��T � if �E� begin R� 
� E�� � � � � Rn 
� En end

which means that when T occurs and E is true� then the state is updated
according to the listed assignments� Statements that perform assignments
before the �rst timing control will generate an initialization not guarded by
any ��T � �see examples 	 and 
 in ����� This also happens for function
bodies� which contain no timing controls�

��� Examples

The examples in this section are intended to give the idea of the semantics�
A precise speci�cation is given in ��� and ����



��� Examples 	

Example �

The example below sets a to � on the �rst edge and then sets b to a on the
second edge� Thereafter a and b are updated with � on each cycle�

always ��posedge clk� begin a��� ��posedge clk� b�a� end

generates two next�state assertions�

��posedge clk�
if �pc �� ��
begin

pc 
� ��
a 
� ��
b 
� b�

end

��posedge clk�
if �pc �� ��
begin

pc 
� ��
a 
� a�
b 
� a�

end

Example �

The following example is a state machine described in an implicit style� It
is Example 
��� from the Synopsys HDL Compiler for Verilog Reference
Manual 
���

always
begin
��posedge clk� total � data�
��posedge clk� total � total 	 data�
��posedge clk� total � total 	 data�

end

which generates three next�state assertions�




 Cycle Semantics

��posedge clk�
if �pc �� ��
begin

pc 
� ��
total 
� data�

end

��posedge clk�
if �pc �� ��
begin

pc 
� 
�
total 
� �total� 	 data�

end

��posedge clk�
if �pc �� 
�
begin

pc 
� ��
total 
� �total� 	 data�

end

Example 	

An explicit style of description of the machine in Example � is given next�
This is Example 
��	 from the Synopsys HDL Compiler for Verilog Reference
Manual 
���

always
��posedge clk�
begin
case �state�
�� begin total � data�

state � ��
end

�� begin total � total 	 data�
state � 
�

end
default�

begin total � total 	 data�
state � ��

end
endcase
end



��� Examples �

This generates�

��posedge clk�
if �pc �� ��
begin

pc 
� ��
total 
� �state �� �� � data � �total� 	 data�
state 
� �state �� �� � � � �state �� �� � 
 � ��

end

Note that the program counter generated from the implicit state machine
speci�cation corresponds to the register state in the explicit state speci��
cation� The explicit states style of state machine speci�cation makes the
program counter pc redundant�

Example 


Another example illustrating a redundant program counter is�

always ��posedge clk�
if �p� begin a�b� b�a� end
else begin a
�b� b
�a� end

generates

��posedge clk�
if �pc �� ��
begin

pc 
� ��
a 
� b�
b 
� p � b � a�

end

Example �

Asynchronous �combinational� always blocks also lead to a redundant pro�
gram counter� For example�

always ��b or c� a � b 	 c



�� Cycle Semantics

generates

��b or c�
if �pc �� ��
begin

pc 
� ��
a 
� b 	 c�

end

Since whenever b and c change� a is updated� it follows �induction over time �
details elsewhere� that this next�state assertion is equivalent to the equation
a � b	c� However consider instead�

always ��b or c� if �p� a � b	c�

which generates�

��b or c�
if � pc �� � �
begin

pc 
� ��
a 
� p � b 	 c � a�

end

Suppose a equals b	c� If b or c then changes when p is false� then a will
become di�erent from b	c� Thus a�s value must be latched � hence the need
for synthesizers to do latch inference�

Example �

Here is a combinational example that doesn�t lead to any latch inference�

always
��a or b or c or d�
begin
f � a�
if �b�
begin
if �c� f � d� else f � �d�

end
end



��� Examples ��

generates�

��a or b or c or d�
if �pc �� ��
begin

pc 
� ��
f 
� b � c � d � �d � a�

end

Example �

The sequential block in Example �� namely�

begin
f � a�
if �b�
begin
if �c� f � d� else f � �d�

end
end

was the body of the example function named f given on page �� This state�
ment �without any always and timing control� generates�

if �pc ��� �
begin

pc 
� ��
f 
� b � c � d � �d � a�

end

The expression assigned to the function name f is used to generate the equa�
tion de�ning f �see page �� at the end of �����

Example �

Each next�state assertion� except for any initialisation� is guarded by a sepa�
rate timing control� This allows for the possibility �usually prohibited by syn�
thesizers� that there may be di�erent timing controls along di�erent paths�

A �non�synthesizable� nonsense statement is used to illustrate this�



�� Cycle Semantics

always if �p� begin
a���
��posedge clk� b�
�
��negedge clk� c���

end
else begin

a���
��clk� b���

end

generates four next�state assertions �the �rst of which is an initialisation��

if �pc �� ��
begin

pc 
� p � � � ��
c 
� c�
a 
� p � � � ��
b 
� b�

end

��posedge clk�
if �pc �� ��
begin

pc 
� 
�
c 
� c�
a 
� a�
b 
� 
�

end

��negedge clk�
if �pc �� 
�
begin

pc 
� p � � � ��
c 
� ��
a 
� p � � � ��
b 
� b�

end

��clk�
if �pc �� ��
begin

pc 
� p � � � ��
c 
� c�
a 
� p � � � ��
b 
� ��

end



��� Semantic Pseudo�Code ��

The machine represented by a complete module is obtained by combining
�conjoining� the equations and next�state assertions generated by each func�
tion declaration� continuous assignment and always block �see �����

Next�state equations are obtained by symbolically executing the result of
translating S to a semantic pseudo�code�

��� Semantic Pseudo�Code

The semantics of SV� is given in two stages� First� all statements are con�
verted to a semantic pseudo�code� This reduces Verilog�s sequential control
�ow constructs to a simple uniform form� Second the pseudo�code is inter�
preted� For synthesizable Verilog� a cycle based interpretation is appropriate�
however the semantic pseudo�code is also a suitable vehicle for giving an event
based semantics 
���

It is hoped that a common pseudo�code can be developed to provide a �deep
structure� for both Verilog and VHDL� thus reducing the di�erences between
the two languages to just �surface structure��

����� Pseudo�code instructions

Statements are compiled to pseudo�code consisting of sequences of instruc�
tions from the following instruction set�

R � E blocking assignment
R �� E non�blocking assignment
��T � timing control
go n unconditional jump to instruction n

ifnot E go n jump to instruction n if E is not true
disable B disable �break out of� block B

����� Example translations

Before giving the straightforward algorithm for translating from SV� state�
ment to pseudo�code� some example translations are presented�



�� Cycle Semantics

Example �

if �E�
begin a
�b� b
�a� end
else
begin a�b� b�a� end

translates to�

�� ifnot E go �
�� a 
� b

� b 
� a
�� go �
�� a � b
�� b � a

Example �

if �E�
begin a
�b� ��posedge clk� b
�a� end
else
begin a�b� b�a� end

translates to

�� ifnot E go �
�� a 
� b

� ��posedge clk�
�� b 
� a
�� go �
�� a � b
�� b � a

Example 	

if �E�
begin a
�b� ��posedge clk� b
�a� end
else
begin a�b� ��posedge clk� b�a� end

translates to



��� Semantic Pseudo�Code ��

�� ifnot E go �
�� a 
� b

� ��posedge clk�
�� b 
� a
�� go �
�� a � b
�� ��posedge clk�
�� b � a

Example 


if �E�
begin�b� a
�b� disable b�� b
�a� end
else
begin a�b� ��posedge clk� b�a� end

translates to

�� ifnot E go �
�� a 
� b

� go �
�� b 
� a
�� go �
�� a � b
�� ��posedge clk�
�� b � a

Example �

forever ��b or c� a � b 	 c�

translates to

�� ��b or c�
�� a � b 	 c

� go �



�� Cycle Semantics

Example �

forever
begin
��posedge clk� total � data�
��posedge clk� total � total 	 data�
��posedge clk� total � total 	 data�

end

translates to

�� ��posedge clk�
�� total� data

� ��posedge clk�
�� total � total 	 data�
�� ��posedge clk�
�� total � total 	 data
�� go �

Example �

forever
��posedge clk�
begin
case �state�
�� begin total � data�

state � ��
end

�� begin total � total 	 data�
state � 
�

end
default�

begin total � total 	 data�
state � ��

end
endcase
end

translates to



��� Semantic Pseudo�Code �	

�� ��posedge clk�
�� ifnot state �� � go �

� total � data
�� state� �
�� go ��
�� ifnot state �� � go �
�� total � total 	 data
�� state � 

�� go ��
�� total � total 	 data
��� state � �
��� go �

����� Macro�expansion of derived constructs

The �rst step in translating statements to pseudo�code is to �macro�expand�
case� repeat and for statements�

Case statements

case �E�
E�� S�
E�� S�
���

En� Sn

fdefault� Sn��g
endcase

is expanded to�

if �E��E�� S� else if �E��E�� S� � � � else if �E��En� Sn felse Sn��g

Repeat statements

repeat �n� S

is expanded to�



�
 Cycle Semantics

begin S� � � � �S
� �z �

n copies of S

end

For statements

for �R��E�� E� R��E�� S

is expanded to�

begin R��E�� while �E� begin S� R��E� end end

����� The size of a statement

The size function de�ned in this section is used in the translation algorithm
described in ������ Let the size jSj of S be as de�ned below inductively on
the structure of S� It will turn out that jSj is the number of instructions that
S is translated to�

jR � Ej � �

jR �� Ej � �

jbeginf�Bg endj � �

jbeginf�Bg S�� � � � � Sn endj � jS�j� � � � � jSn j

jdisable Bj � �

jif �E� Sj � jSj� �

jif �E� S� else S�j � jS�j� jS�j� �

jwhile �E� Sj � jSj� �

jforever Sj � jSj� �

j��T �j � �

The size of a sequence of statements is de�ned to be the sum of the sizes
of the components of the sequence� Thus if hS�� � � � � Sni is a sequence of
statements� then de�ne�

jhij � �

jhS�� � � � � Snij � jS�j� � � � � jSn j



��� From pseudo�code to next�state assertions ��

����� Translation algorithm

The sequence hi�� � � � � ini of instructions that statement S is translated to is
denoted by 

S�� p� where p is the position of the �rst instruction �e�g� go p

jumps to the start of the program��

To handle sequential blocks� it is convenient to de�ne in parallel the transla�
tion of a sequence hS�� � � � � SN i of statements �see the third and forth clauses
of the de�nition below��

In the de�nition below a is sequence concatenation and s
u � v � denotes
the result of replacing all occurrences of u in s by v �

��R � E 		 p � hR � Ei

��R �� E 		 p � hR �� Ei

��hi		 p � hi

��hS�� S�� � � � �Sni		 p � ��S�		 p a ��hS�� � � � �Sni		�p�jS�j�

��beginf�Bg S�� � � � � Sn end		 p � ��hS�� � � � �Sni		 p �disable B � go p�jhS�� � � � �Snij	

��disable B		 p � hdisable Bi

��if �E� S		 p � hifnot E go p�jSj��ia ��S 		�p � ��

��if �E� S� else S�		 p � hifnot E go p�jS�j��i
a ��S�		�p���
a hgo p�jS�j�jS�j��i
a ��S�		�p�jS�j���

��while �E� S		 p � hifnot E go p�jSj��ia ��S 		�p���a hgo pi

��forever S		 p � ��S		 p a hgo pi

����T � S		 p � h��T �ia ��S		�p���

��� From pseudo�code to next�state assertions

Next�state assertions are generated from the pseudo�code by symbolic exe�
cution until a timing control is reached� When a conditional jump is encoun�
tered� both paths are followed and then the results combined�

As pseudo�code is symbolically executed� blocking assignments are performed
on a symbolic representation of the state� but non�blocking assignments are



�� Cycle Semantics

accumulated and only performed at the end of the cycle � i�e� when a timing
control is reached�

A symbolic state is represented by a set of pairs associating registers with
expressions �i�e� a �nite function�� The following notation is used�

fR� �� E�� � � � �Rn �� Eng

This denotes a state in which register Ri has the value E i �� � i � n��

A special control register called the program counter is assumed� Di�erent
always blocks in a module are assumed to have di�erent program counters�
which will be named pc� pc

�
� pc

�
� pc

�
etc�

The accumulating set of pending non�blocking assignments will be denoted
by�

fR�
�E�� � � � �Rn
�Eng

The symbolic execution algorithm starts at a given instruction and then
steps through the pseudo�code� updating the state and pending non�blocking
assignments until a timing control is reached� The pending assignments are
then performed�

Programs whose symbolic execution generates an in�nite loop can result from
while�statements that have a path through their body that is not broken by
a timing control� Such statements are excluded from SV��

Recall that the instruction set is�

R � E blocking assignment
R �� E non�blocking assignment
��T � timing control
go n unconditional jump to instruction n

ifnot E go n jump to instruction n if E is not true
disable B disable �break out of� block B

The result of simultaneously �i�e� in parallel� substituting the expressions
E�� � � � � En for the registers R�� � � � � Rn in an expression E is denoted by�

E
R�� � � � �Rn � E�� � � � � En �

The symbolic execution algorithm takes a state and a set of pending non�
blocking assignments and returns a state�

The �current instruction� is the one pointed to by the program counter�



��� From pseudo�code to next�state assertions ��

The symbolic execution algorithm is as follows�

�� If pc �� i and instruction i is R � E then�

� let E � � E
R�� � � � �Rn � E�� � � � � En � �so E
� is the value of E in the

current state��

� if the state doesn�t contain any assignment to R� then extend the
state with R �� E ��

� if the state contains an assignment to R �e�g� R �� Ri � for some
i� then replace this assignment with R �� E ��

� increment the program counter so that pc �� i � ��

� recursively invoke symbolic execution with the modi�ed state and
the same pending non�blocking assignments�

�� If pc �� i and instruction i is R 
� E then�

� let E � � E
R�� � � � �Rn � E�� � � � � En �

� if the set of pending non�blocking assignments doesn�t contain any
assignment to R� then extend the set with R 
� E ��

� if the pending non�blocking assignments contains an assignment
to R then replace this assignment with R 
� E � �thus later non�
blocking assignments override earlier ones to the same variable��

� increment the program counter so that pc �� i � ��

� recursively invoke symbolic execution with the modi�ed state and
the extended list of pending non�blocking assignments�

�� If pc �� i and instruction i is a timing control� or if i points outside the
program� then perform the pending non�blocking assignments �overrid�
ing any assignments in the state� if necessary� and return the resulting
state� This state consists of pc �� i � � and those Ri �� E i in the sym�
bolic state for which there is no pending non�blocking assignment to
Ri together with all R �� E where R 
� E is a pending non�blocking
assignment�

�� If pc �� i and instruction i is go n then set pc to n and recursively in�
voke symbolic execution with the modi�ed state and the same pending
non�blocking assignments�



�� Cycle Semantics

�� If pc �� i and instruction i is ifnot E go n then�

� let E � � E
R�� � � � �Rn � E�� � � � � En �

� let fpc �� j � R� �� E
f
�� � � � � Rn �� E f

ng be the state resulting
from recursively symbolically executing with pc �� n�

� let fpc �� k � R� �� E t
�� � � � � Rn �� E t

ng be the state resulting
from recursively symbolically executing with pc �� i � ��

� return as the result of the symbolic execution the state
fpc �� E � � k � j � R� �� E � � E �t� � E

�f
�� � � � � Rn �� E � � E �tn � E �fng

�� The instruction disable B should not be generated� SV� assumes
that only an enclosing block can be disabled and all such disables are
replaced by jumps during the compilation of sequential blocks�

The symbolic execution algorithm given above is used to generate next�state
assertions from a statement as follows�

If the �rst instruction is not a timing control� then generate an initialization
assertion�

if �pc �� �� begin pc 
� j � R� 
� E�� � � � � Rn 
� En � end

where fpc �� j �R� �� E�� � � � �Rn �� Eng is the state resulting from symbolic
execution starting with fpc �� ��R� �� R�� � � � �Rn �� Rng and the empty
set of pending non�blocking assignments�

Next� for each value i of the program counter that points to a timing control
instruction ��T � generate an assertion

��T � if �pc �� i� begin pc 
� j � R� 
� E�� � � � � Rn 
� En � end

where fpc �� j �R� �� E�� � � � �Rn �� Eng is the state resulting from symbolic
execution starting with fpc �� i �R� �� R�� � � � �Rn �� Rng and the empty
set of pending non�blocking assignments�

The next�state assertions from an always block always S are obtained by
generating the assertions from the statement forever S�

The equation generated by a function de�ned by�

function F�

input V�� � � � Vn�

S

endfunction



��� The meaning of a module ��

is obtained by generating the assertions from the body S� If the function is
well�formed there should only be one next�state assertion of the form�

if �pc �� ��
begin

pc 
� ��
���

F 
� E�
���

end

The equation de�ning F is then� F�V�� � � � � Vn� � E

��� The meaning of a module

The representation of the Mealy machine generated from a module�

module M �V�� � � � �Vq��

function F�� input V�
�� � � � �V i�

� � SF�
endfunction���

function Fr� input V�
r� � � � �V ir

r � SFr
endfunction

assign W� � E����
assign Ws � E s

always S����
always St

endmodule

consists of�

�� an equation F j �V
�
j � � � � � V

ij
j � � E j for each function �� � j � r��

�� an equation W j � E j for each continuous assignment �� � j � s��

�� the union of the assertions generated by each always block� each one
with a di�erent program counter� say pcj �i � j � t��



�� Cycle Semantics



Bibliography


�� Richard Boulton� The Computer Language Reasoning Tool� See
www�dai�ed�ac�uk�daidb�staff�personal pages�rjb�claret�index�html�


�� M� J� C� Gordon� The semantic challenge of Verilog HDL� In Tenth

Annual IEEE Symposium on Logic in Computer Science� pages ��������
IEEE Computer Society Press� �����


�� David Greaves� The CSYN Verilog compiler and other tools� Available
from www�cl�cam�ac�uk�users�djg�localtools�index�html�


�� Daryl Stewart� The Verilog Formal Equivalence Project� Available from
www�cl�cam�ac�uk����users�djs���
�verilog�project�syntax��


�� Synopsys� Inc� HDL Compiler for Verilog Reference Manual� Version ����
September �����


�� Donald E� Thomas and Philip R� Moorby� The Verilog Hardware De�

scription Language� Kluwer Academic Publishers� �rd edition� �����


