Synthesizable Verilog

syntax and semantics

VFE Project
University of Cambridge Computer Laboratory

Version 0.0

January 28, 1997

The Verilog Formal Equivalence (VFE) Project is funded by the
U.K. Engineering and Physical Sciences Research Council.

i

Contents

Preface

1 Syntax

1.1 Expressions
1.2 Module items
1.3 Event expressions

1.4 Statements.

2 Cycle Semantics

2.1 Examples
2.2 Semantic Pseudo-Code . .

2.2.1 Pseudo-code instructions

2.2.2 Example translations

2.2.3 Macro-expansion of derived constructs

2.2.4 The size of a statement

2.2.5 Translation algorithm

2.3 From pseudo-code to next-state assertions

2.4 The meaning of a module

Bibliography

13
13
13
17
18
19
19
23

25

v

CONTENTS

Preface

Synthesizable Verilog is a subset of the full Verilog HDL [6] that lies within
the domain of current synthesis tools (both RTL and behavioral).

This document specifies a subset of Verilog called SV0. This subset is in-
tended as a vehicle for the rapid prototyping of ideas.

The method chosen for developing a semantics of all of synthesizable Verilog
is to start with something too simple — SV0 — and then only to make it more
complicated when the simple semantics breaks. This way it is hoped to avoid
unnecessary complexity. It is planned to define sequence of bigger and bigger
subsets (SV1, SV2 etc.) that will converge to the version of Verilog used in
the VFE project! at Cambridge.

Different tools interpret Verilog differently: industry standard simulators like
Cadence’s Verilog XL are based on the scheduling of events. Synthesizers and
cycle-simulators are based on a less detailed synchronous next-state seman-
tics.

It is necessary to give an explicit semantics to Verilog to provide a basis for
defining what it means to check the equivalence between behavioral proto-
types and synthesized logic. In the VFE project, equivalence will be formu-
lated in terms of the cycle based semantics. However, it is hoped eventually
to be able to establish that this is consistent with the event semantics used
by most simulators. Only a cycle based semantics is given here.

In addition to the immediate goal of defining equivalence between Verilog
texts, explicit semantics provide a standard for ensuring that different tools
(e.g. simulators and synthesizers) have a consistent interpretation of the
language constructs.

LVFE stands for Verilog Formal Equivalence. This is our internal name for the EPSRC
project entitled Checking Equivalence Between Synthesised Logic and Non-synthesisable
Behavioural Prototypes.

vi Preface

Some of the features missed out of SVO are listed below. Consideration of
these omitted features may fatally break the style of semantics given here.

1. The syntax and semantics of expressions is not specified in detail.
Module hierarchy is ignored: only a single module is considered.

Modules and sequential blocks cannot have local declarations.

- W N

Vectors, arrays, memories, gates, gate instantiations, drive strengths,
delays, and tasks are all omitted.

The semantics is specified by translating the programming constructs to a
‘semantic pseudo-code’. The pseudo-code is intended to provide a simpler
representation on which to define both the event semantics and the cycle
semantics (only the latter is given here, see [2] for an example of the former).
It is also hoped to be a first step towards a Verilog/VHDL neutral level
(though what, if anything, needs to be added to support VHDL has not
been investigated).

The cycle-based semantics given in Chapter 2 derives the state transforma-
tions corresponding to cycles by ‘symbolically executing’ the pseudo-code
between timing controls (@-constructs). This approach is based on the algo-
rithm underlying David Greaves’ CSYN compiler [3].

Acknowledgements

This work is funded by the U.K. Engineering and Physical Sciences Research
Council (EPSRC) as project GR/K57343. The principal Investigator is Dr.
David Greaves.

This method of symbolic execution described in 2.3 is based on the algorithm
underlying David Greaves’ CSYN compiler [3]. The examples here were
generated using a program built by Mike Gordon on top of Daryl Stewart’s
P1364 Verilog parser and pretty-printer [4] which, in turn, is implemented
using the syntax processing facilities of Richard Boulton’s CLaReT system
[1]. Errors in a first draft were pointed out by Daryl Stewart.

We are grateful to Synopsys, Inc. for providing us with their software and
for ongoing cooperation in defining the semantics of synthesizable Verilog.

Chapter 1

Syntax

A complete specification in SVO consists of a single module of the general
form:

module <module_name> (<port_name>, ... ,<port_name>) ;

function <function_name>;
input <name>, ..., <name>;
<statement>

endfunction

function <function_name>;
input <name>, ..., <name>;
<statement>

endfunction

assign <wire_name> = <expression>

assign <wire_name> = <expression>

always <statement>

always <statement>

endmodule

The order in which the function declarations, continuous assignments and
always blocks are listed is not significant.

For simplicity, SV0 has no explicit variable declarations. A variable is a wire
if it occurs on the left hand side of a continuous assignment, otherwise it is
a register. Wires are ranged over by the syntactic meta-variable W, registers
are ranged over by R and both wires and registers are ranged over by V.
Details of Verilog’s datatypes (e.g. bit widths) are ignored in SVO0.

The results of functions are returned by an assignment to the function name
inside its body. Thus a function name is also a register name.

A port is an output port if it is a wire and occurs on the left hand side of a

2 Syntax

continuous assignment or is a register and occurs on the left of a (blocking
or non-blocking) procedural assignment. Ports that are not output ports are
input ports.

In the BNF that follows, constructs enclosed between curley braces { and }
are optional.

1.1 Expressions

The structure of expressions is not elaborated in detail for SVO0.

It is assumed that wires and registers are expressions and that there is an
operation of substituting an expression &£; for a variable V (which can be
either a wire or a register) in another expression €. This is denoted by
EslV « &;1]. Note that in standard Verilog such substitution is not always
possible. For example, r[0] is legitimate, but substituting s+t for r results
in the illegal expression (s+t) [0].

For the purpose of giving examples, the normal expression syntax of Verilog
will be used.

1.2 Module items

Module items Z in SV0 are constructed from expressions (ranged over by &),
event expressions (ranged over by 7) and statements (ranged over by S).

Z := function F; (Function declaration)
input Vi; ... Vu;
S
endfunction
| assign W=¢ (Continuous assignment)
| always S (Always block)

The bodies of functions are not allowed to contain timing controls (see 1.3).

1.3 Event expressions 3
1.3 Event expressions

Event expressions 7 only occur as components of timing controls @(7). They
can be used both to delimit synchronous cycle boundaries and to specify
combinational logic. Only the following kinds of event expressions are allowed
in SVO0:

= (Change of value)
| posedge V (Positive edge)
| negedge V (Negative edge)
| Tior --- or T, (Compound sensitivity list)

1.4 Statements

The syntax of statements S is given by the BNF below. The variables R and
B range over register names and block names, respectively; n ranges over
positive numbers.

S == 0O (Empty statement)
| R=¢ (Blocking assignment)
| R<=¢ (Non-blocking assignment)
| begin{:B} Si; --- ; Sy end (Sequencing block)
| disable B (Disable statement)
| if (&) S; {else Sy} (Conditional)
| case (€) (Case statement)
511 81
En: Sn
{default: S, 1}
endcase
while (€) S While-statement)

| (

| repeat (n) S (Repeat statement)
| for (R1=€1; &€; Re=E2) S (For statement)

| forever S (Forever-statement)
| e(7T) S (Timing control)

4 Syntax
The following syntactic restrictions are assumed in SVO0:

1. Each register can be assigned to in at most one always block.

2. Every disable statement disable B occurs inside a sequential block
begin:B --- end.

3. Every path through the body of a while, forever or for statement must
contain a timing control. This is checked by the symbolic exection
algorithm in 2.3.

Other restrictions will be needed to ensure that the cycle semantics is con-
sistent with the event semantics.

Case-statements, repeat-statements and for-statements are regarded as ab-
breviations for combinations of other statements (see 2.2.3).

Chapter 2

Cycle Semantics

The semantics of a module is represented by a Mealy machine whose inputs
are determined by the input ports of the module and whose outputs are
determined by its output ports. The state vector of the machine consists
of the registers written by assignments in each always block together with
additional control registers, called program counters. Program counters will
be named pc, pc,, pc,y, pcy etc. — a separate one for each always block. In the
initial state all program counters are assumed to be 0, but the initial values
of other components of the state (i.e. the registers) is not specified.

A purely combinational module will have exactly one state, so is equivalent
to a function from a vector of input values to a vector of output values.

A (Mealy) machine will be represented textually by a set of equations de-
scribing combinational logic together with next state assertions. These will
be written using a Verilog-like notation. Such a ‘meta-circular’ use of Verilog
to describe itself is intended to be readable and informal. A more rigor-
ous symbolic representation of Mealy machines inside a formal logic will be
needed for equivalence checking.

An equation W = & asserts that the value of W is equal to the value of
expression £. For example, the equation:

out = inl+in2
defines the combinational addition function.
Continuous assignments assign W = & are interpreted as equations W = €.

A function declaration like
function F;
input Vi; ... Vy;
S
endfunction

6 Cycle Semantics

generates an equation of the form
FWVi,.. 0, V0) = &,
where £ is obtained by symbolically executing the function body S.

For example:

function f;
input a, b, ¢, d;
begin
f = a;
if (b)
begin
if (¢) £ = d; else f = 14;
end
end

generates the equation : f(a,b,c,d) = b ? ¢ ?d : !d : a. How this
equation is derived is explained later.

Always blocks generate a set of next-state assertions involving the registers

in the block and a program counter (denoted by pc in the examples that
follow).

Next-state assertions will be represented with Verilog-like phrases of the form
Q(7) if () begin Ry <=¢&1; ... ; Ry, <=&, end

which means that when 7 occurs and & is true, then the state is updated
according to the listed assignments. Statements that perform assignments
before the first timing control will generate an initialization not guarded by
any @(7) (see examples 7 and 8 in 2.1). This also happens for function
bodies, which contain no timing controls.

2.1 Examples

The examples in this section are intended to give the idea of the semantics.
A precise specification is given in 2.2 and 2.3.

2.1 Examples

Example 1

The example below sets a to 0 on the first edge and then sets b to a on the
second edge. Thereafter a and b are updated with 0 on each cycle.

always @(posedge clk) begin a=0; @(posedge clk) b=a; end

generates two next-state assertions:

@(posedge clk)
if (pc == 0)
begin
pc <= 1;
a <= 0;
b <= b;
end
Q(posedge clk)
if (pc == 1)
begin
pc <= 0;
a <= a;
b <= a;
end
Example 2

The following example is a state machine described in an implicit style. It
is Example 8-16 from the Synopsys HDL Compiler for Verilog Reference

Manual [5].

always
begin

@(posedge clk) total
Q@(posedge clk) total
Q@(posedge clk) total

end

data;
total + data;
total + data;

which generates three next-state assertions:

Q@(posedge clk)

if (pc == 0)
begin
pc <= 1;
total <=
end

Q(posedge clk)

if (pc == 1)
begin
pc <= 2;

data;

total <= (total) + data;

end

@(posedge clk)

if (pc == 2)
begin
pc <= 0;
total <
end
Example 3

always

Q@(posedge clk)
begin

case (state)

0: Dbegin total

state
end
1: begin total
state
end
default:
begin total
state
end
endcase

end

= (total) + data;

data;
1;

total + data;
2;

total + data;
0;

Cycle Semantics

An explicit style of description of the machine in Example 2 is given next.
This is Example 8-17 from the Synopsys HDL Compiler for Verilog Reference
Manual [5].

2.1 Examples 9
This generates:

Q@(posedge clk)

if (pc == 0)
begin
pc <= 0;

total <= (state == 0) 7 data : (total) + data;
state <= (state == 0) ? 1 : (state == 1) ? 2 : 0;
end

Note that the program counter generated from the implicit state machine
specification corresponds to the register state in the explicit state specifi-
cation. The explicit states style of state machine specification makes the
program counter pc redundant.

Example 4

Another example illustrating a redundant program counter is:

always @(posedge clk)
if (p) begin a=b; b=a; end
else begin a<=b; b<=a; end

generates

@(posedge clk)

if (pc == 0)
begin
pc <= 0;
a <= b;
b<=p?hb a;
end
Example 5

Asynchronous (combinational) always blocks also lead to a redundant pro-
gram counter. For example:

always @(b or ¢c) a = b + ¢

10 Cycle Semantics

generates
@(b or c)
if (pc == 0)
begin
pc <= 0;
a<=b+ c;
end

Since whenever b and ¢ change, a is updated, it follows (induction over time —
details elsewhere) that this next-state assertion is equivalent to the equation
a = b+c. However consider instead:

always @(b or c) if (p) a = b+c;

which generates:

@(b or c)
if (pc ==0)
begin
pc <= 0;
a<=p7?b+c: a;
end

Suppose a equals b+c. If b or ¢ then changes when p is false, then a will
become different from b+c. Thus a’s value must be latched — hence the need
for synthesizers to do latch inference.

Example 6

Here is a combinational example that doesn’t lead to any latch inference.

always
@(a or b or ¢ or d)
begin
f = a;
if (b)
begin
if (¢) f = d; else f = 14;
end
end

2.1 Examples 11
generates:

@(a or b or ¢ or d)

if (pc == 0)
begin
pc <= 0;
f<=b7?7c?d: !d: a;
end
Example 7

The sequential block in Example 6, namely:

begin
f = a;
if (b)
begin
if (¢) f = d; else f = 14;
end
end

was the body of the example function named f given on page 6. This state-
ment (without any always and timing control) generates:

if (pc ==0)
begin
pc <= 1;
f<=b7?7c?d: !d: a;
end

The expression assigned to the function name £ is used to generate the equa-
tion defining £ (see page 22 at the end of 2.3).

Example 8

Each next-state assertion, except for any initialisation, is guarded by a sepa-
rate timing control. This allows for the possibility (usually prohibited by syn-
thesizers) that there may be different timing controls along different paths.

A (non-synthesizable) nonsense statement is used to illustrate this:

12 Cycle Semantics

always if (p) begin
a=1;
Q(posedge clk) b=2;
Q@(negedge clk) c=3;
end
else begin
a=5;
Q(clk) b=6;
end

generates four next-state assertions (the first of which is an initialisation):

if (pc == 0)
begin
pc <=p 7?71 :3;
c <= ¢;
a<=p?7?1:5;
b <= b;
end

Q(posedge clk)

if (pc == 1)
begin
pc <= 2;
c <= ¢;
a <= a;
b <= 2;
end

Q(negedge clk)

if (pc == 2)

begin
pc<=p?71:3;
c <= 3;
a<=p?1:5;
b <= b;

end

@(clk)

if (pc == 3)

begin
pc<=p 71 3;
c <= ¢;
a<=p?1:5;
b <= 6;

2.2 Semantic Pseudo-Code 13

The machine represented by a complete module is obtained by combining
(conjoining) the equations and next-state assertions generated by each func-
tion declaration, continuous assignment and always block (see 2.4).

Next-state equations are obtained by symbolically executing the result of
translating S to a semantic pseudo-code.

2.2 Semantic Pseudo-Code

The semantics of SVO is given in two stages. First, all statements are con-
verted to a semantic pseudo-code. This reduces Verilog’s sequential control
flow constructs to a simple uniform form. Second the pseudo-code is inter-
preted. For synthesizable Verilog, a cycle based interpretation is appropriate,
however the semantic pseudo-code is also a suitable vehicle for giving an event
based semantics [2].

It is hoped that a common pseudo-code can be developed to provide a ‘deep
structure’ for both Verilog and VHDL, thus reducing the differences between
the two languages to just ‘surface structure’.

2.2.1 Pseudo-code instructions

Statements are compiled to pseudo-code consisting of sequences of instruc-
tions from the following instruction set:

R=¢& blocking assignment

R<=E& non-blocking assignment

e(7T) timing control

go n unconditional jump to instruction n

ifnot £ go n jump to instruction n if £ is not true
disable B disable (break out of) block B

2.2.2 Example translations

Before giving the straightforward algorithm for translating from SVO state-
ment to pseudo-code, some example translations are presented.

14 Cycle Semantics

Example 1

if (&)

begin a<=b; b<=a; end
else

begin a=b; b=a; end

translates to:

ifnot £ go 4
a<=b

b <= a

go 6

AL WNDE—O

b
a

a

b

Example 2
if (&)
begin a<=b; Q@(posedge clk) b<=a; end

else
begin a=b; b=a; end

translates to

0: ifnot £ go 5

1: a<=b

2: ©(posedge clk)

3: b <= a

4: go 7

5: a=b>b

6: b =a
Example 3

if (&)

begin a<=b; Q@(posedge clk) b<=a; end

else

begin a=b; Q@(posedge clk) b=a; end

translates to

2.2 Semantic Pseudo-Code

0: ifnot £ go 5

1: a<=hb

2: ©(posedge clk)

3: b <= a

4: go 8

5: a=>

6: O(posedge clk)

7: b=a
Example 4

if (&)

begin:bl a<=b; disable bl; b<=a; end

else

begin a=b; @(posedge clk) b=a; end
translates to

ifnot £ go 5
a<=b

go 4

b <= a

go 8

a=»>o
@(posedge clk)
b=a

~NOoO O wWNHHO

Example 5

forever @(b or c) a =b + c;

translates to

0: @(b or ¢)
1: a=b+c
2: go O

16

Example 6

forever

begin
@(posedge clk) total
Q@(posedge clk) total
Q@(posedge clk) total
end

translates to

data;
total + data;
total + data;

0: @(posedge clk)
1: total= data
2: @(posedge clk)
3: total = total + data)
4: ©@(posedge clk)
5: total = total + data
6: go O
Example 7
forever
Q@(posedge clk)
begin

case (state)

0: begin total = data;
state = 1;
end
1: begin total =
state = 2;
end
default:
begin total =
state = 0;
end
endcase

end

translates to

total + data;

total + data;

Cycle Semantics

2.2 Semantic Pseudo-Code

0: ©(posedge clk)

1: ifnot state == 0 go 5
2: total = data

3: state= 1

4: go 11

5: ifnot state == 1 go 9
6: total = total + data
7: state = 2

8: go 11

9: total = total + data
10: state =0

11: go O

17

2.2.3 Macro-expansion of derived constructs

The first step in translating statements to pseudo-code is to ‘macro-expand’

case, repeat and for statements.

Case statements

case (&)
511 81
521 82

En: Su
{default: S, 1}

endcase

is expanded to:

if (€==(€1) Sl else if (5==€2) 82

Repeat statements

repeat (n) S

is expanded to:

else if (£==£,) S, {else S, 1}

18 Cycle Semantics

begin §; ... ;S end
—_——

n copies of S

For statements

for (R1=51; 5; R2=52) S
is expanded to:

begin R;=£;; while (£) begin §; Ry=€, end end

2.2.4 The size of a statement

The size function defined in this section is used in the translation algorithm
described in 2.2.5. Let the size |S| of S be as defined below inductively on
the structure of . It will turn out that |S| is the number of instructions that
S is translated to.

R = ¢ =1

R <=¢£]| =1

|begin{: B} end| =0

lbegin{:B} Si;---; Snend = [Si|+ - + [Sy
|disable B| =1

it (&) 5] ~ 18]+ 1

|if (£) S; else Sy = |S1] 4+ |S2| +2
|[while (&) S| = |S|+2

|forever S| = |S|+1

|@(T)| =1

The size of a sequence of statements is defined to be the sum of the sizes
of the components of the sequence. Thus if (Sy,...,S,) is a sequence of
statements, then define:

01 =0

(S1,...,8n)| = [S1]+ -+ +]S4

2.3 From pseudo-code to next-state assertions 19

2.2.5 Translation algorithm

The sequence (ig, ..., 1i,) of instructions that statement S is translated to is
denoted by [S] p, where p is the position of the first instruction (e.g. go p
jumps to the start of the program).

To handle sequential blocks, it is convenient to define in parallel the transla-
tion of a sequence (Si,...,Sy) of statements (see the third and forth clauses
of the definition below).

In the definition below ™ is sequence concatenation and s[u < v] denotes
the result of replacing all occurrences of u in s by v.

[R=£Elp = (R=¢)
[R<=&] p = (R<=¢&)
[0 p =0
[(S1, Sa,---,Su)l p = [Si] p 7 [(S2, ..., S)l(p+|S1])
[begin{:B} S1;---; Snend] p = [(S1,...,S,)] p [disable B + go p+|(Sq,...
[disable B] p = (disable B)
[if (&) S]p = (ifnot & go p+|S|+1) " [S](p + 1)
[if (£) S1 else So] p = (ifnot & go p+|S1|+2)
~[Su(p+1)
~ (go p+[S1|+[S2[+2)
~ [Sal(p+[S1[+2)
[while (&) S] p = (ifnot & go p+|S|+2) 7 [S](p+1) ~ (go p)
[forever S] p = [S] p "~ (go p)
[e(T) 8] p = (e(T)) " [S](p+1)

2.3 From pseudo-code to next-state assertions

Next-state assertions are generated from the pseudo-code by symbolic exe-
cution until a timing control is reached. When a conditional jump is encoun-
tered, both paths are followed and then the results combined.

As pseudo-code is symbolically executed, blocking assignments are performed
on a symbolic representation of the state, but non-blocking assignments are

20 Cycle Semantics

accumulated and only performed at the end of the cycle — i.e. when a timing
control is reached.

A symbolic state is represented by a set of pairs associating registers with
expressions (i.e. a finite function). The following notation is used:

{Rl '—>(€1,...,Rn '—>€n}
This denotes a state in which register R; has the value &; (1 < i < n).

A special control register called the program counter is assumed. Different
always blocks in a module are assumed to have different program counters,
which will be named pc, pc,, pc,, pc; etc.

The accumulating set of pending non-blocking assignments will be denoted
by:

{R1<=€1, ..., Rpu<=E,}
The symbolic execution algorithm starts at a given instruction and then
steps through the pseudo-code, updating the state and pending non-blocking

assignments until a timing control is reached. The pending assignments are
then performed.

Programs whose symbolic execution generates an infinite loop can result from
while-statements that have a path through their body that is not broken by
a timing control. Such statements are excluded from SV0.

Recall that the instruction set is:

R=E& blocking assignment

R<=¢& non-blocking assignment

e(7T) timing control

gon unconditional jump to instruction n

ifnot £ go n jump to instruction n if £ is not true
disable B disable (break out of) block B

The result of simultaneously (i.e. in parallel) substituting the expressions
&, ..., E, for the registers Ry, ..., R, in an expression & is denoted by:

ERL, ..., RnE1,...,En

The symbolic execution algorithm takes a state and a set of pending non-
blocking assignments and returns a state.

The ‘current instruction’ is the one pointed to by the program counter.

2.3 From pseudo-code to next-state assertions 21

The symbolic execution algorithm is as follows.

1. If pc +— ¢ and instruction ¢ is R = £ then:

let &' =E[Ry,..., Ry < E1,...,En] (so & is the value of £ in the
current state);

if the state doesn’t contain any assignment to R, then extend the
state with R — &';

if the state contains an assignment to R (e.g. R — R;, for some
i) then replace this assignment with R — &’;

increment the program counter so that pc — ¢ + 1;

recursively invoke symbolic execution with the modified state and
the same pending non-blocking assignments.

2. If pc — 7 and instruction 7 is R <= £ then:

let EIZE[Rl,...,Rn (-51,...,(9”]

if the set of pending non-blocking assignments doesn’t contain any
assignment to R, then extend the set with R <= &',

if the pending non-blocking assignments contains an assignment
to R then replace this assignment with R <= £’ (thus later non-
blocking assignments override earlier ones to the same variable);

increment the program counter so that pc — ¢ + 1;

recursively invoke symbolic execution with the modified state and
the extended list of pending non-blocking assignments.

3. If pc + ¢ and instruction : is a timing control, or if ¢ points outside the
program, then perform the pending non-blocking assignments (overrid-
ing any assignments in the state, if necessary) and return the resulting
state. This state consists of pc — 7 + 1 and those R; — &; in the sym-
bolic state for which there is no pending non-blocking assignment to
R; together with all R — £ where R <= £ is a pending non-blocking
assignment.

4. If pc — 7 and instruction ¢ is go n then set pc to n and recursively in-
voke symbolic execution with the modified state and the same pending
non-blocking assignments.

22 Cycle Semantics

5. If pc — ¢ and instruction ¢ is ifnot £ go n then:

let & = E[Ry,..., Ry < 1y, En]
let {pc — j, Ry — L Ry &'} be the state resulting
from recursively symbolically executing with pc — n;

let {pc — k, Ry — &', ..., R, — EL} be the state resulting
from recursively symbolically executing with pc +— ¢ + 1;

return as the result of the symbolic execution the state
{pc—&2k:j, Ry &2t . Ry &0}

6. The instruction disable B should not be generated. SVO0 assumes
that only an enclosing block can be disabled and all such disables are
replaced by jumps during the compilation of sequential blocks.

The symbolic execution algorithm given above is used to generate next-state
assertions from a statement as follows.

If the first instruction is not a timing control, then generate an initialization
assertion:

if (pc ==0) begin pc <= j; Ry <= &;; ... ; Ry, <= &,; end

where {pc — j,R1 +— &E1,...,Rn > En} is the state resulting from symbolic
execution starting with {pc — 0,R; — Rq,..., R, — R,} and the empty
set of pending non-blocking assignments.

Next, for each value 7 of the program counter that points to a timing control
instruction @(7") generate an assertion

Q(7) if (pc == i) begin pc <= j; Ry <= &1; ... ; R, <= &,; end

where {pc — j,R1 +— &1,...,Rn > En} is the state resulting from symbolic
execution starting with {pc — i,R; — Ry,...,R, — R,} and the empty
set of pending non-blocking assignments.

The next-state assertions from an always block always S are obtained by
generating the assertions from the statement forever S.

The equation generated by a function defined by:

function F;
input Vi; ... Vp;
S

endfunction

2.4 The meaning of a module 23

is obtained by generating the assertions from the body S. If the function is
well-formed there should only be one next-state assertion of the form:

if (pc == 0)
begin
pc <= 1;
F <= &
end

The equation defining F is then: F(Vy,...,V,) = &

2.4 The meaning of a module
The representation of the Mealy machine generated from a module:

module M (Vi,...,V,);

function Fi; input V!, ...,V¥; Sz endfunction
function F,; input V., ...,V ; Sz endfunction
assign W) =&,

aséign W, =&

always S

always S;

endmodule

consists of:

1. an equation F;(Vj, ... ,V;j) = ¢&; for each function (1 <j <r);

2. an equation W; = ¢&; for each continuous assignment (1 < j < s);

3. the union of the assertions generated by each always block, each one
with a different program counter, say pc; (i <j < 1).

24

Cycle Semantics

Bibliography

[1] Richard Boulton. The Computer Language Reasoning Tool. See
www.dai.ed.ac.uk/daidb/staff/personal_pages/rjb/claret/index.html.

[2] M. J. C. Gordon. The semantic challenge of Verilog HDL. In Tenth
Annual IEEE Symposium on Logic in Computer Science, pages 136-145.
IEEE Computer Society Press, 1995.

[3] David Greaves. The CSYN Verilog compiler and other tools. Available
from www.cl.cam.ac.uk/users/djg/localtools/index.html.

[4] Daryl Stewart. The Verilog Formal Equivalence Project. Available from
www.cl.cam.ac.uk:80/users/djs1002/verilog.project/syntax/.

[5] Synopsys, Inc. HDL Compiler for Verilog Reference Manual, Version 3.5,
September 1996.

(6] Donald E. Thomas and Philip R. Moorby. The Verilog Hardware De-
scription Language. Kluwer Academic Publishers, 3rd edition, 1996.

