
Synthesising Glue Logic
Transactors, Multiplexors and

Serialisors
from Protocol Specifications.

David Greaves
Myoung Jin Nam
University of Cambridge
Computer Laboratory
UK

FDL 2010
Southampton
September 2010

The Design Exercise

 List participating interfaces and their protocols

 Connect them together, fully-reactively and without
deadlock.

 Commonly just need data conservation, but

 Sometimes need other operations:

. Filtering

. Multiplexing

. Demultiplexing

. Buffering

. Serialising

. Deserialising

For any other
processing:
 Use an intermediate
participant

Product Design Method

 Each participant protocol is defined by an NDFSA
(automaton) over its nets

 Additional resources in our glue also have state (e.g.
holding register is dead/live)

 Form full cross product cross product of all participants

 Delete any arcs that violate data conservation or lead to
deadlock

 Select a preferred direction at any remaining non-
deterministic branch.

Four-Phase Handshake

Protocol:
four_phase_handshake_protocol(pred) =
 Seq[Set(pred, X_net "DL");
 Set(xi_num 1, X_net "Strobe");
 Set(xi_num 1, X_net "Ack");
 Set(deadval, X_net "DL");
 Set(xi_num 0, X_net "Strobe");
 Set(xi_num 0, X_net "Ack")
]
;

Participant example:
Four-phase handshake
(asynchronous parallel
port protocol).

Interface:
 output [7:0] data;
 output Strobe;
 input Ack;

Guards and commands shown are for output port and
automatically Interchanged for input instance.

Protocol Description
 Language

Anything convertible to this form of non-deterministic FSA serves...

Typical
Connection

 Patterns
- Can have more than 2 participants

- Some patterns require internal state

- Demultiplexing requires a
 routing predicate

- The filter pattern is a 1-to-2 demux
 with a /dev/null output port

- All patterns can be encoded using a
simple algebra.

Interconnection Algebra

Typical
Example
showing

three
applications

of our method.

Use for design
exploration

and synthesis.

Overall
Tool
Flow

Envisioned as an IP-XACT Eclipse Plugin

XML file pulls protocols and interfaces from
library

Interfaces are parameterised with their
direction and bus widths

XML file also contains glue equations (e.g.
filter predicates)

Additional resources added by human.

Then an automatic procedure...

XML Example
<?xml version='1.0' ?>
<joining name="bvisa">

 <participant>
 <iname>bv32</iname>
 <interface>bvci32</interface>
 <protocol>bvci32</protocol>
 <direction>reverse</direction>
 </participant>

 <equations>bvisa</equations>

 <participant>
 <iname>isa1620a</iname>
 <interface>isa1620</interface>
 <protocol>isa1620</protocol>
 <direction>forward</direction>
 </participant>

</joining>
let ioaddr = xi_bitor(ad_lo, lshift(predicate(kill ad_hi, xi_deqd(ad_hi, xi_num 17)), 20))
let memaddr = xi_bitor(ad_lo, lshift(predicate(kill ad_hi, xi_deqd(ad_hi, xi_num 16)), 20))
;

Glue equations currently not yet in XML
file – instead in a named F# source file...

But F# has some interesting domain-
specific extensions

Four examples

Ex 1: TLM Writer x 4/P

Protocol:
tlm_writer_handshake_protocol =
 Seq[
 Set(xi_uqstring "DHdata", X_net "DH");
 Set(xi_uqstring "active", X_net "call");
 Set(deadval, X_net "DH");
 Set(xi_uqstring "idle", X_net "call");
]
;

 - All data has been conserved
 - Only live paths shown
 - Non-deterministic choices retained
 - Thread-trimming optimisation not applied

Dot plot from intermediate
stage of TLM to 4/P xactor:

Concrete & Symbolic State
 Concrete state:

− Eg: true/false, 0-9, {idle,read,write}

− Set by driving component (output port)

 Symbolic state:

− Eg: dead, D32, D8|(E8<<8)

− Killed dead by receiving component

− Set live by driving component

− Chiseled at a serialisor until dead

− Accumulated at deserialisor until correct width

Data Conserving Unification/
Congruence Rules

ISA Bus Participant: Non-det branch to four paths: mem/io read/write.

let isa_nets =
 [(simplenet "isa_iown", Ndi OUTPUT, gen_Concrete_enum [xi_num 1; xi_num 0]);
 (simplenet "isa_iorn", Ndi OUTPUT, gen_Concrete_enum [xi_num 1; xi_num 0]);
 (simplenet "isa_memwn", Ndi OUTPUT, gen_Concrete_enum [xi_num 1; xi_num 0]);
 (simplenet "isa_memrn", Ndi OUTPUT, gen_Concrete_enum [xi_num 1; xi_num 0]);
 (vectornet_w("isa_addr", 20), Ndi OUTPUT, gen_Symbolic_bitvec (16));
 (vectornet_w("isa_rdata", 16), Ndi INPUT, gen_Symbolic_bitvec (16));
 (vectornet_w("isa_wdata", 16), Ndi OUTPUT, gen_Symbolic_bitvec (16));
]

let isa_mem_read =
 Seq[Set(memaddr, X_net "isa_addr");
 Set(xi_num 1, X_net "isa_memrn");
 Set(data32, X_net "isa_rdata");
 Set(xi_num 0, X_net "isa_memrn");
 Setl [(deadval, X_net "isa_addr"); (deadval, X_net "isa_rdata");];
];

// Make an alternation of four basic cycles:
let isa_legacy_protocol =
 Disjunction[isa_mem_read; isa_mem_write; isa_io_read; isa_io_write;]

let isa1620 = ("ISA1620", isa_nets, isa_legacy_initial, isa_legacy_idle, Synch isa_legacy_protocol)

// Glue equations for A32/D32 mapping :
let ioaddr = xi_bitor(ad_lo, lshift(predicate(kill ad_hi, xi_deqd(ad_hi, xi_num 17)), 20))
let memaddr = xi_bitor(ad_lo, lshift(predicate(kill ad_hi, xi_deqd(ad_hi, xi_num 16)), 20))
let data32 = xi_bitor(data_lo, lshift(kill data_hi, 16))

ISA A20/D16 Nets

ISA Read Mem Protocol

ISA Disjunction of Paths

ISA A32/D32 embedding equations

Guiding Heuristic
 With causal participants eliminating all but one decision at

a non-det choice gives working design.

 Heuristic choice during synthesis: chose a design that:

 Makes as many changes as possible.

 Executes most rapidly (i.e. shortest path to idle),

 Good for timing closure (at least one register delay per net),

 Shares commonality as much as possible (lowest overall
complexity),

 For TLM: enables work to be packed on fewer threads.

Transactional Ports

 TLM modelling: subroutine calls instead of nets.

 Transactor: glue logic with some mix of TLM and net-
level ports.

 TLM ports are some mix of initiator and target

 Transactor: may multiplex various TLM calls over
various net-level interfaces.

 Many transactors have no work to do while between
transactions... can save on threads.

Call Active Concrete Bit
 Assume TLM calls are non-reentrant.

 Additional boolean concrete state flag records call
phase: active/idle.

 Then treat as a net-level port with access restrictions:

When idle (not active), initiator can:
 . Write argument expressions
 . Set active flag
 . Return value can be read

When active, target can:
 . Read arg values
 . Write return value
 . Clear active flag

 Thread reduction possible ?

− For initiator if nothing to do while active

− For target, if nothing to do while idle

Search Space Exponential?

 Most free inputs only connect to one
participant, therefore

− Search space around a component is
exponential

− Search space as number of participants
increases grows more slowly

− But we consider stuttering composition of
components, which is exponential

− Perhaps phrase as SAT problem ?

Four example results:

Compile Time

$ mono ./joiner.exe -o bvisa.cpp bvisa.xml -cpp bvisa.cpp -vnl bvisa.vnl
Forming participant iname=bv32 protocol=bvci32 inteface=bvci32 direction=reverse
Forming participant iname=isa1620a protocol=isa1620 inteface=isa162 direction=forward
Considered 100 with 187 states to explore...
Considered 200 with 265 states to explore...
Considered 300 with 308 states to explore...
Considered 400 with 193 states to explore...
Considered 500 with 267 states to explore...
Considered 600 with 330 states to explore...
Considered 700 with 187 states to explore...
Considered 800 with 105 states to explore...
Considered 900 with 289 states to explore...
Considered 1000 with 291 states to explore...
Considered 1100 with 334 states to explore...
Considered 1200 with 176 states to explore...
Considered 1300 with 1204 states to explore...
Considered 1400 with 1237 states to explore...
Considered 1500 with 2068 states to explore...
Considered 1600 with 2022 states to explore...
Considered 1700 with 2108 states to explore...
Considered 1800 with 1973 states to explore...
Considered 1900 with 131 states to explore...
** Warning: The following command line args were unused -vnl, bvisa.vnl
Finished Product Construction (after considering 1933 states).
Finished Basic Live Path Determination MJN Join: states left=397

$ wc bvisa.cpp bvisa.h
 3282 7082 1234486 bvisa.cpp
 41 142 1078 bvisa.h
 3323 7224 1235564 total

Interpreted F# implementation

2K non dead-end states processed
in 10 minutes with much logging
turned on.

$ time mono ./joiner.exe -o bvisa.cpp bvisa.xml -cpp bvisa.cpp -vnl bvisa.vnl
Forming participant iname=bv32 protocol=bvci32 inteface=bvci32 direction=reverse

Considered 100 out of 187 states to explore...
Considered 200 out of 265 states to explore...
Considered 300 out of 308 states to explore...
Considered 400 out of 193 states to explore...
Considered 500 out of 267 states to explore...
Considered 600 out of 330 states to explore...
Considered 700 out of 187 states to explore...
Considered 800 out of 105 states to explore...
Considered 900 out of 289 states to explore...
Considered 1000 out of 291 states to explore...
Considered 1100 out of 334 states to explore...
Considered 1200 out of 176 states to explore...
Considered 1300 out of 1204 states to explore...
Considered 1400 out of 1237 states to explore...
Considered 1500 out of 2068 states to explore...
Considered 1600 out of 2022 states to explore...
Considered 1700 out of 2108 states to explore...
Considered 1800 out of 1973 states to explore...
Considered 1900 out of 131 states to explore...
** Warning: The following command line args were unused -vnl, bvisa.vnl
Finished Product Construction (after considering 1933 states).
Finished Basic Live Path Determination MJN Join: states left=397
7417.21user 5.13system 2:05:39elapsed 98%CPU (0avgtext+0avgdata 0maxresident)k
48inputs+153024outputs (0major+155961minor)pagefaults 0swaps
$ wc bvisa.cpp bvisa.h
 3282 7082 1234486 bvisa.cpp
 41 142 1078 bvisa.h
 3323 7224 1235564 total

Conclusions

 Surprisingly versatile technique!

 Sometimes needs some branding e.g. to distinguish
wdata32 from waddr32

 Selecting shortest path leads to lowest complexity in h/w
or s/w, but, for h/w we may need at least one register for
timing closure and stick with the longer path always when
used at all is probably sensible.

 Not yet clear whether useable designs result without post-
processing bisimulation reduction.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

