
Spatial computation on a homogeneous, many-core architecture

Daniel Bates Alex Bradbury Andreas Koltes Robert Mullins
University of Cambridge

Firstname.Lastname@cl.cam.ac.uk

1. Introduction
With abundant transistors but limited energy budgets, chip designs
have trended towards multiple cores and specialised logic which
is used infrequently. This approach allows computer architects to
sidestep the utilisation wall: the idea that we can place more tran-
sistors on a chip than we can use simultaneously. This suggests that
transistors’ functions should be specialised, so only a small fraction
of the chip need be active at a time.

However, as trade-offs continue to change, this approach will
become less effective. Increasing heterogeneity increases complex-
ity, and this makes it harder to validate the chip’s design; harder
to generate optimised code; and harder to protect against hardware
faults. Furthermore, beyond 28nm, we can no longer assume that
smaller transistors will always be cheaper, so we cannot continue
to provide dedicated logic which will be used infrequently. Instead,
we propose switching to a homogeneous approach, and implement-
ing the necessary specialisation in software. Having a single com-
putation unit which is repeated many times reduces complexity and
so makes the problems of validation, compilation and fault toler-
ance easier to solve. Homogeneous systems have the additional ad-
vantage that they are general-purpose, so a wider range of applica-
tions can be usefully accelerated.

The challenge then becomes: how do we make use of all the
available processors? A thread-based approach will only get us so
far. Thread-level parallelism (TLP) is only abundant in a small frac-
tion of code, and TLP in general applications has remained stub-
bornly low [3]. Instead, we show that if communication between
cores is low-latency and low-energy, large numbers of them can
be grouped together at run-time to implement a virtual architec-
ture optimised for a particular application. This virtual architecture
can be given the ideal cache capacity, communication structure and
number of functional units to execute a task efficiently. Since the
underlying architecture is homogeneous, there is also scope for dy-
namically varying the resources allocated, depending on circum-
stances such as contention, priority and power budget.

2. Loki architecture
We use the Loki architecture [2] as a test platform and explore
different ways in which a selection of applications can be mapped
to the architecture. Loki has a hierarchical homogeneous structure

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PRISM-2, June 14, 2014, Minneapolis, MN, USA.
Copyright c© 2014 ACM [to be supplied]. . . $15.00.
http://dx.doi.org/10.1145/

Memory controller

Memory controller

I/O 3 x
router

8 x core

8 x L1 cache bank

Multicast buses

Figure 1. Loki’s tiled architecture. Left: chip with one tile high-
lighted. Right: tile block diagram.

(Figure 1). At the top level, the chip is composed of a number
of tiles. Each tile is identical, and is connected to its four nearest
neighbours with three separate mesh networks. Each tile contains
a number of identical cores, cache banks and multiple networks
allowing them to communicate. Cores are designed to be very
simple. This allows them to be smaller and more energy efficient,
which in turn makes communication between cores cheaper in both
time and energy.

Cores within a tile can communicate with each other in a single
clock cycle over a multicast-capable crossbar network. They can
also communicate with any cache bank on the tile, with a round-
trip latency of two clock cycles. Tiles are sized to maximise the
number of cores and cache banks reachable within a single cycle,
while keeping within a two-cycle cache latency. Each tile also con-
tains three single-cycle routers which can communicate with neigh-
bouring tiles’ routers with a latency of one cycle. Using a com-
mercial 40nm low-power process, each tile can contain eight cores
and eight 8kB cache banks, with a total size of 1mm2. With con-
servative timing margins at the worst-case corner, a frequency of
435MHz is achieved. This corresponds to roughly 42 FO4 delays:
within the typical range of 40-60 used by modern system-on-chip
designs.

When cores are abundant, they can be used in unconven-
tional ways. In previous work [2], we showed how cores within
a tile could be configured to flexibly exploit any combination of
instruction-level, data-level and thread-level parallelism. They can
be used to provide services to other nearby cores, such as executing
common functions or prefetching data into the local cache. They
can also be used to increase instruction cache capacity or the num-
ber of available registers, for example. In this work, we extend this
investigation across multiple tiles. It may be reasonable, for exam-
ple, to reduce the density of computation by leaving some cores

idle, and allowing their neighbours to use a larger fraction of the
local cache capacity, network bandwidth and energy budget. We
take the RISC philosophy of optimising for the common case, but
retain the flexibility necessary to support applications which aren’t
common, and need a different balance of resources.

For various mappings of applications to cores, we model per-
formance, energy and area of our architecture using our previous
methodology [2]. Different application mappings allow us to target
different performance, energy or area requirements. For example,
matrix multiplication can be distributed across cores in a vector-
like fashion to allow each instruction to be fetched by one core but
executed by many, or using a systolic array structure to reduce the
number of memory accesses required and increase specialisation
of each core’s task. We demonstrate the advantages of using a ho-
mogeneous architecture for computation, and identify bottlenecks
which limit the efficiency of some implementations.

When communicating between tiles, we make use of end-to-
end credit-based flow control to avoid the possibility of deadlock.
We are able to guarantee that if data is put onto the network, it
will always be removed again at its destination, and so will not
hold up other messages indefinitely. End-to-end flow control was
not a limiting factor for any of the benchmarks used in this paper,
but is often dismissed as being too restrictive [4]. We plan to test
this claim and explore possible ways of relaxing the flow control
requirements in future work.

3. Case studies
We perform case studies on three simple benchmarks to help ex-
plore the features required to use large numbers of cores efficiently.
For each application, we present the performance and energy con-
sumption for a range of different mappings to the Loki architec-
ture, and provide figures for the same application on a 700MHz
ARM1176JZF-S processor implemented on the same 40nm pro-
cess. Comparable results from other architectures are presented
where available.

3.1 Sort
One possible way of parallelising a sort is to have each core sort
a separate block of the input data, and then perform a final merge.
With an architecture capable of message-passing, the final merge
looks a lot like a dataflow graph (Figure 2). On Loki, in order to
keep as much communication on the cheaper local networks, we
use seven of the eight cores on each tile to form the first three levels
of the merge tree, and use the final core from each tile to create
the rest of the tree. We use the quicksort implementation from the
newlib C standard library [6] to sort each individual block.

Figure 3 shows how energy and performance change as the
number of cores change. The parallel quicksort phase of the al-
gorithm demonstrates an almost perfect speedup as more cores are
introduced, and energy slowly decreases as more of the sorting is
done using the efficient merge network. The final merge phase,
however, has a serialisation point at the root of the tree, which
forms a bottleneck when there are four or more cores in the tree.
The only way to improve the performance of this merge phase is
to reduce the length of the critical path of the merge code, which
currently stands at nine instructions.

The triggered instructions paradigm gives each instruction a
trigger consisting of a number of different predicates [7]. Instruc-
tions are executed as soon as their predicates are satisfied. Predi-
cates can be complex: an example trigger for a mergesort applica-
tion is, “both lists have data remaining, and the first element of the
first list is smaller than that of the second”. Using such a paradigm,
it is possible to have a critical path of two instructions per iteration.

While moving to this paradigm is beyond the scope of this
work, we have identified a number of useful features of triggered

tile 0 tile n-1

to memory

...

... ...

Figure 2. Spatial layout of the final merge phase of a parallel
sorting algorithm.

0.01 0.02 0.05 0.10 0.20

0.
00

00
0.

00
10

0.
00

20
0.

00
30

Execution time/s

E
ne

rg
y/

J

loki_1
loki_2loki_4loki_8loki_16*loki_32*

arm1176

Figure 3. Performance and energy consumption when sorting 216

integers. Starred points are projections based on trends seen for
other input sizes.

instructions which would be possible to transfer to communication-
centric architectures such as Loki, and would help reduce code size:

• Ensure that network communication is blocking, removing the
need to explicitly check whether data has arrived or whether
data can be sent.

• Provide a peek operation for the cores’ input network buffers,
removing the need to copy data into the register file.

• Provide data streams which expose an end-of-stream marker to
software. In some cases, this removes the need to maintain an
iteration counter.

• Add a simplified form of triggers. An example is a branch
instruction which specifies two simple triggers. The trigger
which fires first determines the branch to be taken.

Of these, Loki currently only supports blocking network com-
munication. We are looking into supporting the other features. With
all additional features implemented, it would be possible to reduce
the critical path on Loki to four instructions, effectively separating
the two triggered instructions into two triggers and two actions.

0.01 0.02 0.05 0.10 0.20

0.
00

00
0.

00
10

0.
00

20
0.

00
30

Execution time/s

E
ne

rg
y/

J

loki_2loki_4loki_8loki_16loki_32

arm1176

Figure 4. Performance and energy consumption when computing
the FFT of 216 complex fixed-point values. Additional comparison:
40nm Broadcom VideoCore IV GPU at 250MHz: 6.7ms, unknown
energy (single-precision floating point) [9].

3.2 Fast Fourier Transform
The FFT has a predictable but cache-unfriendly memory access
pattern. Each core must be able to read and write to almost any
part of the given data, and so coherence is required.

The Loki architecture does not currently support hardware
cache coherence due to its overhead in terms of energy and area.
This approach agrees with the general consensus among many-core
architectures: full coherence is expensive, and is only necessary for
a small percentage of memory accesses [5, 10].

The SWEL protocol addresses this problem by keeping shared
data in the lowest-level cache which is accessible by all sharers [8].
The results of using this approach on Loki are presented in Figure 4,
assuming a fixed 20-cycle latency from the level 1 cache on each
tile to the shared L2 cache.

Performance increases linearly as the number of cores increases,
and energy remains mostly unchanged. This is because the same
work is being done, only distributed over many cores.

In this particular benchmark, memory access patterns are pre-
dictable, so prefetching could be used to hide latency and improve
performance further. This won’t be possible in all benchmarks,
however. Instead, we intend to provide a flexible memory system
which maintains a single chip-wide copy of any data which must
remain coherent, and make extensive use of message passing to al-
low cores to communicate data directly between each other.

3.3 Matrix multiplication
Matrix multiplication is an embarrassingly parallel problem: each
element of the output matrix can be computed independently.

The most basic mapping of the algorithm is to treat the many
cores like a single vector processor, and have them all execute the
same code simultaneously to compute different parts of the output.

Since each Loki core can act independently, it is possible to
scalarise this code, and extract common code such as iteration
counting to a helper core [1]. This reduces the amount of code exe-
cuted by the remaining cores, at the expense of having fewer cores
directly computing the output. On Loki, we use one helper core
per tile, as this is the range over which multicast communication is
possible.

A systolic array is a grid of processing units which streams
different data sets in different directions. Figure 5 shows how two
4 × 4 matrices can be multiplied using such a structure. Each
core receives a different combination of data from the two input
matrices, and so produces a different section of the output. The

row0 row0 row0 row0

row1 row1 row1 row1

row2 row2 row2 row2

row3 row3 row3 row3

col0

col0

col0

col0 col1

col1

col1

col1 col2

col2

col2

col2 col3

col3

col3

col3

ti
le
0

ti
le
1

ti
le
2

ti
le
3

Figure 5. Spatial layout of a systolic array for matrix multiplica-
tion.

resultant matrix is drained out when computation has finished. In
practice, multiple rows or columns of data are typically passed
along each row or column of cores to reduce the number of cores
required.

When implementing a systolic array on Loki, the cores are again
laid out to minimise the requirement to transfer information be-
tween tiles. With the intensity of communication in this benchmark,
however, this still leaves up to six incoming and six outgoing data
streams per compute tile, and eight outgoing streams for the tiles
providing the data. In this case, network bandwidth becomes the
bottleneck.

One solution to this problem would be to provide a network with
a higher bandwidth. This is likely to be an unnecessary overhead for
the benchmarks which do not require it, however. Another more-
general solution is to change the way the benchmark is mapped to
the hardware. Since cores are abundant on the Loki architecture,
we explore using a sparse mapping which only uses half the cores
on each tile. This reduces the maximum number of incoming or
outgoing data streams to four for all tiles, and effectively creates
a virtual architecture which has an increased global network band-
width. The unused cores on each tile could potentially be used for
other computation which does not require data from the network,
but this possibility is not explored here.

Figure 6 compares the different mappings. It can be seen that the
default vector mapping scales linearly, as expected, and energy re-
mains roughly constant. The energy-efficiency of mappings which
use a helper core increases up to eight cores, as the helper is help-
ing more cores simultaneously. Beyond this point, additional helper
cores are needed, and no further efficiency gains are realised. The
systolic array structure requires a large number of cores to multi-
ply matrices of this size, but does not appear to give a proportional
benefit. The sparser implementation helps a lot, but for this bench-
mark, a larger vector or scalarised implementation would probably
be a better option.

4. Conclusion
We have shown that it is possible to make use of large numbers of
cores when executing embedded application kernels. The use of a
general-purpose fabric allows applications to be mapped to cores
in a range of different ways which may not be possible on more-
specialised architectures. This gives the programmer or compiler

0.001 0.002 0.005 0.010 0.020 0.050

0.
00

00
0

0.
00

01
0

0.
00

02
0

Execution time/s

E
ne

rg
y/

J

loki_1
loki_2loki_4loki_8loki_16loki_32

loki_helper_2

loki_helper_4

loki_helper_8loki_helper_16loki_helper_32

loki_systolic_80

loki_sparse_80

Figure 6. Performance and energy consumption when multiplying
two 128×128 matrices. ARM1176 result omitted for clarity: 52ms,
2.4mJ.

more freedom to choose the energy-performance tradeoff which is
best, given the current circumstances.

Loki is a broad project: current plans include investigating sim-
ple, configurable accelerators within each core; new compilation
techniques and further optimisations; operating system support;
and fabrication and distribution of Loki test chips and development
boards.

Acknowledgments
The authors would like to thank the anonymous reviewers for their
insightful comments and guidance. This work was supported by
EPSRC grant EP/G033110/1 and ERC grant 306386.

References
[1] K. Asanovic, S. W. Keckler, Y. Lee, R. Krashinsky, and

V. Grover. Convergence and scalarization for data-parallel ar-
chitectures. In Proceedings of the 2013 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO),
CGO ’13, pages 1–11, Washington, DC, USA, 2013. IEEE
Computer Society. ISBN 978-1-4673-5524-7. . URL
http://dx.doi.org/10.1109/CGO.2013.6494995.

[2] D. Bates, A. Bradbury, A. Koltes, and R. Mullins. Exploiting tightly-
coupled cores. In Embedded Computer Systems: Architectures, Mod-
eling, and Simulation (SAMOS XIII), 2013 International Conference
on, pages 296–305, 2013. .

[3] G. Blake, R. G. Dreslinski, T. Mudge, and K. Flautner. Evolu-
tion of thread-level parallelism in desktop applications. In Pro-
ceedings of the 37th annual international symposium on Com-
puter architecture, ISCA ’10, pages 302–313, New York, NY,
USA, 2010. ACM. ISBN 978-1-4503-0053-7. . URL
http://doi.acm.org/10.1145/1815961.1816000.

[4] A. Hansson, K. Goossens, and A. Rădulescu. Avoiding message-
dependent deadlock in network-based systems on chip. VLSI design,
2007.

[5] H. Huang, N. Yuan, W. Lin, G. Long, F. Song, L. Yu,
Y. Liu, L. Liu, Y. Zhou, X. Ye, et al. Architecture sup-
ported synchronization-based cache coherence protocol for many-
core processors. In CMP-MSI08, ISCA Workshop, 2008. URL
https://www.cs.utah.edu/cmpmsi08/paper7.pdf.

[6] J. Johnston and T. Fitzsimmons. The newlib homepage.
http://sourceware.org/newlib/, 2011. URL
http://sourceware.org/newlib/.

[7] A. Parashar, M. Pellauer, M. Adler, B. Ahsan, N. Crago,
D. Lustig, V. Pavlov, A. Zhai, M. Gambhir, A. Jaleel, R. All-
mon, R. Rayess, S. Maresh, and J. Emer. Triggered instruc-

tions: A control paradigm for spatially-programmed architectures.
In Proceedings of the 40th Annual International Symposium on
Computer Architecture, ISCA ’13, pages 142–153, New York,
NY, USA, 2013. ACM. ISBN 978-1-4503-2079-5. . URL
http://doi.acm.org/10.1145/2485922.2485935.

[8] S. H. Pugsley, J. B. Spjut, D. W. Nellans, and R. Balasubramonian.
Swel: Hardware cache coherence protocols to map shared data onto
shared caches. In Proceedings of the 19th International Conference on
Parallel Architectures and Compilation Techniques, PACT ’10, pages
465–476, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0178-
7. . URL http://doi.acm.org/10.1145/1854273.1854331.

[9] E. Upton. Accelerating Fourier transforms using the GPU.
http://www.raspberrypi.org/archives/5934, Jan 2014. URL
http://www.raspberrypi.org/archives/5934.

[10] X. Zhou, H. Chen, S. Luo, Y. Gao, S. Yan, W. Liu, B. Lewis,
and B. Saha. A case for software managed coherence in
manycore processors. In Poster on 2nd USENIX Work-
shop on Hot Topics in Parallelism HotPar10, 2010. URL
http://usenix.org/events/hotpar10/final posters/Zhou.pdf.

