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ABSTRACT

This project aims to use an automated approach to thoroughly explore the design space of a
massively-parallel processing fabric, made up of many hundreds or thousands of individual pro-
cessing elements, and find the best possible architectural design for it. Analysis of results will
dictate whether features should be included, and drive the generation of new regions of the de-
sign space.
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1 Introduction

Computer processor technology has historically enjoyed a prolonged period of steady scal-
ing: as the size of transistors decreased, more could be put onto a single chip and they could
be switched on and off faster. Their supply voltage could also be decreased to make them
more power-efficient. However, this scaling is now slowing down. It is no longer feasible
to increase clock frequencies because of the associated increase in power consumption, and
supply voltages are nearing their lower-limit. There is also a pressure to decentralise pro-
cessor designs as thinner wires with higher resistances make communication increasingly
costly. These changes are forcing computer architects to make a step-change in their de-
signs, and many are moving to multiprocessing to maintain improvements in computation
throughput. This approach, too, has many obstacles which need to be overcome if scaling is
to continue.

Looking towards the future, the huge number of available transistors will force architects
into designing systems which only use a small percentage of transistors at a time to remain
within power budgets [Hor07], implying that some form of specialisation is required. As
the end of CMOS approaches, there are also issues with process variation which need to be
surmounted in order to implement reliable systems.
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Embedded systems are constrained in three main dimensions: power, performance and
cost. There are several existing approaches to satisfying these constraints, including:

• FPGAs: very flexible, but time-to-market is poor because it is difficult to map appli-
cations to them. Energy efficiency and performance depend on the task: FPGAs excel
at parallel bit-level operations, but are relatively poor at executing sequential, control-
flow intensive code.

• ASICs: very high performance and very low power, but at very high cost. ASICs only
make economic sense if a very large number of chips are going to be manufactured.

• General purpose processors: cheap, since the same chip can be used in many different
situations, running different code in each case. Time-to-market is also good because
programs can often be written quickly in high-level languages. Energy consumption
and performance are relatively poor, due to the overheads of flexibility.

This project aims to find a solution between an FPGA and a massively-multicore general
purpose processor. Although there is much ongoing research in this area [Har01], the design
space around tightly-coupled processors remains relatively unexplored. I aim to discover
exactly which features are necessary, and the best possible implementations for them.

2 Architecture

The main aims of the architecture are simplicity and flexibility: the fabric should be robust
and usable for any purpose. The network is a central design aspect, with efficient communi-
cation between components being key to high performance.

The architecture is designed to be minimal, with a few concessions to increase flexibility
and speed up common cases. Having a basic starting point allows us to be results-driven,
and only add features when analysis suggests that they are important.
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Figure 1: The homogeneous, hierarchical design of the chip.

The chip has a homogeneous and hierarchical design, as shown in Figure 1. It is com-
posed of a number of tiles, all interconnected, each of which contains a number of cores and
memories and a local interconnect. Any component on the chip can communicate with any
other. The distribution of data and computation across the chip reduces the distance that
information needs to travel, which in turn reduces the amount of energy consumed.

Each core (Figure 2) is capable of executing any program alone, but the usual approach
will be to combine many cores to form a larger virtual processor, with each core running
highly specialised code. This software specialisation aims to allow performance and energy
consumption approaching that of ASICs [DBB+08], whilst retaining FPGA-like flexibility.



Instruction 
Packet 
Cache

Fetch 
Logic

Decode

Receive 
Channel-end

Table

Register 
Read

Register 
Write

Send 
Channel-end 

Table

ALU

Instruction 
Packet FIFO

Immediate 
Sign-extend

Instructions 
from network

Requests to 
network

Data from 
network

Instructions/data 
to network

Figure 2: Main features of the four-stage pipeline. There is no dedicated Memory Access
stage: data is put onto the network in the same way as if it was being sent to another core.

Some features initially added to the design are listed below. The features were introduced
to increase flexibility, and allow interesting ways of mapping applications to the hardware.
However, if testing suggests that one or more features are poorly-utilised, it is possible that
they may be changed or removed to keep the design simple.

• Instruction packets: instructions are grouped according to their basic blocks, and the
instruction cache has been modified to deal efficiently with variable-length packets.

• Register-mapped channel-ends: the network is directly connected to the pipeline, and
it is possible for instructions to read data from or write data to the network.

• Support for indirect register access: allows a core to behave as a small memory on
behalf of another core, and also increases the number of addressable registers.

• Specialisation of the memory system: a memory (or group of memories) could behave
as a basic scratchpad or a more complex cache.

• End-to-end flow control: allows guarantees that there will be no deadlock in the net-
work. If information is put onto the network, it is guaranteed to reach its destination.

The deep-interconnection between cores and the ability for one core to send instructions to
another allows for three main execution patterns, as shown in Figure 3.
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Figure 3: The three main execution patterns. The white rectangle represents a memory, and
the grey squares represent cores.

These patterns aim to allow increased performance, even in sequential code sections, for
example through implementation of small helper engines. Helper engines are cores or groups



of cores dedicated to providing services to the main virtual processor, such as routing or
prefetching data, allowing the main processor to work more effectively.

In summary, the architecture aims to achieve high performance and low power through
specialisation of its many cores. Power is saved by bypassing functionality (e.g. cache tag
checks) and reducing switching. The specialisation is done through software, however, so it
is possible to use the same chip for many different purposes, reducing costs. The architecture
will be a target for high-level languages, decreasing time-to-market, further reducing costs.

3 Plans

The results of initial design space exploration would dictate the direction of future research:
it may be the case that an individual component becomes particularly interesting and wor-
thy of further detailed study.

The network may be such a component: there are many ways that it can be partitioned,
such as different levels of its hierarchy, or by separating control and data traffic. The network
encompasses features such as flow control, buffering, channel width and topology, each of
which can be varied for each partition.

Alternatively, there may be so many parameters to optimise that the exploration tool
runs too slowly to reach an optimal solution in a reasonable amount of time. In this case,
spending some time investigating new exploration approaches or optimisations would be
useful. These could include additional heuristics to guide the search away from sub-optimal
regions, combinations of different exploration algorithms, or investigations into faster sim-
ulation [EEDB06] or predictions [DJO08].

Automating the extension of the design space could be investigated, perhaps by going
beyond parameterisation and implementing a technique for applying architectural trans-
formations to the chip. These transformations would generally be more subtle than the ef-
fects of parameters, but could help find more-optimal, non-obvious configurations. This ap-
proach is particularly suited to the detailed investigation of an individual component.
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