
Omniscient: Towards realizing near real-time data
center network traffic maps

Diana Andreea Popescu
University of Cambridge

diana.popescu@cl.cam.ac.uk

Andrew W. Moore
University of Cambridge

andrew.moore@cl.cam.ac.uk

ABSTRACT
In order to make measurement-based placement, an op-
timiser must make informed decisions. Currently, it is
difficult to assign routes or assign resource commitments
to network paths in data centers, as applications do not
declare what is carried within each flow. We propose to
provide insight into the traffic that traverses each net-
work link, realizing a near real-time map of a data cen-
ter’s network traffic. We present Omniscient, a system
that aims to increase the visibility into the data cen-
ter network traffic by computing link utilization broken
down by application instance using OpenFlow stats in
an SDN-enabled data center. The goal of the system is
to inform application instance placement and redundant
network path assignment in order to improve applica-
tion performance and resource utilization.

CCS Concepts
•Networks → Network monitoring; Data center
networks;

1. INTRODUCTION
Data centers have become an essential part of to-

day’s network communications. A typical data center
runs a huge number of application instances (jobs) on
tens of thousands of hosts. Many of these applications
are user facing (web search for example) and thus their
performance is critical. Academia and industry alike
are seeking to improve the data center network fabrics
and software to ensure that applications run smoothly.
To this end, we need to have readily available data on
network traffic patterns in a data center. Knowing the
path taken by the flows of a certain application instance

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.

CoNEXT Student Workshop’15 December 01 2015, Heidelberg,
Germany
c© 2015 ACM. ISBN 978-1-4503-4066-3/15/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2842665.2843558

could serve in better placement of the application in-
stances or better route assignments. Besides informing
future network designs, we would understand better the
application performance.

Measurement systems in data centers have recently
focused on network debugging [12, 13, 14]. Previously,
a number of systems focused on identifying large flows
[2, 6], computing the traffic matrix [4] or measuring
link utilization [9, 11], in order to use this information
to reroute flows.

We propose to realize a near real-time traffic map
for a data center, where the utilization on each link
is computed, broken down by the application instance
that produces that traffic, or at a coarser granularity
by the type of application. Our aim is to use the col-
lected data to improve application performance and re-
source utilization. We introduce Omniscient, a system
that combines three simple concepts: tagging packets
with a unique identifier for each application instance,
OpenFlow flow rule matching on the tagged packets
and statistics collection through OpenFlow statistics re-
quests. While NetFlow [5] and sFlow [8] can provide
sampled packets that can be processed to provide in-
formation about the link utilization, our approach in
Omniscient has two advantages over sampling. Firstly,
it eliminates the bias inherent to sampling. As it is
known, sampling biases against small flows, but these
form the majority of the traffic in data centers [3, 10].
Secondly, it offers a flexible way of choosing for which
application instance we want to collect this data by us-
ing the tagging mechanism.

If we consider web search as an application, in order
to answer a web search request, data needs to be re-
trieved from a large number of servers in parallel and
later aggregated into a response at the requesting server.
By using the same tag for all the flows determined
by the web search request, we can conveniently iden-
tify the flows originating from the same application in-
stance. Furthermore, by knowing the link utilization de-
termined by a certain application instance, we can pro-
vision accordingly the needed bandwidth for future re-
quests and load balance the requests taking into account
the current capacity of the network links. Additionally,
we think of several other ways in which our proposed

Figure 1: Omniscient running in a data center
measuring the link utilization determined by the
flows of two application instances.

system could help in solving other issues that arise in
data centers. In order to detect intra-datacenter dis-
tributed denial-of-service (DDoS) attacks we need vis-
ibility of network resources and network-resource mea-
surements. Our system stores past traffic patterns which
can be consulted in case there is a deviation from nor-
mal traffic patterns for certain application instances or
that can be used in capacity planning.

2. PROPOSED DESIGN
Our proposed design leverages the software-defined

networking (SDN) paradigm. SDN is a paradigm that
separates the control plane from the data forwarding
plane, enabling the centralization of network control
and offering the possibility of programming the network.
The control plane is represented by a controller and the
data plane consists of networking devices, like switches
and routers. This separation is made possible by a pro-
gramming interface, which allows the controller to com-
municate with the forwarding devices, for example in-
stalling forwarding rules at switches. OpenFlow [7] is
the most popular such communication protocol. For our
approach we assume a data center whose switches sup-
port the OpenFlow protocol. In an OpenFlow network,
the controller can collect statistics about the flows (du-
ration, number of packets, number of bytes) by polling
the switches using flow statistics requests. These statis-
tics can be either per flow values or aggregates across
multiple flows that match a rule. We combine this
OpenFlow feature with tagging packets using a unique
identifier for each application instance. In this way,
the polled statistics per flow will represent link loads
caused by a certain application instance. As OpenFlow
switches can support multiple flow tables, where each
flow is matched successively against multiple flow ta-
bles, the tagging rules can be kept in a separate table,
and as such it will not interfere with the other rules
used in forwarding.

In what follows, we describe the design of Omniscient

in detail. An end-host runs an agent that tags the
packets originating from an application instance with a
unique identifier. The identifier must be known by the
network controller in order to be able to construct the
rule that will match on the packets having this identi-
fier. The controller can generate and propose the iden-
tifier to the application instance. The controller will
also install the rules at each switch or only at selected
switches in the data center. The identifier can be em-
bedded into fields in the packet header or using VLAN
tags [12]. In the case of fields, such examples are the
ToS byte, or the IP ID field, or the 20-bit IPv6 flow-
label field [13]. If we use n bits for encoding, we can
encode 2n application instances. Unlike previous work
[12, 13], the identifiers are not used for path tracing,
but for identifying the flows originating from a certain
application instance. Given the number of application
instances running in a data center, we may not be in-
terested in such a fine granularity as tracking the load
counters for each application instance. In this case, mul-
tiple application instances can have the same identifier,
or we can perform aggregation on the load link counters
when processing the polled statistics after collection, or
install a rule that aggregates multiple identifiers. In
this way, we can focus only on the flows of the applica-
tion instances that we are interested in, resulting in a
reduced number of entries in the flow table.

Statistics collection from switches is done through
polling at a defined time interval. The overhead in-
curred on the switches when polling stats must be taken
into account when choosing the polling interval, but also
the interval should be small enough to provide timely
information within a few seconds. Our aim is to con-
struct a network traffic timeline, thus the arrivals of
the polling requests at the switches need to be synchro-
nized at the beginning of a new polling interval in order
to obtain a coherent view of the traffic. The design also
comprises data collection and storage systems and a vi-
sualization tool of the data center map annotated with
collected information. The data can be stored using a
tool such as RRDtool [1].

Challenges in implementing our design are represented
by switch hardware limitations (limited space for rules),
number of unique identifiers that can be embedded in
the packet header field, overhead caused by polling and
synchronization of polling requests.

3. CONCLUSION AND FUTURE WORK
We have motivated the need for increased visibility

into a data center’s network traffic. We have proposed
Omniscient, a system whose goal is to collect network
traffic patterns data to be used to improve application
performance and resource utilization in data centers.
We are currently working on implementing and evalu-
ating our design.

Acknowledgments. Diana Andreea Popescu is sup-
ported by the EU FP7 ITN METRICS (607728) project.

4. REFERENCES
[1] RRD tool. http://www.rrdtool.org/. Accessed

21-September-2015.

[2] M. Al-Fares, S. Radhakrishnan, B. Raghavan,
N. Huang, and A. Vahdat. Hedera: Dynamic Flow
Scheduling for Data Center Networks. In
Proceedings of the 7th USENIX Conference on
Networked Systems Design and Implementation,
NSDI’10, pages 19–19, Berkeley, CA, USA, 2010.
USENIX Association.

[3] T. Benson, A. Akella, and D. A. Maltz. Network
Traffic Characteristics of Data Centers in the
Wild. In Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement, IMC ’10,
pages 267–280, New York, NY, USA, 2010. ACM.

[4] T. Benson, A. Anand, A. Akella, and M. Zhang.
MicroTE: Fine Grained Traffic Engineering for
Data Centers. In Proceedings of the Seventh
COnference on Emerging Networking
EXperiments and Technologies, CoNEXT ’11,
pages 8:1–8:12, New York, NY, USA, 2011. ACM.

[5] B. Claise. Cisco systems NetFlow services export
version 9, 2004. RFC 3954.

[6] A. R. Curtis, W. Kim, and P. Yalagandula.
Mahout: Low-overhead datacenter traffic
management using end-host-based elephant
detection. In INFOCOM 2011, pages 1629–1637,
2011.

[7] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner. OpenFlow: Enabling Innovation in
Campus Networks. SIGCOMM Comput.
Commun. Rev., 38(2):69–74, Mar. 2008.

[8] P. S. Phaal P. and M. N. Inmon corporation’s
sFlow: A method for monitoring traffic in
switched and routed networks, 2001. RFC 3176.

[9] J. Rasley, B. Stephens, C. Dixon, E. Rozner,
W. Felter, K. Agarwal, J. Carter, and R. Fonseca.
Planck: Millisecond-scale Monitoring and Control
for Commodity Networks. In Proceedings of the
2014 ACM Conference on SIGCOMM,
SIGCOMM ’14, pages 407–418, New York, NY,
USA, 2014. ACM.

[10] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C.
Snoeren. Inside the Social Network’s (Datacenter)
Network. In Proceedings of the 2015 ACM
Conference on Special Interest Group on Data
Communication, SIGCOMM ’15, pages 123–137,
New York, NY, USA, 2015. ACM.

[11] J. Suh, T. T. Kwon, C. Dixon, W. Felter, and
J. B. Carter. OpenSample: A Low-Latency,
Sampling-Based Measurement Platform for
Commodity SDN. In ICDCS, pages 228–237.
IEEE Computer Society, 2014.

[12] P. Tammana, R. Agarwal, and M. Lee.
CherryPick: Tracing Packet Trajectory in
Software-defined Datacenter Networks. In

Proceedings of the 1st ACM SIGCOMM
Symposium on Software Defined Networking
Research, SOSR ’15, pages 23:1–23:7, New York,
NY, USA, 2015. ACM.

[13] H. Zhang, C. Lumezanu, J. Rhee, N. Arora,
Q. Xu, and G. Jiang. Enabling Layer 2 Pathlet
Tracing Through Context Encoding in
Software-defined Networking. In Proceedings of
the Third Workshop on Hot Topics in Software
Defined Networking, HotSDN ’14, pages 169–174,
New York, NY, USA, 2014. ACM.

[14] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu,
R. Mahajan, D. Maltz, L. Yuan, M. Zhang, B. Y.
Zhao, and H. Zheng. Packet-Level Telemetry in
Large Datacenter Networks. In Proceedings of the
2015 ACM Conference on Special Interest Group
on Data Communication, SIGCOMM ’15, pages
479–491, New York, NY, USA, 2015. ACM.

