Ypnos: Declarative, Parallel Structured Grid Programming

Dominic Orchard, Max Bolingbroke, Alan Mycroft

November 20, 2009
Computational Patterns

Many computational patterns with different parallelisation schemas[ABD+08]:

- Dense Linear Algebra (BLAS, MATLAB...)
- Spectral Methods (FFT)
- MapReduce
- N-Body Methods (Barnes-Hut)
- **Structured Grids** (Fluid Dynamics)
- etc...
Structured Grids

- Arrays representing discretised environments
- Apply a stencil function over an array
- Computes a new value for each array element from neighbours

(a) 5-point stencil
(b) 9-point stencil

- Typical in scientific computing, graphics, games, etc.
- Usually solve approximations to differential equations over discrete space: fluid dynamics
Structured Grids: C Example

```c
while(condition) {
    for (int i=0; i<N; i++) {
        for (int j=0; j<M; j++) {
        }
    }
    swap(Atemp, A);
}
```
Parallelisation

Traditional domain decomposition technique:

(c) Before decomposition
(d) After decomposition

Figure: 2D domain decomposition with a 5-point stencil

- Subgrids + overlap regions reside in separate processes
- Boundaries communicated between iterations
Problems with Current Approaches
Manual Approach

Typical approach: C/FORTRAN parallelised manually with MPI (Message Passing Interface).

- Prone to errors as hard
- Difficult to debug
- Tedious
- Difficulty increases with number of grids, dimensions, transformations
Imperative Languages

► Can be efficient, but easy to write incorrect parallel programs:

```java
while(condition) {
    for (int i=0; i<N; i++) {
        for (int j=0; j<M; j++) {
            Atemp[i][j] = f(A, i, j);
        }
    }
    swap(Atemp, A);
}
```

```java
f(A, i, j) {
    ... = global
    ...
    global = ...
}
```
Frameworks

- CUDA, Cg, and OpenCL
 - Specific to GPU execution
- OpenMP
 - Specific to shared memory
 - Programmer must ensure safety
- MPI
 - Pretty portable
 - But difficult

Lots of approaches are implementation specific.
Automatic Parallelisation

- Most languages are too general
 - Does program X fit computational model Y?
- Arbitrary and random-access indexing renders analysis and automatic compilation difficult (in general undecidable):
 - Do read and writes overlap?
 - How much boundary communication is required?
- Therefore, restrictions placed on programs: affine indices, affine control flow tests, etc
- Most scientific programs conform $[BCG^+03]$, but difficult for novices.
- Can lead to discontinuous compiler behaviour.
Ypnos: Declarative, Parallel Structured Grid Programming
Our Approach

- **Ypnos**: DSL specifically for structured-grid programming
 - DSLs offer problem or implementation specific
 - expressivity
 - optimisations
 - Embedded into Haskell
 - Embedded DSLs
 - Inexpensive DSL
 - Reuse host language syntax, semantics, libraries, etc.
Ypnos

- Pure, functional semantics
- No manual parallelisation/optimisation
- Decidable compile-time information
- Programmer specified, guaranteed optimisation and parallelism
- Permits different backends \(\Rightarrow \) hardware-agnostic
Core of Ypnos

- Grid data structure
- Use-defined stencil functions
- Various primitive operations
- Haskell-like syntax, with our own novel augmentation
Gridding

- Grid data structure, has type:
 \[
 \text{Grid } D \ a
 \]

- \(D \) is a dimension identifier:
 \[
 D \coloneqq \text{dim} \mid D \times D
 \]

- E.g.
 \[
 \text{Grid } (X \times Y) \ Float
 \]
 is akin to \texttt{float[][]}.

- While C just has one type \texttt{float[][]}, Ypnos has
 \[
 \text{Grid } (X \times Y) \ Float, \text{Grid } (Y \times Z) \ Float, \ldots
 \]
Stencil Functions

We could abstract the C example with a stencil function \(f \):

```c
while(condition) {
    for (int i=0; i<N; i++) {
        for (int j=0; j<M; j++) {
        }
    }
    swap(Atemp, A);
}
```
Stencil Functions

We could abstract the C example with a stencil function f:

```c
while(condition) {
    for (int i=0; i<N; i++) {
        for (int j=0; j<M; j++) {
            Atemp[i][j] = f(A,(i,j));
        }
    }
    swap(Atemp, A);
}
```

Stencil function, $f :: Array a \times (Int \times Int) \rightarrow a$
Stencil Functions in Ypnos

- Stencil functions in Ypnos have type:

\[\text{Grid } a \rightarrow b \]

- cf. Array \(a \times (\text{Int} \times \text{Int}) \rightarrow a \)

- The current index \((\text{Int} \times \text{Int}) \) is hidden inside Grid, called the **cursor** or **focal point**.
Grid Access

- No random access functions for reading or writing Grid!
- Read via special pattern matching syntax: `grid pattern`
- Example:
 \[X : | l \circledast c \circledast r | \]

 Binds variables to values in grid. Equivalent to:
 \[
 l = A[i-1]; \\
 c = A[i]; \\
 r = A[i+1];
 \]
 where \(i \) is the focal point

- `\circledast` syntax denotes which variables is bound to the focal point.
- All other bindings are relative to this point
Grid Patterns (2)

- One-dimensional patterns can be nested
- Also 2D pattern syntactic sugar. E.g 5-point stencil:

\[(X \times Y) : \begin{array}{ccc}
- & t & - \\
- & l & \oplus c & r \\
- & b & -
\end{array}\]

- Applying an \(N\)-dimensional pattern to an \(M\)-dimensional grid (where \(N < M\)) performs **slicing**.
Example: Laplace Stencil Function

```haskell
laplace :: Grid (X * Y) Double -> Double
laplace (X * Y): | _ t _ | = (t+l+r+b)/4.0
 | l @_ r |
 | _ b _ |
Applying Stencil Functions

\[ \text{run} :: (\text{Grid } D \ a \rightarrow b) \rightarrow \text{Grid } D \ a \rightarrow \text{Grid } D \ b \]

- Applies a stencil function at every point in a grid.
- Collects results into a new grid.

\[ f :: \text{Grid } a \rightarrow b \]

\[ \text{run } f :: \text{Grid } a \rightarrow \text{Grid } b \]
Example

laplace (X*Y): | _ a _ | = (a+b+d+e)*0.25
| b @ d |
| _ e _ |

g = grid <X = 10, Y = 10> data
g’ = run laplace (defaults 0.0 g)
Optimisation and Parallelisation
Single, Independent Writes (SIW) Property

Definition

Each stencil function application by \texttt{run} produces a single result belonging to a single, unique position in the results grid. Thus write operations to a results grid are all independent.

- SIW is guaranteed for all Ypnos programs.
- We can use this to give optimised and parallelised forms of stencil application.
Optimisation

- Ypnos is pure, functional: \texttt{run} creates a new grid in memory.

- In the C-example, two array allocations are destructively updated:

```c
while(condition)
 for (int i=0; i<N; i++)
 for (int j=0; j<M; j++)

 swap(Atemp, A);
```

Optimisation: Iterate (1)

- Usually want to iteratively apply run until some stop condition:

\[
\text{iterate } f \ r \ g = \begin{cases} 
\text{if condition} & \text{then iterate } f \ r \ (\text{run } f \ g) \\
\text{else } g 
\end{cases}
\]

- Ypnos provides an iterate primitive using local mutable state as an optimisation
iterate :: (Grid D a → a) → Reducer a Bool → Grid D a → Grid D a

where Reducer is a special reduction operation structure.

- Allocations are used cyclically (cf. swap in the C-example)

```
 \[\text{Y} \]
 \[X \]
```

- Mutable grids are produced and consumed inside iterate: effects can’t leak out.

- Guaranteed to be safe by SIW property.
What if we want to use earlier versions of a grid in a computation?

- Alias grids between calls to `run`
- To optimise with destructive update, try to do an alias analysis
- But intermediate grids may escape and be referenced later after deallocation, update etc.
Optimisation: IterateT

iterateT lifts a computation into a reserved temporal dimension, reusing grid patterns over temporal dimensions.

\[
\text{iterateT} :: (\text{Grid } (T \times D) \ a \to a) \to \text{Reducer } a \text{ Bool} \\
\to \text{Grid } D \ a \to \text{Grid } D \ a
\]

Grid patterns in time are historic patterns.

Historic patterns give decidable compile-time information about the number of grids involved in a computation.
Optimisation: IterateT (2)

Example:

\[ T : | g'' \quad g' \quad \odot \_ \mid \]

iterateT creates three intermediate allocations:
iterate and iterateT are optimised primitives
Neither extends expressive power of Ypnos
Optimisation is not result of analysis+transformation.
Programmer-specified. SIW guarantees safety.
Code communicates to the reader and compiler when optimisation occurs. ∴ predictable.
Parallelisation: SIW wins again

- Stencil application can be performed in any order, or in parallel, as write operations don’t overlap.
- \[\therefore\] we could execute each application of a stencil function in parallel
- But- too much overhead, use \textit{domain decomposition} technique.
Domain decomposition

- Grid patterns provide size of overlap regions.
  - Syntactical inconvenient to write large access patterns. \( \therefore \) communication overhead is small.

- Tells us if communication across some dimensions is unnecessary, e.g.
  \[
  f(X \ast Y): \begin{array}{ccc}
  & \_ & \_ & \_ \\
  l & \_ & c & r \\
  & \_ & \_ & \_ \\
  \end{array} = g(l, c, r)
  \]

- runPar, iteratePar, and iterateTPar:
  - Decompose a grid
  - Distribute to processing elements
  - Locally apply sequential run, iterate, etc.
  - Communicate boundaries between iterations for iterate and iterateT
  - At the end, gather subgrids back and return pure grid.

- All safe by SIW.
Further Ypnos Constructions
Reducers

\[
\text{mkReducer} :: (a \to b \to b) \quad \text{partial reduce} \\
\to (b \to b \to b) \quad \text{combine partials} \\
\to b \quad \text{initial partial result} \\
\to (b \to c) \quad \text{final conversion} \\
\to \text{Reducer } a \ c
\]

- Allows parallel reductions when data is distributed.
- Used by iterate and iterateT or:

\[
\text{reduceR} :: \text{Reducer } a \ b \to \text{Grid } D \ a \to b
\]
## Boundaries

- Must deal with boundary behaviour
- Ypnos has two approaches

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>1</td>
<td>?</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>⋮</td>
<td>?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Boundary Approach 1

Manually account for boundaries

- Provided by # pattern:

\[ X : | l @c#i r | \]

binds an index expression to \( i \) which can be tested to see if application is at a boundary.

- Requires extra, tedious code
- Requires repeated testing of boundary conditions.
Boundary Approach 2

Lifted grids.

- Grids are finite; lifted grids are finite grids embedded in a potentially infinite space.
- Requires a special *facets* structure describing boundary behaviour for each face, edge, etc.

  \[
  \text{lift} :: \text{Grid } D \ a \rightarrow \text{Facet } D \ a \rightarrow \text{Grid}^\infty D \ a \\
  \text{unlift} :: \text{Grid}^\infty D \ a \rightarrow \text{Grid } D \ a
  \]

- Or simple defaulting behaviour:

  \[
  \text{defaults} :: \text{Grid } D \ a \rightarrow a \rightarrow \text{Grid}^\infty D \ a
  \]

- iterate, and iterateT are overloaded on lifted grids.
- But, \( \text{run} \) loses its lifting, as the output grid element type is allowed to differ from that of the input grid, thus:

  \[
  \text{run}^\infty :: (\text{Grid}^\infty D \ a \rightarrow b) \rightarrow \text{Grid}^\infty D \ a \rightarrow \text{Grid } D \ b
  \]
Example
Conway’s Game of Life

\[ \text{life (X*Y): | a b c | = let local = (a+b+c+d+e+f+g+h+i) | d @e f | in if (e==1) then | g h i | if (local<2 || local>2) then 0 else 1 else if (local==3) then 1 else 0} \]

\[ \text{-- Create environment} \]
\[ \text{initialState = grid <X=10, Y=10> randomConfiguration} \]

\[ \text{untilMostlyDead = Reducer (+) (+) 0.0 (\lambda x -> (x<10))} \]
\[ \text{stopCondition = (untilMostlyDead ‘orReducer‘ (ntimes 100))} \]

\[ \text{initialState’ = defaults 0.0 initialState} \]
\[ \text{finalState = iterate life stopCondition initial} \]
Implementation
Implementation

- Currently Haskell EDSL.
- Haskell’s strong typing rejects non-confirming programs.
- Implementation can be parameterised by Grid giving different backends, giving:
  - Pure, sequential execution
  - Parallel execution via domain decomposition
  - Or, further code for compilation (C, CUDA, MPI, etc)
Implementation (2)

- Current implementation is simple, with no domain-decomposition.
- Hopefully fully parallelising implementation for January (performance numbers).
Conclusions and Further Work
Further Work - Domain Decomposition

- Currently no control over the fine-grained detail of domain decomposition, e.g.
  - Tile size
  - Memory layout
  - Processor Layout
- Some further configuration by the programmer, perhaps with some inline compiler directives, would give better performance control.
Further Work - Supporting **Vertex** Operations

- Ypnos supports *pixel*, or *fragment*, -style gather operations of type $\text{Grid } a \rightarrow b$ (coKleisli arrows for those in the know!)

- Could *vertex*-style scatter operations of type $a \rightarrow \text{Grid } b$ be supported (Kleisli arrows): **mould** functions, with a dual of grid patterns
Further Work - etc.

- Multi-scale methods (adaptive mesh)
- Compiler hints on dimension types e.g.
  \[[X]\] × Y
  
  means, decompose X dimension but not Y, or I don’t care about Y.
- Execution masks for red-black application
Conclusions

- Ypnos is a simple DSL for structured grid programming
- It is sufficiently restricted as to support the SIW property
- This allows optimised and parallelising forms of its grid application primitives that are guaranteed to perform optimisations and parallelisation
- Easier to use for non (parallel) programming experts.
- Possibly slower than expert-programmed manual approach, but development time may be as much of a factor as execution time.