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Abstract

The design of a specialised query language for con-
tent based image retrieval (CBIR) provides a means of
addressing many of the problems associated with com-
monly used query paradigms such as query-by-example
and query-by-sketch. By basing such a language on an
extensible ontology which encompasses both high-level
and low-level image properties and relations, one can
go a long way towards bridging the semantic gap be-
tween user models of saliency and relevance and those
employed by a retrieval system.

This paper discusses these issues and illustrates the
design and use of an ontological retrieval language
through the example of the OQUEL query language.
The retrieval process takes place entirely within the on-
tological domain defined by the syntax and semantics
of the user query. Since the system does not rely on
the pre-annotation of images with sentences in the lan-
guage, the format of text queries is highly flexible. The
language is also extensible to allow for the definition
of higher level terms such as “cars”, “people”, etc. on
the basis of existing language constructs through the use
of Bayesian inference networks. The matching pro-
cess utilises automatically extracted image segmenta-
tion and classification information and can incorporate
any other feature extraction mechanisms or contextual
knowledge available at processing time to satisfy a given
user request.
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1 Introduction

Query mechanisms play a vital role in bridging the
semantic gap [17] between users and retrieval systems.
There has however been relatively little recent work in
addressing this issue in the context of content based
image retrieval (CBIR). Most of the query interfaces
implemented in current systems fall into a small group
of approaches. In order to overcome the weaknesses
of these methodologies, efforts have focussed on tech-
niques such as relevance feedback ([52], [9], [41]) as a
means of improving the composition and performance
of a user query in light of an initial assessment of re-
trieval results. While this approach and other methods
for improving the utility of user queries by means such
as query expansion and by combining multiple query
modalities have shown some promise, they do so at the
risk of increased user effort and lack of transparency in
the retrieval process.

This paper presents the notion of an ontological
query language as a powerful and flexible means of
providing an integrated query and retrieval framework
which addresses the problem of the semantic gap be-
tween user and system. Further background informa-



tion and a general motivation for such query languages
is given in section 2 while section 4 introduces the
OQUEL language as a concrete example for retrieval
from photographic image collections. Section 3 dis-
cusses the basic language design and structure. In
section 5 the process of query interpretation and re-
trieval is described further. The discussion is based
on an implementation of the language for the ICON
content-based image retrieval system. Those content
extraction and representation facilities of ICON rele-
vant to the present discussion are outlined in section
4.1. Section 6 gives quantitative performance results
of OQUEL queries compared to other query modali-
ties in the ICON system. The paper concludes with a
summary in section 7.2 which also provides an outlook
of further developments such as the potential role of
natural language processing and possible extensions of
the ontological language to video.

1.1 CBIR Query Mechanisms and the Re-
trieval Process

As has been noted elsewhere (e.g. [45]), research in
content based image retrieval has in the past suffered
from too much emphasis being placed on a system view
of the retrieval process in terms of image processing,
feature extraction, content representation, data stor-
age, matching, etc.. It has proven fruitful in the design
of image retrieval systems to also consider the view of
a user confronted with the task of expressing his or her
retrieval requirements in order to get the desired results
with the least amount of effort. While issues such as
the visualisation of query results and facilities for rel-
evance feedback and refinement are clearly important,
this paper is primarily concerned with the mechanisms
through which users express their queries.

Adopting a user perspective, one can summarise
most of the query methods traditionally employed by
CBIR systems (see [45] and [40] for further references)
and highlight their drawbacks as follows:

• Query-by-example: ([48], [9], [24]) Finding suit-
able example images can be a challenge and may
require the user to manually search for such im-

ages before being able to query the automated
system. Even when the user can provide images
which contain instances of the salient visual prop-
erties, content or configurations they would like
to search for, it is very hard for the system to
ascertain which aspects make a given image rele-
vant and how similarity should be assessed. Many
such systems therefore rely on extensive relevance
feedback to guide the search towards desirable im-
ages, but this approach is not appropriate for most
real-world retrieval scenarios. Many industrial ap-
plications of CBIR require ways of succinctly ex-
pressing abstract requirements which can not be
encapsulated by any particular sample image.

• Template, region selection, or sketch: ([7], [23],
[6]) Rather than providing whole images, the user
can draw (sometimes literally) the system’s atten-
tion to particular image aspects such as the spatial
composition of desired content in terms of par-
ticular regions or a set of pre-defined templates.
Clearly this process becomes cumbersome for com-
plex queries and there are difficult user interface
issues concerning how one might best represent ab-
stract relations and invariants.

• Feature range or predicate: ([34], [33]) Here the
user can set target ranges or thresholds for cer-
tain (typically low-level) attributes such as colour,
shape, or texture features which may represent
global image properties or features localised to cer-
tain image regions. While this clearly has merit for
some types of queries, the approach requires a cer-
tain amount of user sophistication and patience.

• Annotation or document context: ([28], [46], [20])
Images rarely come with usable annotations for
reasons such as cost, ambiguity, inconsistency, and
human error. While progress has been made in ap-
plying text retrieval methods to annotations and
other sources of image context such as captions,
difficulties remain due to lack of availability, un-
reliability, and variability of such textual informa-
tion.



• Query language or concept: ([8], [32], [41]) Efforts
have been made to extend popular database query
languages derived from SQL to cater for the in-
trinsic uncertainty involved in matching image fea-
tures to assess relevance. However, such languages
remain quite formal and rigid and are difficult to
extend to higher-level concepts. Knowledge-based
approaches utilising description logics or semantic
networks have been proposed as a means of better
representing semantic concepts but tend to entail
somewhat cumbersome query interfaces.

Although these approaches have proven to be useful,
both in isolation and when combined, in providing us-
able CBIR solutions for particular application domains
and retrieval scenarios, much work remains to be done
in providing query mechanisms that will scale and gen-
eralise to the applications envisaged for future main-
stream content based access to multimedia. Indeed one
criticism one can generally level at image retrieval sys-
tems is the extent to which they require the user to
model the notions of content representation and simi-
larity employed by the system rather than vice versa.
One reason for the failure of CBIR to gain widespread
adoption is due to the fact that mainstream users are
quite unwilling to invest great effort into query com-
position [37] as many systems fail to perform in accor-
dance with user expectations.

The language based query framework proposed in
this paper aims to address these challenges. Query sen-
tences are typically short (e.g. “people in centre”) yet
conceptually rich. This is because they need only rep-
resent those aspects of the target image(s) which the
user is trying to retrieve and which distinguish such im-
ages from others in the dataset. The user is therefore
not required to translate a description of an envisaged
target image into the language but merely (and cru-
cially) to express desired properties which are to hold
for the retrieved images.

1.2 Language-based Querying

This paper argues that query languages constitute
an important avenue for further work in developing

CBIR query mechanisms. Powerful and easy-to-use
textual document retrieval systems have become per-
vasive and constitute one of the major driving forces
behind the internet. Given that so many people are fa-
miliar with the use of simple keyword strings and regu-
lar expressions to retrieve documents from vast online
collections, it seems natural to extend language based
querying to multimedia data. However, it is important
to recognise [47] that the natural primitives of doc-
ument retrieval, words and phrases, carry with them
inherently more semantic information and characterise
document content in a much more redundant and high
level way than the pixels and simple features found in
images. This is why text retrieval has been so success-
ful despite the relative simplicity of using statistical
measures to represent content indicatively rather than
substantively. Image retrieval addresses a much more
complex and ambiguous challenge, which is why we ar-
gue strongly for a query method based on a language
that can represent both the syntax and semantics of im-
age content at different conceptual levels. This paper
will show that by basing this language on an ontology
one can capture both concrete and abstract relation-
ships between salient image properties such as objects
in a much more powerful way than with the relatively
weak co-occurrence based knowledge representation fa-
cilities of classical information retrieval. Since the lan-
guage is used to express queries rather than describe
image content, such relationships can be represented
explicitly without prior commitments to a particular
interpretation or having to incur the combinatorial ex-
plosion of an exhaustive annotation of all the relations
that may hold in a given image. Instead, only those im-
age aspects which are of value in determining relevance
given a particular query are evaluated and evaluation
may stop as soon as an image can be deemed irrelevant.

The comparatively small number of query languages
designed for CBIR have largely failed to attain the
standards necessary for general adoption. A major
reason for this is the fact that most language or text
based image retrieval systems rely on manual anno-
tations, captions, document context, or pre-generated
keywords, which leads to a loss of flexibility through the



initial choice of annotation and indexing. Languages
mainly concerned with deriving textual descriptions of
image content [1] are inappropriate for general purpose
retrieval since it is infeasible to generate exhaustive
textual representations which contain all the informa-
tion and levels of detail which might be required to
process a given query in light of the user’s retrieval
need. While keyword indexing of images in terms of
descriptors for semantic content remains highly desir-
able, semi- or fully automated annotation is currently
based on image document context [42] or limited to low
level descriptors. More ambitious “user-in-the-loop”
annotation systems still require a substantial amount
of manual effort to derive meaningful annotations [51].
Formal query languages such as extensions of SQL [38]
are limited in their expressive power and extensibility
and require a certain level of user experience and so-
phistication.

In order to address the challenges mentioned above
while keeping user search overheads to a minimum,
we have developed the OQUEL query description lan-
guage. It provides an extensible language framework
based on a formally specified grammar and an exten-
sible vocabulary which are derived from a general on-
tology of image content in terms of categories, objects,
attributes, and relations. Words in the language repre-
sent predicates on image features and target content at
different semantic levels and serve as nouns, adjectives,
and prepositions. Sentences are prescriptions of desired
characteristics which are to hold for relevant retrieved
images. They can represent spatial, object composi-
tional, and more abstract relationships between terms
and sub-sentences. The language is portable to other
image content representation systems in that the lower
level words and the evaluation functions which act on
them can be changed or re-implemented with little or
no impact on the conceptually higher language ele-
ments. It is also extensible since new terms can be
defined both on the basis of existing constructs and
based on new sources of image knowledge and meta-
data. This enables definition of customised ontologies
of objects and abstract relations.

2 Ontological Language Framework

2.1 Role of Ontologies

By basing a retrieval language on an ontology, one
can explicitly encode ontological commitments about
the domain of interest in terms of categories, objects,
attributes, and relations. Gruber [16] defines the term
ontology in a knowledge sharing context as a “formal,
explicit specification of a shared conceptualisation”.
Ontologies encode the relational structure of concepts
which one can use to describe and reason about as-
pects of the world. Ontology is the theory of objects
in terms of the criteria which allow one to distinguish
between different types of objects and the relations,
dependencies, and properties through which they may
be described. For the present purposes ontologies are
representations of image content at different semantic
levels and queries expressing desired image character-
istics.

Sentences in a language built by means of an
ontology can be regarded as active representational
constructs of information as knowledge and there
have been similar approaches in the past applying
knowledge-based techniques such as description logics
([18], [2], [3]) to CBIR. However, in many such cases
the knowledge based relational constructs are simply
translated into equivalent database query statements
such as SQL [19] or a potentially expensive software
agent methodology is employed for the retrieval pro-
cess [10]. This mapping of ontological structures onto
real-world evidence can be implemented in a variety of
ways. Common approaches are heavily influenced by
methods such as description logics, frame-based sys-
tem, and Bayesian inference [13].

This paper argues that the role of a query language
for CBIR should be primarily prescriptive, i.e. a sen-
tence is regarded as a description of a user’s retrieval
requirements which cannot easily be mapped onto the
description of image content available to the system.
While the language presented here is designed from a
general ontology which determines its lexical and syn-



Figure 1: Model of the retrieval process using
an ontological query language to bridge the se-

mantic gap between user and system notions of
content and similarity.

tactic elements to represent objects, attributes, and re-
lations, this does not in itself constitute a commitment
to a particular scheme for determining the semantic
interpretation of any given query sentence. The eval-
uation of queries will depend on the makeup of the
query itself, the indexing information available for each
image, and the overall retrieval context. Evaluation
therefore takes place within a particular ontological do-
main specified by the composition of the query and the
available image evidence at the time it is processed.
This approach is consistent with the view expressed in
e.g. [41] that the meaning of an image is an emergent
property which depends on both the query context and
the image set over which the query is posed. Figure
1 shows how the ontological query language and the
mechanisms for its interpretation can thus be regarded
as acting as an intermediary between user and retrieval
system in order to reduce the semantic gap.

2.2 Query Specific Image Interpretation

The important distinction between query descrip-
tion and image description languages is founded on
the principle that while a given picture may well say
more than a thousand words, a short query sentence
expressed in a sufficiently powerful language can ade-
quately describe those image properties which are rele-

vant to a particular query. Information theoretic mea-
sures can then be applied to optimise a given query
by identifying those of its elements which have high
discriminative power to iteratively narrow down the
search to a small number of candidate images. Hence it
is the query itself which is taken as evidence for the rel-
evance assessment measures appropriate to the user’s
retrieval requirement and “point of view”. The syntax
and semantics of the query sentence composed by the
user thereby define the particular ontological domain in
which the search for relevant images takes place. This
is inherently a far more powerful way of relating image
semantics to user requests than static image annota-
tion which, even when carried out by skilled human
annotators, will always fall far short of encapsulating
those aspects and relationships which are of particular
value in characterising an image in light of a new query.

The use of ontologies also offers the advantage
of bridging between high-level concepts and low-level
primitives in a way which allows extensions to the
language to be defined on the basis of existing con-
structs without having to alter the representation of
image data. Queries can thus span a range of concep-
tual granularity from concrete image features (regions,
colour, shape, texture) and concrete relations (feature
distance, spatial proximity, size) to abstract content
descriptors (objects, scene descriptions) and abstract
relations (similarity, class membership, inferred object
and scene composition). The ability to automatically
infer the presence of high-level concepts (e.g. a beach
scene) on the basis of evidence (colour, region classifica-
tion, composition) requires techniques such as Bayesian
inference which plays an increasing role in semantic
content derivation [50]. By expressing the causal re-
lationships used to integrate multiple sources of evi-
dence and content modalities in a dependency graph,
such methods are also of great utility in quickly elim-
inating improbable configurations and thus narrowing
down the search to a rapidly decreasing number of im-
ages which are potentially relevant to the query.



3 Language Design and Structure

This section introduces the OQUEL ontological
query language with particular reference to its cur-
rent implementation as a query description language
for the ICON content based image retrieval system.
For reasons of clarity, only a high level description of
the language will be presented here. Section 4 will dis-
cuss implementation details pertaining to the content
extraction and representation schemes used in the sys-
tem and show how tokens in the language are mapped
onto concrete image properties. Section 5 will show
how query sentences are processed to assess image rel-
evance.

3.1 Overview and Design Principles

The primary aim in designing OQUEL has been
to provide both ordinary users and professional image
archivists with an intuitive and highly versatile means
of expressing their retrieval requirements through the
use of familiar natural language words and a straight-
forward syntax. As mentioned above, many query
languages have traditionally followed a path set out
by database languages such as SQL which are char-
acterised by a fairly sparse and restrictive grammati-
cal framework aimed at facilitating concise and well-
defined queries. The advantages of such an approach
are many, e.g. ease of machine interpretation, availabil-
ity of query optimisation techniques, scalability, theo-
retical analysis, etc.. However, their appropriateness
and applicability to a domain of such intrinsic ambigu-
ity and uncertainty as image retrieval remain doubtful.
OQUEL was therefore designed to provide greater nat-
uralness and flexibility through the use of a more com-
plex grammar bearing a resemblance to natural lan-
guage on a restricted domain.

3.2 Syntax and Semantics

In order to allow users to enter both simple keyword
phrases and arbitrarily complex compound queries, the
language grammar features constructs such as predi-
cates, relations, conjunctions, and a specification syn-

tax for image content. The latter includes adjectives
for image region properties (i.e. shape, colour, and tex-
ture) and both relative and absolute object location.
Desired image content can be denoted by nouns such
as labels for automatically recognised visual categories
of stuff (“grass”, “cloth”, “sky”, etc.) and through the
use of derived higher level terms for composite objects
and scene description (e.g. “animals”, “vegetation”,
“winter scene”). This includes the simple morpholog-
ical distinction between singular and plural forms of
certain terms, hence “people” will be evaluated differ-
ently from “person”.

Tokens serving as adjectives denoting desired im-
age properties are parameterised to enable values and
ranges to be specified. The use of defaults, terms rep-
resenting fuzzy value sets, and simple rules for operator
precedence and associativity help to reduce the effec-
tive complexity of query sentences and limit the need
for special syntax such as brackets to disambiguate
grouping. Brackets can however optionally be used
to define the scope of the logical operators (not, and,
or, xor) and are required in rare cases to prevent the
language from being context sensitive in the grammar
theory sense.

While the inherent sophistication of the OQUEL
language enables advanced users to specify extremely
detailed queries if desired, much of this complexity is
hidden by a versatile query parser. The parser was
constructed with the aid of the SableCC lexer/parser
generator tool from LALR(1) grammar rules and the
WordNet [27] lexical database as further described in
the next section. The vocabulary of the language is
based on an annotated thesaurus of several hundred
natural language words, phrases, and abbreviations
(e.g. “!” for “not”, “,” for “and”) which are recog-
nised as tokens. Token recognition takes place in a lex-
ical analysis step prior to syntax parsing to reduce the
complexity of the grammar. This also makes it possible
to provide more advanced word-sense disambiguation
and analysis of phrasal structure while keeping the lan-
guage efficiently LALR(1) parsable.

The following gives a somewhat simplified high level
context free EBNF-style grammar G of the OQUEL



language as currently implemented in the ICON system
(capitals denote lexical categories, lower case strings
are tokens or token sets).

G : {
S → R

R → modifier? (scenedescriptor | SB | BR)

| not? R (CB R)?

BR → SB binaryrelation SB

SB → (CS | PS) + LS ∗
CS → visualcategory | semanticcategory |

not? CS (CB CS)?

LS → location | not? LS (CB LS)?

PS → shapedescriptor | colourdescriptor |
sizedescriptor | not? PS (CB PS)?

CB → and | or | xor;

}

The major syntactic categories are:

• S: start symbol of the sentence (text query)

• R: requirement (a query consists of one or more
requirements which are evaluated separately, the
probabilities of relevance then being combined ac-
cording to the logical operators)

• BR: binary relation on SBs

• SB: specification block consisting of at least one
CS or PS and 0 or more LS

• CS: image content specifier

• LS: location specifier for regions meeting the
CS/PS

• PS: region property specifier (visual properties of
regions such as colour, shape, texture, and size)

• CB: binary (fuzzy) logical connective (conjunc-
tion, disjunction, and exclusive-OR)

Tokens (terminals) belong to the following sets:

• modifier: Quantifiers such as “a lot of”, “none”,
“as much as possible”.

• scene descriptor: Categories of image content
characterising an entire image, e.g. countryside,
city, indoors.

• binaryrelation: Relationships which are to hold be-
tween clusters of target content denoted by spec-
ification blocks. The current implementation in-
cludes spatial relationships such as “larger than”,
“close to”, “similar size as”, “above”, etc. and
some more abstract relations such as “similar con-
tent”.

• visualcategory: Categories of stuff, e.g. water,
skin, cloud.

• semanticcategory: Higher semantic categories such
as people, vehicles, animals.

• location: Desired location of image content match-
ing the content or shape specification, e.g. “back-
ground”, “lower half”, “top right corner”.

• shapedescriptor: Region shape properties, for ex-
ample “straight line”, “blob shaped”.

• colourdescriptor: Region colour specified either
numerically or through the use of adjectives and
nouns, e.g. “bright red”, “dark green”, “vivid
colours”.

• sizedescriptor: Desired size of regions matching
the other criteria in a requirement, e.g. “at least
10%” (of image area), “largest region”.

The precise semantics of these constructs are depen-
dent upon the way in which the query language is im-
plemented, the parsing algorithm, and the user query
itself, as will be described in the following sections.

3.3 Vocabulary

As shown in the previous section, OQUEL features
a generic base vocabulary built on extracted image fea-
tures and intermediate level content labels which can



be assigned to segmented image regions on the basis
of such features. Some terminal symbols of the lan-
guage therefore correspond directly to previously ex-
tracted image descriptors. This base vocabulary has
been extended and remains extensible by derived terms
denoting higher level objects and concepts which can
be inferred at query time. While the current OQUEL
implementation is geared towards general purpose im-
age retrieval from photographic image collections, task
specific vocabulary extensions can also be envisaged.

In order to provide a rich thesaurus of synonyms and
also capture some more complex relations and seman-
tic hierarchies of words and word senses, we have made
use of the lexical information present in the WordNet
[27] electronic dictionary. This contains a large vocab-
ulary which has been systematically annotated with
word sense information and relationships such as syn-
onyms, antonyms, hyper- and hyponyms, meronyms,
etc.. Currently we have used some of this information
to define a thesaurus of about 400 words relating to
the extracted image features and semantic descriptors
mentioned above.

Work has begun on improving the flexibility of the
OQUEL retrieval language by adding a pre-processing
stage to the current query parser. This will use
additional semantic associations and word relation-
ships encoded in the WordNet database to provide
much greater expressive power and ease syntactical
constraints. Such a move may require a more flexi-
ble natural-language oriented parsing strategy to cope
with the additional difficulty of word-sense and query
structure disambiguation but will also pave the way for
future work on using the language as a powerful repre-
sentational device for content-based knowledge extrac-
tion.

3.4 Example sentences

The following are examples of valid OQUEL queries
as used in conjunction with ICON:

some sky which is close to buildings in upper
corner

some water in the bottom half which is sur-
rounded by trees and grass, size at least 10%

[indoors] & [people]

some green or vividly coloured vegetation in
the centre which is of similar size as clouds or
blue sky at the top

[artificial stuff, vivid colours and straight
lines] and tarmac

4 Implementation of the OQUEL Lan-

guage

4.1 Content Extraction and Representa-
tion

ICON (Image Content Organisation and Navigation,
[21]) combines a cross-platform Java user interface with
image processing and content analysis functionality to
facilitate automated organisation of and retrieval from
large heterogeneous image sets based on both meta
data and visual content.

The backend image processing components extract
various types of content descriptors and meta data from
images (see [49]). The following are currently used in
conjunction with OQUEL queries:

Image segmentation: Images are segmented into
non-overlapping regions and sets of properties for size,
colour, shape, and texture are computed for each re-
gion [43, 44]. Initially full three colour edge detection
is performed using the weighted total change dT

dT = dI2
i + dI2

j + 3.0dC (1)

where the total change in intensity dIi is given by the
colour derivatives in RGB space

dIi = dRi + dGi + dBi (2)

and the magnitude of change in colour is represented
by

dC =
√

((dBi − dGi)
2 + (dRi − dBi)

2 + (dGi − dRi)
2

+ (dBj − dGj)
2 + (dRj − dBj)

2 + (dGj − dRj)
2).(3)



Figure 2: From top to bottom: Example colour im-
age from the Corel image library. Full three colour
derivative of the image. Voronoi image computed from
the edges found by the three colour edge detector (the
darker a pixel, the further it is from an edge). Final
region segmentation (boundaries indicated in blue).

The choice of 3 as the weighting factor in favour of
colour change over brightness change is empirical but
has been found to be effective across a very broad range
of photographic images and artwork. Local orientation
(for use in the non-maximum suppression step of the
edge detection process) is defined to be in the direction
of the maximum colour gradient. dT is then the edge
strength fed to the non-max suppression and hysteresis
edge-following steps which follow the popular method
due to Canny .

Voronoi seed points for region growing are gener-
ated from the peaks in the distance transform of the
edge image, and regions are then grown agglomera-
tively from seed points with gates on colour difference
with respect to the boundary colour and mean colour
across the region. Unassigned pixels at the boundaries
of a growing region are incorporated into a region if the
difference in colour between it and pixels in the local
neighbourhood of the region is less than one thresh-
old and the difference in colour between the candidate
and the mean colour of the region is less than a second
larger threshold.

A texture model based on discrete ridge features is
also used to describe regions in terms of texture fea-
ture orientation and density. Ridge pixels are those for
which the magnitude of the second derivative operator
applied to a grey-scale version of the original image ex-
ceeds a threshold. The network of ridges is then broken
up into compact 30 pixel feature groups and the ori-
entation of each feature is computed from the second
moment about its center of mass. Features are clus-
tered using Euclidean distance in RGB space and the
resulting clusters are then employed to unify regions
which share significant portions of the same feature
cluster. The internal brightness structure of “smooth”
(largely untextured) regions in terms of their isobright-
ness contours and intensity gradients is used to derive
a parameterisation of brightness variation which allows
shading phenomena such as bowls, ridges, folds, and
slopes to be identified. A histogram representation of
colour covariance and shape features is computed for
regions above a certain size threshold.

The segmentation scheme then returns a region map



together with internal region description parameters
comprising colour, colour covariance, shape, texture,
location and adjacency relations. Segmentation does
not rely on large banks of filters to estimate local image
properties and hence is fast (typically a few seconds
for high resolution digital photographa) and does not
suffer from the problem of the boundary between two
regions appearing as a region itself. The region growing
technique effectively surmounts the problem of broken
edged topology and the texture feature based region
unification step ensures that textured regions are not
fractured. Figure 2 shows a sample image from the
Corel picture library and the results of segmentation.
The number of segmented regions depends on image
size and visual content, but has the desirable property
that most of the image area is commonly contained
within a few dozen regions which closely correspond
to the salient features of the picture at the conceptual
granularity of the semantic categories used here.

a) b)

c)

d)

e)

Figure 3: Eye detection process: a) Binarised image.
b) Hausdorff clustered regions after filtering. c) Nor-
malised feature cluster of the left eye (left) and dis-
tance transforms for 6 feature orientations (blue areas
are further from feature points). d) Examples of left
eyes correctly classified using nearest neighbours. e)
Examples of nearest neighbour clusters for non-eyes.

Stuff classification: Region descriptors computed
from the segmentation algorithm are fed into artificial
neural network classifiers which have been trained to
label regions with class membership probabilities for a
set of 12 semantically meaningful visual categories of
“stuff” (“Brick”, “Blue sky”, “Cloth”, “Cloudy sky”,
“Grass”, “Internal walls”, “Skin”, “Snow”, “Tarmac”,
“Trees”, “Water”, and “Wood”). The classifiers are
MLP (multi layer perceptron) and RBF (radial ba-
sis function) networks whose topology was optimised
to yield best generalisation performance for each par-
ticular visual category using separate training, testing
and validation sets from a large (over 40000 exemplars)
corpus of manually labelled image regions. The MLP
networks typically consist of three hidden layers with
progressively smaller numbers of neurons (up to 250)
in each layer.

Automatic labelling of segmented image regions
with semantic visual categories [49] such as grass or
water which mirror aspects of human perception allows
the implementation of intuitive and versatile query
composition methods while greatly reducing the search
space. The current set of categories was chosen to
facilitate robust classification of general photographic
images. These categories are by no means exhaustive
but represent a first step towards identifying fairly low
level semantic properties of image regions which can be
used to ground higher level concepts and content pre-
scriptions. Various psychophysical studies [9, 29] have
shown that semantic descriptors such as these serve as
useful cues for determining image content by humans
and CBIR systems. An attempt was made to include
categories which allow one to distinguish between in-
door and outdoor scenes. Experiments on both the
Corel photo set and a large body of amateur digital
photographs have given classification success rates of
between 82% and 96% for the largest image regions
which jointly cover over 80% of image area.

Colour descriptors: Nearest-neighbour colour classi-
fiers were built from the region colour representation.
These use the Earth-mover distance measure applied to
Euclidean distances in RGB space to compare region
colour profiles with cluster templates learned from a



training set. In a manner similar to related approaches
such as [34, 29], colour classifiers were constructed for
each of twelve “basic” colours (“black”, “blue”, “cyan”,
“grey”, “green”, “magenta”, “orange”, “pink”, “red”,
“white”, “yellow”, “brown”). Each region is associated
with the colour labels which best describe it.

Face detection: Face detection relies on identifying
elliptical regions (or clusters of regions) classified as hu-
man skin. A binarisation transform is then performed
on a smoothed version of the image. Candidate re-
gions are clustered based on a Hausdorff distance mea-
sure [39] and resulting clusters are filtered by size and
overall shape and normalised for orientation and scale.
From this a spatially indexed oriented shape model is
derived by means of a distance transform of 6 differ-
ent orientations of edge-like components from the clus-
ters via pairwise geometric histogram binning [12]. A
nearest-neighbour shape classifier was trained to recog-
nise eyes. See figure 3 for an illustration of the ap-
proach.

Adjacent image regions classified as human skin in
which eye candidates have been identified are then la-
belled as containing (or being part of) one or more
human faces subject to the scale factor implied by the
separation of the eyes. This detection scheme shows ro-
bustness across a large range of scales, orientations, and
lighting conditions but suffers from false positives. Re-
cently an integrated face detector based on a two level
classifier of polynomial kernel SVMs (Support Vector
Machines) has been implemented. For reasons of effi-
ciency, this detector is applied only to face candidates
detected by the previously described method in order
to greatly reduce the false positive rate while retaining
high accuracy (about 72% correct detections and 0.08
false positives per image for the diverse image collec-
tion employed in section 6).

Region mask: Canonical representation of the seg-
mented image giving the absolute location of each re-
gion by mapping pixel locations onto region identifiers.
The mask stores an index value into the array of regions
in order to indicate which region each pixel belongs to.
For space efficiency this is stored in a run length en-
coded representation.

Region graph: Graph of the relative spatial relation-
ships of the regions (distance, adjacency, joint bound-
ary, and containment). Distance is defined in terms of
the Euclidean distance between centres of gravity, adja-
cency is a binary property denoting that regions share
a common boundary segment, and the joint boundary
property gives the relative proportion of region bound-
ary shared by adjacent regions. A region A is said to
be contained within region B if A shares 100% of its
boundary with B. Together with the simple parameter-
isation of region shape computed by the segmentation
method, this provides an efficient (if non-exact) repre-
sentation of the geometric relationships between image
regions.

Figure 4: Three level grid pyramid which subdi-

vides an image into different numbers of fixed
grids (1, 5, 64) at each level.

Grid pyramid: The proportion of image content
which has been positively classified with each particu-
lar label (visual category, colour, and presence of faces)
at different levels of an image pyramid (whole image,
image fifths, 8x8 chess grid, see figure 4). For each grid
element we therefore have a vector of percentages for
the 12 stuff categories, the 12 colour labels, and the
percentage of content deemed to be part of a human
face. Grid regions are generally of the same area and
rectangular shape, except in the case of the image fifths



where the central rectangular fifth occupies 25% of im-
age area and is often given a higher weighting for scene
characterisation to reflect the fact that this region is
likely to constitute the most salient part of the image.

Through the relationship graph representation of re-
gions we can make the matching of clusters of regions
invariant with respect to displacement and rotation us-
ing standard matching algorithms [36]. The grid pyra-
mid and region mask representations allow an efficient
comparison of absolute position and size.

This may be regarded as an intermediate level rep-
resentation which does not preclude additional stages
of visual inference and composite object recognition in
light of query specific saliency measures and the inte-
gration of contextual information. Such intermediate
level semantic descriptors for image content have been
used by several CBIR systems in recent years ( [26],
[5], [14], [22]).

Figure 5: Simplified Bayesian network for the

scene descriptor “winter”.

4.2 Grounding the Vocabulary

An important aspect of OQUEL language imple-
mentation concerns the way in which sentences in the
languages are grounded in the image domain. Here we
discuss those elements of the token set which might be
regarded as being statically grounded, i.e. there ex-
ists a straightforward mapping from OQUEL words to
extracted image properties as described in section 4.1.
Other terminals (modifiers, scene descriptors, binary
relations, and semantic categories) and syntactic con-
structs are evaluated by the query parses as will be

discussed in section 5.

visualcategory: The 12 categories of stuff which have
been assigned to segmented image regions by the neural
net classifiers. Assignment of category labels to image
region is based on a threshold applied to the classifier
output.

location: Location specifiers which are simply
mapped onto the grid pyramid representation. For ex-
ample, when searching for “grass” in the “bottom left”
part of an image, only content in the lower left image
fifth will be considered.

shapedescriptor: The current terms are “straight
line”, “vertical”, “horizontal”, “stripe”, “right angle”,
“top edge”, “left edge”, “right edge”, “bottom edge”,
“polygonal”, and “blobs”. They are defined as predi-
cates over region properties and aspects of the region
graph representation derived from the image segmenta-
tion. For example, a region is deemed to be a straight
line if its shape is well approximated by a thin rect-
angle, “right edge” corresponds to a shape appearing
along the right edge of the image, and “blobs” are re-
gions with highly amorphous shape without straight
line segments.

colourdescriptor: Region colour specified either nu-
merically in the RGB or HSV colour space or through
colour labels assigned by the nearest-neighbour classi-
fiers. By assessing the overall brightness and contrast
properties of a region using fixed thresholds, colours
identified by each classifier can be further described
by a set of three “colour modifiers” (“bright”, “dark”,
“faded”).

sizedescriptor: The size of image content matching
other aspects of a query is assessed by adding the areas
of the corresponding regions. Size may be defined as
a percentage value of image area (“at least x%”, “at
most x%”, “between x% and y%”) or relative to other
image parts (e.g. “largest”, “smallest”, “bigger than”).

4.3 System Integration

A general query methodology for content based im-
age and multimedia retrieval must take into account
the differences in potential application domains and



system environments. Great care was therefore taken
in the design of the OQUEL language to make it pos-
sible to integrate it with existing database infrastruc-
ture and content analysis facilities. This portability was
achieved by a component-based software development
approach which allows individual matching modules to
be re-implemented to cater for alternative content rep-
resentation schemes without affecting the overall se-
mantics of the query language. This facility also makes
it possible to evaluate a particular query differently de-
pending on the current retrieval context.

The implementation of OQUEL also remains exten-
sible. New terms can be represented on the basis of
existing constructs as macro definitions. Simple lexical
extensions are handled by a tokeniser and do not re-
quire any modifications to the query parser. Novel con-
cepts can also be introduced by writing an appropriate
software module (a Java class extending an interface or
derived by inheritance) and plugging it into the existing
language model. While an extension of the language
syntax requires recompilation of the grammar specifica-
tion, individual components of the language are largely
independent and may be re-specified without affecting
other parts. Furthermore, translation modules can be
defined to optimise query evaluation or transform part
of the query into an alternative format (e.g. a sequence
of pre-processed SQL statements).

As will be discussed in the next section, the query
text parser was designed to hide grammatical complex-
ity (“what you don’t know can’t hurt you”) and pro-
vide a natural language like tool for query composition.
There is also a forms-based interface which offers the
look and feel of graphical database interfaces and ex-
plicitly exposes available language features while being
slightly restricted in the type of queries it can handle.
Lastly there is a graphical tool which allows users to in-
spect or modify a simplified abstract syntax tree (AST)
representation of a query.

5 Retrieval Process

This section discusses the OQUEL retrieval process
as implemented in the ICON system. In the first stage,

the syntax tree derived from the query is parsed top
down and the leaf nodes are evaluated in light of their
predecessors and siblings. Information then propagates
back up the tree until we arrive at a single probability
of relevance for the entire image. At the lowest level,
tokens map directly or very simply onto the content de-
scriptors. Higher level terms are either expanded into
sentence representations or evaluated using Bayesian
graphs. For example, when looking for people in an
image the system will analyse the presence and spa-
tial composition of appropriate clusters of relevant stuff
(cloth, skin, hair) and relate this to the output of face
and eye spotters. This evidence is then combined prob-
abilistically to yield a likelihood estimate of whether
people are present in the image. Figure 5 shows a sim-
plified Bayesian network for the scene descriptor “win-
ter”. Arrows denote conditional dependencies and ter-
minal nodes correspond to sources of evidence or, in
the case of the term “outdoors”, other Bayesian nets.

5.1 Query-time Object and Scene Recog-
nition for Retrieval

In this paper we have argued that in order to come
closer to capturing the semantic “essence” of an im-
age, tasks such as feature grouping and object iden-
tification need to be approached in an adaptive goal
oriented manner. This takes into account that crite-
ria for what constitutes non-accidental and perceptu-
ally significant visual properties necessarily depend on
the objectives and prior knowledge of the observer, as
recognised in [4]. Going back to the lessons learned
from text retrieval stated in section 1.2, for most con-
tent retrieval tasks it is perfectly adequate to approach
the problem of retrieving images containing particular
objects or characterisable by particular scene descrip-
tors in an indicative fashion rather than a full analytic
one. As long as the structure of the inference meth-
ods adequately accounts for the non-accidental prop-
erties that characterise an object or scene, relevance
can be assessed by a combination of individually weak
sources of evidence. These can be ranked in a hierar-
chy and further divided into those which are necessary



for the object to be deemed present and those which
are merely contingent. Such a ranking makes it possi-
ble to quickly eliminate highly improbable images and
narrow down the search window.

Relevant images are those where we can find suf-
ficient support for the candidate hypotheses derived
from the query. Given enough redundancy and a man-
ageable false positive rate, this will be resilient to fail-
ure of individual detection modules. For example, a
query asking for images containing people does not re-
quire us to solve the full object recognition challenge of
correctly identifying the location, gender, size, etc. of
all people depicted in all images in the collection. As
long as we maintain a notion of uncertainty, border-
line false detections will simply result in lowly ranked
retrieved images. Top query results will correspond
to those image where our confidence of having found
evidence for the presence of people is high relative to
the other images, subject to the inevitable thresholding
and identification of necessary features.

5.2 Query Parsing and Representation

OQUEL queries are parsed to yield a canonical ab-
stract syntax tree (AST) representation of their syn-
tactic structure. Figures 6, 7, 8, and 9 show sample
queries and their ASTs. The structure of the syn-
tax trees follows that of the grammar, i.e. the root
node is the start symbol whose children represent par-
ticular requirements over image features and content.
The leaf nodes of the tree correspond to the terminal
symbols representing particular requirements such as
shapedescriptors and visual categories. Intermediate
nodes are syntactic categories instantiated with the rel-
evant token (i.e. “AND”, “which is larger than”) which
represent the relationships that are to be applied when
evaluating the query.

5.3 Query Evaluation and Retrieval

Images are retrieved by evaluating the AST to com-
pute a probability of relevance for each image. Due to
the inherent uncertainty and complexity of the task,

evaluation is performed in a manner which limits the
requirement for runtime inference by quickly ruling out
irrelevant images given the query. Query sentences con-
sist of requirements which yield matching probabilities
that are further modified and combined according to
the top level syntax. Relations are evaluated by con-
sidering the image evidence returned by assessing their
constituent specification blocks. These attempt to find
a set of candidate image content (evidence) labelled
with probabilities according to the location, content,
and property specifications which occur in the syntax
tree. A closure consisting of a pointer to the identified
content (e.g. a region identifier or grid coordinate) to-
gether with the probability of relevance is passed as a
message to higher levels in the tree for evaluation and
fusion.

The overall approach therefore relies on passing mes-
sages (image structures labelled with probabilities of
relevance), assigning weights to these messages accord-
ing to higher level structural nodes (modifiers and re-
lations), and integrating these at the topmost levels
(specification blocks) in order to compute a belief state
for the relevance of the evidence extracted from the
given image for the given query. There are many ap-
proaches to using probabilities to quantify and combine
uncertainties and beliefs in this way [35]. The approach
adopted here is related to that of [25] in that it ap-
plies notions of weighting derived from the Dempster-
Shafer theory of evidence to construct an information
retrieval model which captures structure, significance,
uncertainty, and partiality in the evaluation process.

At the leaf nodes of the AST, derived terms such as
object labels (“people”) and scene descriptions (“in-
doors”) are either expanded into equivalent OQUEL
sentence structures or evaluated by Bayesian networks
integrating image content descriptors with additional
sources of evidence (e.g. a face detector). Bayesian
networks tend to be context dependent in their appli-
cability and may therefore give rise to brittle perfor-
mance when applied to very general content labelling
tasks. In the absence of additional information in the
query sentence itself, it was therefore found useful to
evaluate mutually exclusive scene descriptors for ad-



Figure 6: Search results for OQUEL query A “bright red and stripy”.

Figure 7: Search results for OQUEL query B “people in centre”.



Figure 8: Search results for OQUEL query C “some water in the bottom half which is surrounded
by trees and grass, size at least 10%”.

Figure 9: Search results for OQUEL query D “winter”.



ditional disambiguation. For example, the concepts
“winter” and “summer” are not merely negations of
one another but correspond to Bayesian nets evaluat-
ing different sources of evidence. If both were to as-
sign high probabilities to a particular image then the
labelling is considered ambiguous and consequently as-
signed a lower relevance weight.

The logical connectives are evaluated using thresh-
olding and fuzzy logic (i.e. “p1 and p2” corresponds
to “if (min(p1,p2)<=threshold) 0 else min(p1,p2)” ).
A similar approach is taken in evaluating predicates
for low level image properties by using fuzzy quanti-
fiers [15]. Image regions which match the target con-
tent requirements can then be used to assess any other
specifications (shape, size, colour) which appear in the
same requirement subtree within the query. Groups of
regions which are deemed salient with respect to the
query can be compared for the purpose of evaluating
relations as mentioned above.

Figure 10: Examples of alternate ICON query in-

terfaces using sketch of classified target content
(left) and region properties (right).

6 Evaluation

6.1 Qualitative and Quantitative Evalua-
tion

Progress in CBIR research remains hampered by a
lack of standards for comparative performance evalua-
tion [31, 30]. This is an intrinsic problem due to the
extreme ambiguity of visual information with respect
to human vs computer interpretations of content and
the strong dependence of relevance assessment upon
the particular feature sets and query methods imple-
mented by a given system. There are no publicly avail-
able image sets with associated ground truth data at
the different levels of granularity required to do jus-
tice to different retrieval approaches, nor are there any
standard sets of queries and manually ranked results
which could easily be translated to the different for-
mats and conventions adopted by different CBIR sys-
tems. Furthermore, there are no usable techniques for
assessing important yet elusive usability criteria relat-
ing to the query interface as discussed in 1.1. Real-
world users (rarely addressed in the CBIR research lit-
erature) would be primarily interested in the ease with
which they could formulate effective queries in a par-
ticular system to solve their search requirements with
minimal effort for their chosen data set. Even if large
scale standardised test sets and sample queries were
available to the CBIR community, results derived from
them might not be of much use in predicting perfor-
mance on real-world retrieval tasks.

However, meaningful evaluation of retrieval meth-
ods is possible if carried out for a set of well speci-
fied retrieval tasks using the same underlying content
representation and image database. We have assessed
the performance of the OQUEL language in terms of
its utility as a query tool both in terms of user effort
and query performance. The ICON system has been in
use at our research lab and was demonstrated at con-
ferences such as ICCV2001 and CVPR2001. Qualita-
tively speaking, users find that the OQUEL language
provides a more natural and efficient mechanism for



Figure 11: Plots of relative percentages for precision versus recall for the 4 retrieval experiments.

content-based querying than the other query methods
present in ICON.

6.2 Experimental Method

While most evaluation of CBIR systems is per-
formed on commercial image collections such as the
Corel image sets, their usefulness is limited by the fact
that they consist of very high quality photographic im-
ages and that the associated ground truth (category
labels such as “China”, “Mountains”, “Food”) are fre-
quently too high level and sparse to be of use in perfor-
mance analysis [30]. We therefore chose a set of images
consisting of around 670 Corel images augmented with
412 amateur digital pictures of highly variable quality
and content. Manual relevance assessments in terms of
relevant vs. non-relevant were carried out for all 1082
images over the test queries described below. In the
case of the four test queries A–D below, the number of

relevant images was 77, 158, 53, and 67 respectively.
In order to quantify the performance of our imple-

mentation of the OQUEL language in light of the in-
herent difficulties of CBIR evaluation, we focussed on
contrasting its utility as a retrieval tool compared with
the other query modalities present in the ICON system.
They are:

• Query-by-example: A set of weighted sample im-
ages (both positive and negative examples). Com-
parisons are performed on the basis of metrics such
as a pair-wise best region match criterion and a
classification pyramid distance measure.

• User drawn sketch: Desired image content com-
posed by means of a sketch based query composi-
tion tool which uses a visual thesaurus of target
image content corresponding to the set of visual
categories.

• Feature range or predicate: Constraints on visual



appearance features (colour, shape, texture) de-
rived from the region segmentation.

The user may assign different weights to the various
elements that comprise a query and can choose from a
set of similarity metrics to specify the emphasis that is
to be placed on the absolute position of target content
within images and overall compositional aspects. All
of the query components have access to the same pre-
computed image representation as described in 4.1.

6.3 Test Queries

We chose four test queries which have the following
expressions in the OQUEL language:

• Query A “bright red and stripy”

• Query B “people in centre”

• Query C “some water in the bottom half which
is surrounded by trees and grass, size at least 10”%

• Query D “winter”

These are not meant to constitute a representative
sample over all possible image queries (no such sample
exists) but to illustrate performance and user search ef-
fort for conceptually different retrieval needs expressed
at different levels of description. For each OQUEL
query we created a further two queries expressed us-
ing the other search facilities of the ICON system:

• Composite query: a query which may combine a
sketch with feature constraints as appropriate to
yield best performance in reasonable time.

• Query-by-example: the single image maximising
the normalised average rank metric was chosen as
the query. This type of query is commonly used
to assess baseline performance.

Figures 6, 7, 8, and 9 show the four OQUEL queries
and their search results over the collection. Figure
10 depicts examples of alternate queries consisting of

a combination of low level attributes and user drawn
sketch.

6.4 Results

To quantify performance, precision vs. recall was
computed using the ground truth images for each test
query as shown in figure 11. For each OQUEL query we
also show the results for a combined query (“Comb.”)
and a query-by-example (“QBE”) designed and opti-
mised to meet the same user search requirement. It can
be seen that OQUEL queries yield better results, espe-
cially for the top ranked images. In the case of query
A, results are essentially the same as those for a query
consisting of feature predicates for the region proper-
ties “stripy” and “red”. In general OQUEL queries
are more robust to errors in the segmentation and re-
gion classification due to their ontological structure.
Query-by-example in particular is usually insufficient
to express more advanced concepts relating to spatial
composition, feature in variances, or object level con-
straints.

As recommended in [31], we also computed the nor-
malised average rank which is a useful stable measure
of relative performance in CBIR:

Rank∼ =
1

NNrel
{

Nrel∑

i=1

Ri − Nrel{Nrel − 1}
2

} (4)

where Ri is the rank at which the i’th relevant image
is retrieved, Nrel the number of relevant images, N the
total number of images in the collection. The value of
Rank∼ ranges from 0 to 1 where 0 indicates perfect
retrieval.



Query Rank∼

A - OQUEL 0.2185
A - Comb. 0.2184
A - QBE 0.3992

B - OQUEL 0.2924
B - Comb. 0.3081
B - QBE 0.3693

C - OQUEL 0.2637
C - Comb. 0.3159
C - QBE 0.3530

D - OQUEL 0.1944
D - Comb. 0.2582
D - QBE 0.2586

Comparisons with other query composition and re-
trieval paradigms implemented in ICON (sketch, sam-
ple images, property thresholds) therefore show that
the OQUEL query language constitutes a more efficient
and flexible retrieval tool. Few prior interpretative con-
straints are imposed and relevance assessments are car-
ried out solely on the basis of the syntax and seman-
tics of the query itself. Text queries have also generally
proven to be more efficient to evaluate since one only
needs to analyse those aspects of the image content
representation which are relevant to nodes in the cor-
responding syntax tree and because of various possible
optimisations in the order of evaluation to quickly rule
out non-relevant images. Although the current system
does not use an inverted file as its index, query evalu-
ation took no more than 100ms for the test queries.

7 Conclusions

7.1 Discussion

As explained above, one of the primary advantages
of the proposed language-based query paradigm for
CBIR is the ability to leave the problem of initial do-
main selection to the user. The retrieval process op-
erates on a description of desired image content ex-
pressed according to an ontological hierarchy defined
by the language and relates this at retrieval time to
the available image content representation. Domain
knowledge therefore exists at three levels: the struc-

ture and content of the user query, the ontology un-
derlying the query language, and the retrieval mecha-
nism which parses the user query and assesses image
relevance. User queries may be quite high-level and
employ general terms, thus placing the burden of find-
ing feature combinations which discriminate relevant
from non-relevant images on the ontology and the in-
terpreter. Richer, more specific queries narrow down
the retrieval focus. One can therefore offset user com-
position effort and the need for greater language and
parser complexity depending on the relative costs in-
volved in a real world CBIR context.

The current implementation does not constitute an
exhaustive means of mapping retrieval requirements
and relating them to images. Nor does the OQUEL
language come close to embodying the full richness of
a natural language specification of concepts relating to
properties of photographic images. However, the cur-
rent system does show that it is possible to utilise an
ontological language framework to fuse different indi-
vidually weak and ambiguous sources of image infor-
mation and content representation in a way which im-
proves retrieval performance and usability of the sys-
tem. Clearly there remain scalability issues as addi-
tional classifiers will need to be added to improve the
representational capacity of the query language. How-
ever, the notion of ontology based languages provides a
powerful tool for extending retrieval systems by adding
task and domain specific concept hierarchies at differ-
ent levels of semantic granularity.

7.2 Summary and Future Outlook

Query composition is a relatively ill-understood part
of research into CBIR and clearly merits greater atten-
tion if image retrieval systems are to enter the main-
stream. Most systems for content based image re-
trieval offer query composition facilities based on exam-
ples, sketches, feature predicates, structured database
queries, or keyword annotation. Compared to doc-
ument retrieval using text queries, user search effort
remains significantly higher, both in terms of initial
query formulation and the need for relevance feedback.



This paper argues that query languages provide a
flexible way of dealing with problems commonly en-
countered in CBIR such as ambiguity of image con-
tent and user intention and the semantic gap which
exists between user and system notions of relevance.
By basing such a language on an extensible ontology,
one can explicitly state ontological commitments about
categories, objects, attributes, and relations without
having to pre-define any particular method of query
evaluation or image interpretation. A central theme
of the paper is the distinction between query descrip-
tion and image description languages and the power
of a formally specifiable language featuring syntax and
semantics in order to capture meaning in images rela-
tive to a query. The combination of individually weak
and ambiguous clues to determine object presence and
estimate overall probability of relevance builds on re-
cent approaches to robust object recognition and can
be seen as an attempt at extending the success of in-
dicative methods for content representation in the field
of text retrieval.

We present OQUEL as an example of such a lan-
guage. It is a novel query description language which
works on the basis of short text queries describing the
user’s retrieval needs and does not rely on prior anno-
tation of images. Query sentences can represent ab-
stract and arbitrarily complex retrieval requirements
at multiple levels and integrate multiple sources of ev-
idence. The query language itself can be extended to
represent customised ontologies defined on the basis
of existing terms. An implementation of OQUEL for
the ICON system demonstrates that efficient retrieval
of general photographic images is possible through the
use of short OQUEL queries consisting of natural lan-
guage words and a simple syntax.

The use of more sophisticated natural language pro-
cessing techniques would ease the current grammatical
restrictions imposed by the syntax and allow statis-
tical interpretation of more free-form query sentences
consisting of words from an extended vocabulary. Per-
haps most importantly, ongoing efforts aim to acquire
the weighting of the Bayesian inference nets used in
scene and object recognition using a training corpus

and prior probabilities for the visual categories. The
goal is to reduce the need for pre-wired knowledge such
as “an image containing regions of snow and ice is more
likely to depict a winter scene”. An approach such as
[11] paired with the structural Expectation Maximisa-
tion method might provide a means of automatically
acquiring new high level terms and their inference net-
works. The automated discovery of domain and general
purpose ontologies together with the means of relating
these to lower level evidence is an important challenge
for data mining and machine learning research.
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