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Abstract. This paper presents an extensible architectural model for
general content-based analysis and indexing of video data which can
be customised for a given problem domain. Video interpretation is ap-
proached as a joint inference problems which can be solved through the
use of modern machine learning and probabilistic inference techniques.
An important aspect of the work concerns the use of a novel active knowl-
edge representation methodology based on an ontological query language.
This representation allows one to pose the problem of video analysis in
terms of queries expressed in a visual language incorporating prior hi-
erarchical knowledge of the syntactic and semantic structure of entities,
relationships, and events of interest occurring in a video sequence. Per-
ceptual inference then takes place within an ontological domain defined
by the structure of the problem and the current goal set.

1 Introduction

The content-based analysis of digital video footage requires methods which will
automatically segment video sequences and key frames into image areas corre-
sponding to salient objects (e.g. people, vehicles, background objects, etc.), track
these objects in time, and provide a flexible framework for further analysis of
their relative motion and interactions.

We argue that these goals are achievable by following the trend in Computer
Vision research to depart from strict “bottom-up” or “top-down” hierarchical
paradigms and instead place greater emphasis on the mutual interaction between
different levels of representation. Moreover, it is argued that an extensible frame-
work for general robust video object segmentation and tracking is best attained
by pursuing an inherently flexible “self-referential” approach. Such a system em-
bodies an explicit representation of its own internal state (different sources of
knowledge about a video scene) and goals (finding the object-level interpreta-
tion which is most likely given this knowledge and the demands of a particular
application). The resulting framework can be customised to a particular prob-
lem (e.g. tracking human beings from CCTV footage) by integrating the most
appropriate low-level (e.g. facial feature extraction) and high-level (e.g. models
of human motion) sources of domain-specific knowledge. The system can then
be regarded as combining this information at a meta-level to arrive at the most
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likely interpretation (e.g. labelling a block of moving image regions as represent-
ing a human body) of the video data given the available information, possibly
undergoing several cycles of analysis-integration-conclusion in the process.

In order to make meaningful inferences during this iterative fusion of dif-
ferent sources of knowledge and levels of feature extraction/representation, it
is necessary to place such a methodology within the sound theoretical frame-
work afforded by modern probabilistic inference techniques such as the adaptive
Bayesian graphical methods known as Dynamic Belief networks. Dynamic Be-
lief networks are particularly suitable because they model the evolution and
integration of stochastic state information over time and can be viewed as gen-
eralisations of a broad family of probabilistic models.

A key part of the proposed approach concerns the notion that many tasks in
computer vision are closely related to, and may be addressed in terms of, opera-
tions in language processing. In both cases one ultimately seeks to find symbolic
representations which can serve as meaningful interpretations of underlying sig-
nal data. Such an analysis needs to incorporate a notion of the syntax and
semantics which are seen as governing the domain of interest so that the most
likely explanation of the observed data can be found. Whereas speech and lan-
guage processing techniques are concerned with the analysis of sound patterns,
phonemes, words, sentences, and dialogues, video analysis is confronted with
pixels, video frames, primitive features, regions, objects, motions, and events.
An important difference [32] between the two arises from the fact that visual in-
formation is inherently more ambiguous and semantically impoverished. There
consequently exists a wide semantic gap between human interpretations of image
information and that currently derivable by means of a computer.

We argue that this gap can be narrowed for a particular application domain
by means of an ontological language which encompasses a hierarchical represen-
tation of task-specific attributes, objects, relations, temporal events, etc., and
relates these to the processing modules available for their detection and recogni-
tion from the underlying medium. Words in the language therefore carry mean-
ing directly related to the appearance of real world objects. Visual inference
tasks can then be carried out by processing sentence structures in an appro-
priate ontological language. Such sentences are not purely symbolic since they
retain a linkage between the symbol and signal levels. They can therefore serve
as a computational vehicle for active knowledge representation which permits
incremental refinement of alternate hypotheses through the fusion of multiple
sources of information and goal-directed feedback to facilitate disambiguation
in a context specified by the current set of ontological statements. Particular
parts of the ontological language model may be implemented as Dynamic Be-
lief networks, stochastic grammar parsers, or neural networks, but the overall
frameworks need not be tied to a particular formalism such as the propagation of
conditional probability densities. Later sections will discuss these issues further
in light of related work and ongoing research efforts.
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2 Related Work

2.1 Visual Recognition as Perceptual Inference

An increasing number of research efforts in medium and high level video analysis
can be viewed as following the emerging trend that object recognition and the
recognition of temporal events are best approached in terms of generalised lan-
guage processing which attempts a machine translation [14] from information in
the visual domain to symbols and strings composed of predicates, objects, and
relations. The general idea is that recognising an object or event requires one to
relate ill-defined symbolic representations of concepts to concrete instances of the
referenced object or behaviour pattern. This is best approached in a hierarchical
manner by associating individual parts at each level of the hierarchy according
to rules governing which configurations of the underlying primitives give rise to
meaningful patterns at the higher semantic level. Many state-of-the-art recog-
nition systems therefore explicitly or implicitly employ a probabilistic grammar
which defines the syntactic rules which can be used to recognise compound ob-
jects or events based on the detection of individual components corresponding
to detected features in time and space. Recognition then amounts to parsing a
stream of basic symbols according to prior probabilities to find the most likely
interpretation of the observed data in light of the top-level starting symbols in
order to establish correspondence between numerical and symbolic descriptions
of information. This idea has a relatively long heritage in syntactic approaches
to pattern recognition [39,4] but interest has been revived recently in the video
analysis community following the popularity and success of probabilistic meth-
ods such as Hidden Markov models (HMM) and related approaches adopted
from the speech and language processing community.

While this approach has shown great promise for applications ranging from
image retrieval to face detection to visual surveillance, a number of problems
remain to be solved. The nature of visual information poses hard challenges
which hinder the extent to which mechanisms such as Hidden Markov models
and stochastic parsing techniques popular in the speech and language process-
ing community can be applied to information extraction from images and video.
Consequently there remains some lack of understanding as to which mechanisms
are most suitable for representing and utilising the syntactic and semantic struc-
ture of visual information and how such frameworks can best be instantiated.
The role of machine learning in computer vision continues to grow and recently
there has been a very strong trend towards using Bayesian techniques for learn-
ing and inference, especially factorised graphical probabilistic models [23] such as
Dynamic Belief networks (DBN). While finding the right structural assumptions
and prior probability distributions needed to instantiate such models requires
some domain specific insights, Bayesian graphs generally offer greater concep-
tual transparency than e.g. neural network models since the underlying causal
links and prior beliefs are made more explicit. The recent development of vari-
ous approximation schemes based on iterative parameter variation or stochastic
sampling for inference and learning have allowed researchers to construct proba-



A Self-Referential Perceptual Inference Framework for Video Interpretation 57

bilistic models of sufficient size to integrate multiple sources of information and
model complex multi-modal state distributions. Recognition can then be posed
as a joint inference problem relying on the integration of multiple (weak) clues
to disambiguate and combine evidence in the most suitable context as defined
by the top level model structure.

One of the earlier examples of using Dynamic Belief networks (DBN) for vi-
sual surveillance appears in [5]. DBNs offer many advantages for tracking tasks
such as incorporation of prior knowledge and good modelling ability to represent
the dynamic dependencies between parameters involved in a visual interpreta-
tion. Their application to multi-modal and data fusion [38] can utilise fusion
strategies of e.g. Kalman [10] and particle filtering [20] methods. As illustrated
by [11] and [33], concurrent probabilistic integration of multiple complemen-
tary and redundant cues can greatly increase the robustness of multi-hypothesis
tracking.

In [29] tracking of a person’s head and hands is performed using a Bayesian
Belief network which deduces the body part positions by fusing colour, motion
and coarse intensity measurements with context dependent semantics. Later
work by the same authors [30] again shows how multiple sources of evidence
(split into necessary and contingent modalities) for object position and identity
can be fused in a continuous Bayesian framework together with an observation
exclusion mechanism. An approach to visual tracking based on co-inference of
multiple modalities is also presented in [41] which describes an sequential Monte
Carlo approach to co-infer target object colour, shape, and position. In [7] a
joint probability data association filter (JPDAF) is used to compute the HMM’s
transition probabilities by taking into account correlations between temporally
and spatially related measurements.

2.2 Recognition of Actions and Structured Events

Over the last 15 years there has been growing interest within the computer vision
and machine learning communities in the problem of analysing human behaviour
in video. Such systems typically consist of a low or mid level computer vision
system to detect and segment a human being or object of interest, and a higher
level interpretation module that classifies motions into atomic behaviours such as
hand gestures or vehicle manoeuvres. Higher-level visual analysis of compound
events has in recent years been performed on the basis of parsing techniques using
a probabilistic grammar formalism. Such methods are capable of recognising
fairly complicated behavioural patterns although they remain limited to fairly
circumscribed scenarios such as sport events [18,19], small area surveillance [36,
26], and game playing [25]. Earlier work on video recognition such as [40] and [15]
already illustrated the power of using a context dependent semantic hierarchy
to guide focus of attention and combination of plausible hypothesis, but lacked
a robust way of integrating multiple sources of information in a probabilistically
sound way.

The role of attentional control for video analysis was also pointed out in [6].
The system described there performs selective processing in response to user
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queries for two cellular imaging applications. This gives the system a goal di-
rected attentional control mechanism since the most appropriate visual analysis
routines are performed in order to process the user query. Selective visual pro-
cessing on the basis of Bayes nets and decision theory has also been demonstrated
in control tasks for active vision systems [28]. Knowledge representation using
Bayesian networks and sequential decision making on the basis of expected cost
and utility allow selective vision systems to take advantage of prior knowledge
of a domain’s cognitive and geometrical structure and the expected performance
and cost of visual operators. An interesting two-level approach to parsing actions
and events in video is described in [21]. HMMs are used to detect candidate low-
level temporal features which are then parsed using a SCFG parsing scheme
which adds disambiguation and robustness to the stream of detected atomic
symbols. A similar approach is taken by [25] which uses the Earley-Stolcke pars-
ing algorithm for stochastic context-free grammars to determine the most likely
semantic derivation for recognition of complex multi-tasked activities from a
given video scenario. A method for recognising complex multi-agent action is
presented in [19]. Belief networks are again used to probabilistically represent
and infer the goals of individual agents and integrate these in time from visual
evidence. Bayesian techniques for integrating bottom-up information with top-
down feedback have also been applied to challenging tasks involving the recog-
nition of interactions between people in surveillance footage [26]. [24] presents
an ontology of actions represented as states and state transitions hierarchically
organised from most general to most specific (atomic).

3 Proposed Approach and Methodology

3.1 Overview

We propose a cognitive architectural model for video interpretation. It is based
on a self-referential (the system maintains an internal representation of its goals
and current hypotheses) probabilistic model for multi-modal integration of ev-
idence (e.g. motion estimators, edge trackers, region classifiers, face detectors,
shape models, perceptual grouping operators) and context-dependent inference
given a set of representational or derivational goals (e.g. recording movements
of people in a surveillance application). The system is capable of maintaining
multiple hypotheses at different levels of semantic granularity and can generate
an consistent interpretation by evaluating a query expressed in an ontological
language. This language gives a probabilistic hierarchical representation incor-
porating domain specific syntactic and semantic constraints to enable robust
analysis of video sequences from a visual language specification tailored to a
particular application and for the set of available component modules.

From an Artificial Intelligence point of view this might be regarded as an
approach to the symbol grounding problem [16] (sentences in the ontological
language have an explicit foundation of evidence in the feature domain, so there
is a way of bridging the semantic gap between the signal and symbol level) and
frame problem [12] (there is no need to exhaustively label everything that is going
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on, one only needs to consider the subset of the state space required to make a
decision given a query which implicitly narrows down the focus of attention).

The nature of such queries will be task specific. They may either be explicitly
stated by the user (e.g. in a video retrieval task) or implicitly derived from some
notion of the system’s goals. For example, a surveillance task may require the sys-
tem to register the presence of people who enter a scene, track their movements,
and trigger an event if they are seen to behave in a manner deemed “suspicious”
such as lingering within the camera’s field of view or repeatedly returning to
the scene over a short time scale. Internally the system could perform these
functions by generating and processing queries of the kind “does the observed
region movement correspond to a person entering the scene?”, “has a person of
similar appearance been observed recently?”, or “is the person emerging from
behind the occluding background object the same person who could no longer
be tracked a short while ago?”. These queries would be phrased in a language
which relates them to the corresponding feature extraction modules (e.g. a Dy-
namic Belief network for fusing various cues to track people-shaped objects) and
internal descriptions (e.g. a log of events relating to people entering or leaving
the scene at certain locations and times, along with parameterised models of
their visual appearance). Formulating and refining interpretations then amounts
to selectively parsing such queries.

3.2 Recognition and Classification

The notion of image and video interpretation relative to the goal of satisfying a
structured user query (which may be explicit or implicitly derived from a more
general specification of system objectives) follows the trend in recent approaches
to robust object recognition on the basis of a “union of weak classifiers”. Such
an approach hierarchically integrates trained parts-based relationships between
lower level feature classifiers to recognise composite objects. Salient perceptual
groupings of image features are detected as non-accidental image structure iden-
tified by means of a particular set of predicates over lower-level image properties
(e.g. texture, shape, colour). Making such methods robust, scalable, and gener-
ally applicable has proven a major problem.

We argue that in order to come closer to capturing the semantic “essence”
of an image or sequence, tasks such as feature grouping and object identifica-
tion need to be approached in an adaptive goal oriented manner. This takes into
account that criteria for what constitutes non-accidental and perceptually signif-
icant visual properties necessarily depend on the objectives and prior knowledge
of the observer. Such criteria can be ranked in a hierarchy and further divided
into those which are necessary for the object or action to be recognised and
those which are merely contingent. Such a ranking makes it possible to quickly
eliminate highly improbable or irrelevant configurations and narrow down the
search window. The combination of individually weak and ambiguous clues to
determine object presence and estimate overall probability of relevance builds
on recent approaches to robust object recognition and can be seen as an attempt
at extending the success of indicative methods for content representation in the
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field of information retrieval. Devising a strategy for recognising objects by ap-
plying the most appropriate combination of visual routines such as segmentation
and classification modules can also be learned from data [13].

3.3 The Role of Language in Vision

As mentioned above, many problems in vision such as object recognition ([14]),
video analysis ([18,27,24]), gesture recognition ([3,21,25]), and multimedia re-
trieval ([22,2,37]) can be viewed as relating symbolic terms to visual information
by utilising syntactic and semantic structure in a manner related to approaches
in speech and language processing [34]. A visual language can also serve as
an important mechanism for attentional control by constraining the range of
plausible feature configurations which need to be considered when performing a
visual tasks such as recognition. Processing may then be performed selectively
in response to queries formulated in terms of the structure of the domain, i.e.
relating high-level symbolic representations to extracted features in the signal
(image and temporal feature) domain. By basing such a language on an ontology
one can capture both concrete and abstract relationships between salient visual
properties. Ontologies encode the relational structure of concepts which one can
use to describe and reason about aspects of the world.

Since the language is used to express queries and candidate hypotheses rather
than exhaustively label image content, such relationships can be represented
explicitly without prior commitments to a particular interpretation or having to
incur the combinatorial explosion of a full annotation of all the relations that
may hold in a given image or video. Instead, only those image aspects which are
of value given a particular query are evaluated and evaluation may stop as soon
as the appropriate top level symbol sequence has been generated.

Fig. 1. The Hermeneutical cycle for iterative interpretation in a generative (hypothesise
and test) framework.
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Fig. 2. Sketch of the proposed approach to goal-directed fusion of content extraction
modules and inference guided by an attentional control mechanism. The fusion pro-
cess and selective visual processing are carried out in response to a task and domain
definition expressed in terms of an ontological language. Interpretations are generated
and refined by deriving queries from the goals and current internal state.

3.4 Self-Referential Perceptual Inference Framework

In spite of the benefits of DBNs and related formalisms outlined above, prob-
abilistic graphical models also have limitations in terms of their ability to rep-
resent structured data at a more symbolic level and the requirement for nor-
malisations to enable probabilistic interpretations of information. Devising a
probabilistic model is in itself not enough since one requires a framework which
determines which inferences are actually made and how probabilistic outputs are
to be interpreted.

Interpreting visual information in a dynamic context is best approached as
an iterative process where low-level detections are compared (induction) with
high-level models to derive new hypotheses (deduction). These can in turn guide
the search for evidence to confirm or reject the hypotheses on the basis of ex-
pectations defined over the lower level features. Such a process is well suited to
a generative method where new candidate interpretations are tested and refined
over time. Figure 1 illustrates this approach.

However, there is a need to improve on this methodology when the complexity
of the desired analysis increases, particularly as one considers hierarchical and
interacting object and behavioural descriptions best defined in terms of a syntax
at the symbolic level. The sheer number of possible candidate interpretations and
potential derivations soon requires a means of greatly limiting the system’s focus
of attention. A useful analogy is selective processing in response to queries [6].
Visual search guided by a query posed in a language embodying an ontological
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representation of a domain allows adaptive processing strategies to be utilised
and gives an effective attentional control mechanism.

We argue that an ontological content representation and query language can
be used as an effective vehicle for hierarchical representation and goal-directed
inference in video analysis tasks. As sketched in figure 2, such a language serves as
a means of guiding the fusion of multiple sources of visual evidence and refining
symbolic interpretations of dynamic scenes in the context of a particular task. By
maintaining representations of both the current internal state and derivational
goals expressed in terms of the same language framework, such a system can be
seen as performing self-referential feedback based control of the way in which
information is processed over time. Visual recognition then amounts to selecting
a parsing strategy which determines how elements of the current string set are
to be processed further given a stream of lower level tokens generated by feature
detectors. Parts of the language may be realised in terms of probabilistic fusion
mechanisms such as DBNs, but the overall structure of the interpretative module
is not limited to a particular probabilistic framework and allow context-sensitive
parsing strategies to be employed where appropriate.

4 Applications

4.1 Image and Video Indexing

In [37] we proposed an ontological query language called OQUEL as a novel
query specification interface and retrieval tool for content based image retrieval
and presented results using the ICON system. The language features an extensi-
ble language framework based on a formally specified grammar and vocabulary
which are derived from a general ontology of image content in terms of categories,
objects, attributes, and relations. Words in the language represent predicates on
image features and target content at different semantic levels. Sentences are
prescriptions of desired characteristics which are to hold for relevant retrieved
images. Images are retrieved by deriving an abstract syntax tree from a textual or
forms-based user query and probabilistically evaluating it by analysing the com-
position and perceptual properties of salient image regions in light of the query.
The matching process utilises automatically extracted image segmentation and
classification information and can incorporate any other feature extraction mech-
anisms or contextual knowledge available at processing time to satisfy a given
user request. Perceptual inference takes the form of identifying those images as
relevant for which one can find sufficient support for the candidate hypotheses
derived from the query relative to other images in the collection. Examples of
queries are “some sky which is close to buildings in upper corner, size at least
20%” and “(some green or vividly coloured vegetation in the centre) which is of
similar size as (clouds or blue sky at the top)”.

The OQUEL language is currently being extended to the video domain for
indexing purposes. This work employs the region based motion segmentation
method described in [31] which uses a Bayesian framework to determined the
most likely labelling of regions according to motion layers and their depth or-
dering. The inference framework described above is then utilised to integrate
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information form the neural network region classifiers to modify the prior prob-
abilities for foreground/background layer assignments of image regions. A face
detector and simple human shape model have recently been used to identify and
track people. An ontological language is under development which extends the
static scene content descriptions with motion verbs (“moves”, “gestures”), spa-
tial and temporal prepositions (“on top of”, “beside”, “before”), and adverbs
(“quickly”, “soon”) for indexing and retrieval of video fragments.

4.2 Multi-modal Fusion for Sentient Computing

Interesting avenues for refinement, testing and deployment of the proposed cog-
nitive inference framework arise from the “sentient computing” ([17,1]) project
developed at AT&T Laboratories Cambridge and the Cambridge University Lab-
oratory for Communications Engineering (LCE). This system uses mobile ultra-
sonic sensor devices known as “bats” and a receiver infrastructure to gather high-
resolution location information for tagged objects such as people and machines
in order to maintain a sophisticated software model of an office environment. Ap-
plications can register with the system to receive notifications of relevant events
to provide them with an awareness of the spatial context in which users interact
with the system. As indicated in figures 3 and 4, the system’s internal dynamic
representation is based on an ontology in terms of locations and spatial regions,
objects (people, computers, phones, devices, cameras, furniture etc.), and event
states (motions, spatial overlap, proximity, button events etc.).

Fig. 3. Diagrammatic overview of the world model maintained by the sentient com-
puting system.

Combining vision with other sensory modalities is a very promising research
avenue in ubiquitous perceiving systems [8,35,9]. Computer vision methods can
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Fig. 4. The world as perceived by (a) users and (b) the sentient computing system.

provide multi-modal human-computer interfaces with transparent detection,
recognition, and tracking capabilities, but on their own suffer from a lack of ro-
bustness and autonomy in real world interaction scenarios. The sentient comput-
ing system provides a variable granularity spatial model of the environment and
a reliable device tracking facility which can be used to automatically (re)initialise
and re-focus vision modules whenever an event or scene context of interest is ob-
served by a camera. Location events from the sentient computing architecture
are being used to provide ground truth information about objects and object
movements occurring within the known field of view of a calibrated camera to
yield training and test data for individual video analysis components. A number
of applications of the sentient computing technology can in turn benefit from
our proposed video interpretation framework through the fusion of the ultra-
sonic and visual modalities. One such application currently under development
concerns user authentication for security critical applications, e.g. those which
allow users to automatically unlock office doors or automatically login to a com-
puter in their vicinity. In this case the system uses the bat sensor information
to detect that a person is present and select one or more camera views to verify
their identity as indicated by the identity tag of their bat. The location of the
bat is used to constrain the search window for a head and face detector which
forwards an image of the detected face to a face recogniser. Rather than solving
the extremely difficult problem of general face recognition, visual authentication
is approached as a verification problem and greatly constrained by fusing other
kinds of information about assumed identity, face location, lighting conditions,
and local office geometry.

Having visual information as an additional sensory modality is also useful
when the system has trouble detecting a person (e.g. they are not wearing a
bat or it is temporarily concealed) or when an application requires additional
information about a person’s posture, direction of gaze, gestures, interactions
with devices and other people, or facial expression to enhance visually medi-
ated human computer interaction and provide a richer model of the context in
which such interactions take place. At a more mundane level, vision technology
makes the installation, maintenance and operation of a sentient computing sys-
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tem easier by providing additional means of calibrating sensory infrastructure
and adapting a model of the static environment (such as furniture and partition
walls).

By ensuring that the symbolic inferences drawn by the system remain
grounded in the signal domain, the system can support a range of possible queries
as inferences and adapt its hypotheses in light of new evidence. To ensure suffi-
cient performance to enable real-time processing, the fusion of individual percep-
tual modalities is set up as a hierarchy where inexpensive detectors (e.g. finding
the rough outline of a person) narrow down the search space to which more spe-
cific modules (e.g. a face spotter or gesture recogniser) are applied. The system
thereby remains robust to error rates by integrating information vertically (ap-
plying detectors with high false acceptance rates to guide those with potentially
high false rejection rates) and horizontally (fusing different kinds of information
at the same level to offset different error characteristics for disambiguation). In
our cognitive framework, vision is therefore used to enhance the perceptual in-
ference capabilities of the sentient computing infrastructure by adding further
sources of information to update, query, and extend the system’s internal ontol-
ogy and external event model. By maintaining a notion of its own internal state
and goals the system can restrict its focus of attention to perform only those
inferences which are required for the current task (e.g. verifying the identity of
a person who just entered the visual field). Real-time requirements and other
resource limitations can be used as additional constraints for the fusion process.

5 Conclusion

This paper presents an extensible video analysis framework which can be cus-
tomised for a given task domain by employing appropriate data sources and
application-specific constraints. Recent advances in graph-based probabilistic
inference techniques allow the system to propagate a stochastic model over time
and combine different types of syntactic and semantic information. The process
of generating high-level interpretations subject to system goals is performed by
parsing sentence forms in an ontological language for visual content at different
levels of analysis.
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