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In This Lecture

* |n this lecture we introduce the process of
spreading epidemics in networks.

— This has been studied widely in biology.
— But it also has important parallels in information/
idea diffusion in networks.
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Epidemics vs Cascade Spreading

* |n cascade spreading nodes make decisions
based on pay-off benefits of adopting one
strategy or the other.

* |n epidemic spreading
— Lack of decision making.

— Process of contagion is complex and unobservable
* |n some cases it involves (or can be modeled as
randomness).
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Branching Process

* Simple model.

* First wave: A person carrying a disease enters
the population and transmit to all he meets
with probability p. He meets k people: a
portion of which will be infected.

* Second wave: each of the k people goes and
meet k different people. So we have a second
wave of kxk=k? people.

* Subsequent waves: same process.
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Example with k=3

High contagion probability:
The disease spreads
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Low contagion probability: o
The disease dies out A
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Basic Reproductive Number

* Basic Reproductive Number R =p*k
— It determines it the disease will spread or die out.

* In the branching process model, if R,<1 the
disease will die out after a finite number of
waves. If R,>1, with probability >0, the disease
will persist by infecting at least one person in
each wave.
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Measures to limit the spreading &

* When R, is close 1, slightly changing p or k can

result in epidemics dying out or happening.

— Quarantining people/nodes reduces k.

— Encouraging better sanitary practices reduces
germs spreading [reducing p].

e Limitations of this model:

— No realistic contact networks: no triangles!
— Nodes can infect only once.
— No nodes recover.
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Formal Epidemics Models
The S| Model

e S:susceptible individuals.

* X:infected individuals, when infected they can
infect others continuously (different from
before).

* n: total population.

e <k> average contacts per individual

e B=A<k> is the infection rate per individual (0<A<1)

* Susceptible contacts per unit of time BS/n.

* Overall rate of infection XBS/n.
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Microscopic explanation

* Probability for a node to not be infected from
each infected contact: 1 — A

* Number of infected contacts per node: <k>x

* Probability for a susceptible node to avoid
infection from all its <k>x infected contacts:
D= (1 — )\)<k>x

* Probability to be infected from at least one
infected contact: 1 —p =1 -(1 — \)<k

* If A<<1then p = A<k>x= Bx

 Therefore, the increase of infected nodes reads:

@ = fBxs = Px(1-x)
dt
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SIR Model

Infected nodes recover at a rate y.
* A node stays infected for T time.
* Branching process is SIR with t=1.

ds

— = —[3sx

dt

dx 8

— = psx — yx

dt

dr

di i PN
StX+r= 1 Susceptible Removed
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Example

 Numerical examples of solution:
e B=1, y=0.4, s(at start)=0.99, x(at start)=0.01, r

(at start)=0
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Epidemic Threshold

* When would the epidemic develop and when
would it die out?

* |t depends on the relationship of B and y:
— Basic Reproductive Number R,=B/y
— If the infection rate [per unit of time] is higher
than the removal rate the infection will survive
otherwise it will die out.
— In SI, y=0 so the epidemics always happen.
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Limitations of SIR

e Contagion probability is uniform and “on-off”

e Extensions

— Probability g of recovering in each step.

— Infected state divided into intermediate states (early,
middle and final infection times) with varying
probability during each.

— We have assumed homogenous mixing : assumes all
nodes encounter each others with same probability:
we could assume different probability per encounter.
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ds

7 = yx — Bsx

dx

7 = fsx — yx
s+x =1

dx

= =(p-y-pr)x
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SIS Model

If B>y growth curve like in SI but
never reaching all population infected.
The fraction of infected->0 as B
approachesy.

*If B< y the infection will die out
exponentially.

*SIS has the same R, as SIR.




Relaxing Assumptions

* Homogeneous Mixing: a node connects to the
same average number of other nodes as any
other.

* Most real networks are not Erdos-Renyi
random networks (for which the
homogeneous mixing assumption holds).

 Most networks have heterogeneous degree

distributions.

— Scale free networks!
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Would the model apply to SF?

e Pastor-Satorras and Vespignani [2001] have
considered the life of computer viruses over
time on the Internet:

10°

Surviving probability of virus
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How to justify this survival time?&

* The virus survival time is considerably high
with respect to the results of epidemic models
of spreading/recovering:

— Something wrong with the epidemic threshold!

* Experiment: SIS over a generated Scale Free
network (exponent -3).
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The vanishing threshold

* Percentage of infected of degree k:

x, (1) =i,(1+ck(e"™ -1))
R
B((k*)-(6))
e Larger degree nodes are infected with higher
probability
* In scale-free networks with 2<y<3 <k?>
diverges as N->oo, so the epidemic spreads

very fast
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Following result on Immunization

e Random network can be immunized with
some sort of uniform immunization process
[oblivious of the characteristics of nodes].

* This does not work in SF networks no matter
how many nodes are immunized [unless it is

all of them].
* Targeted immunization needs to be applied

— Keeping into account degree!
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Immunization on SF Networks &

e Red=SF Uniform Immunization

e Black= Random

Targeted Immunization

\

Uniform and
Targeted -
Immunization
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Local Immunization

* Global knowledge on the network structure is
rarely (or never) available

* Local immunization strategy:
— Select g nodes at random
— Ask to each of them to pass over the vaccine to
one of their neighbors
— As a result, a node with degree k is immunized
with a probability kP(k) (hubs are immunized with
higher probability!)
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SIRS Model

* SIR but after some time an R node can
become susceptible again.
A number of epidemics spread in this manner

(remaining latent for a while and having
bursts).

Susceptible Refractory

(S) (R)
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Application of SIRS to
Small World Models

Reqular Small-world

p= 0 ) P= 1
Increasing randomnsas
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Numerical Results

e cisthe rewiring probability
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Summary

* Epidemics are very complex processes.

* Existing models have been increasingly
capable of capturing their essence.

* However there are still a number of open
issues related to the modelling of real disease
spreading or information dissemination.

ELE UNIVERSITY OF
¥V CAMBRIDGE



References

* Chapter 21

e Pastor-Satorras, R. and Vespignani, A. Epidemic
Spreading in Scale-Free Networks. Phys. Rev. Lett.
(86), n.14. Pages = 3200--3203. 2001.

* Pastor-Satorras, R. and Vespignani, A.

mmunization of Complex Networks. Physical

Review E 65. 2002.

 Marcelo Kuperman and Guillermo Abramson.
Small world effect in an epidemiological model.
Physical Review Letters, 86(13):2909-2912,
March 2001.

ELE UNIVERSITY OF
¥V CAMBRIDGE



