

Social and Technological Network Analysis

Lecture 3: Centrality Measures and Community Detection

Dr. Cecilia Mascolo (some material from Lada Adamic's course lectures)

In This Lecture

- We will introduce the concept of centrality and the various measures which have been associated to this concept.
- We will use centrality (betweenness) to isolate communities.

Centrality

- Finding out which is the most central node is important:
 - It could help disseminating information in the network faster
 - It could help stopping epidemics
 - It could help protecting the network from breaking

Centrality: visually

Centrality can have various meanings:

Degree Centrality

When is the number of connections the best centrality measure?

- o people who will do favors for you
- o people you can talk to / have a beer with

Normalization

• Divide for the max number of nodes (N-1)

Freeman's Network Centrality

- How do we calculate the value of centrality of the network
 - To check how much variation there is among the nodes (heterogeneity?)

Max value of Degree Centrality in the Network

Max value of the above: when network is a star: 1 node has C=N-1 and all others (N-1) have 1.

$$C_D = \frac{\sum_{i=1}^{6} \left[C_D(n^*) - C_D(i) \right]}{\left[(N-1)(N-2) \right]}$$

Freeman's Network Centrality

$$C_D = 0.167$$

$$C_D = 0.167$$

Examples: Financial Networks

When is Degree Centrality not so good?

When is Degree Centrality not so good (2)?

- Ability to broker between groups
- Likelihood that information originating anywhere in the network reaches you...

Betweenness Centrality

- intuition: how many pairs of individuals would have to go through you in order to reach one another in the minimum number of hops?
- who has higher betweenness, X or Y?

Betweenness (Formally)

$$C_B(i) = \sum_{j < k} g_{jk}(i) / g_{jk}$$

Where g_{jk} (i)= the number of shortest paths connecting jk passing through i

 g_{ik} = total number of shortest paths

Usually normalized by:

$$C'_B(i) = C_B(i)/[(n-1)(n-2)/2]$$

number of pairs of vertices excluding the vertex itself

Betweenness: Example

- A lies between no two other vertices
- B lies between A and 3 other vertices: C, D, and E
- C lies between 4 pairs of vertices (A,D),(A,E), (B,D),(B,E)
- note that there are no alternate paths for these pairs to take, so C gets full credit

Closeness Centrality

- What if it is not so important to have many direct friends?
- Or be "between" others
- But one still wants to be in the "middle" of things, not too far from the center

Closeness Centrality (Formally)

 Closeness is based on the length of the average shortest path between a vertex and all vertices in the graph

$$C_c(i) = \left[\sum_{j=1}^{N} d(i,j)\right]^{-1}$$

$$C_C'(i) = (C_C(i))/(N-1)$$

Closeness: Example

$$C'_{c}(A) = \left[\frac{\sum_{j=1}^{N} d(A,j)}{N-1}\right]^{-1} = \left[\frac{1+2+3+4}{4}\right]^{-1} = \left[\frac{10}{4}\right]^{-1} = 0.4$$

Examples

Example: Facebook (Adamic)

Other measures

- The influence of a node is another measure of centrality: information centrality.
- Betweenness counts the number of shortest paths, but one could count the number of paths (Katz Centrality).

Communities

- Weak ties (Lecture 2) seemed to bridge groups of tightly coupled nodes (communities)
- How do we find these communities?

What is a Community?

Why do we want to find partitions/communities?

- Clustering web clients with similar interest or geographically near can improve performance
- Customers with similar interests could be clustered to help recommendation systems
- Clusters in large graphs can be used to create data structures to efficient storage of graph data to handle queries or path searches
- Detect artificial improvements of PageRank
- Study the relationship/mediation among nodes
 - Hierarchical organization study

Example

Zachary's Karate club: 34 members of a club

over 3 years. Edges: interaction outside the club

WWW: pages and hyperlinks Identification of clusters can improve pageranking

Remove weak ties

- Local bridges connect weakly interacting parts of the network
- What if we have many bridges: which do we remove first? Or there might be no bridges.
- Note: Without those bridges paths between nodes would be longer

Edge Betweenness

 Edge Betweenness: the number of shortest paths between pairs of nodes that run along the edge.

Algorithm of Girvan-Newmann (PNAS 2002)

- Calculate the betweenness of all edges
- Cut the edge with highest betweenness
- Recalculate edge betweenness

How is the betweenness computed?

- Calculate the shortest paths from node A
 - BFS search from A.
 - Determine number of shortest paths from A to each node.

Calculating number of shortest paths

Calculating flows

When we get to a node X in the breadth-first search structure, working up from the bottom, we add up all the flow arriving from edges directly below X, plus 1 for the flow destined for X itself. We then divide this up over the edges leading upward from X, in proportion to the number of shortest paths coming through each.

Calculating Edge Betweenness

- Build one of these graphs for each node in the graph
- Sum the values on the edges on each graph to obtain the edge betweenness

Community Detection

- How do we know when to stop?
- When X communities have been detected?
- When the level of cohesion inside a community has reached Y?
- There is no prescriptive way for every case
- There are also many other ways of detecting communities

Summary

- We have described various measures of centrality.
- We have shown how betweenness can be used to isolate communities.

References

- Kleinberg's book: Chapter 3.
- Ack: L. Adamic's slides
- M. Newmann. **Networks**. Oxford University Press. April 2010.
- Community structure in social and biological networks Michelle Girvan and Mark E. J. Newman. Proc. Natl. Acad. Sci. USA, 99(12): 7821–7826, June 2002.

