

Social and Technological Network Analysis

Lecture 5: Web Search and Random Walks

Dr. Cecilia Mascolo

In This Lecture

- We describe the concept of search in a network.
- We describe powerful techniques to enhance these searches.

Search

- When searching "Computer Laboratory" on Google the first link is for the department's page.
- How does Google know this is the best answer?
 - Information retrieval problem: synonyms (jump/leap), polysemy (Leopard), etc
 - Now with the web: diversity in authoring introduces issues of common criteria for ranking documents
 - The web offers abundance of information: whom do we trust as source?
- Still one issue: static content versus real time
 - World trade center query on 11/9/01
 - Twitter helps solving these issues these days

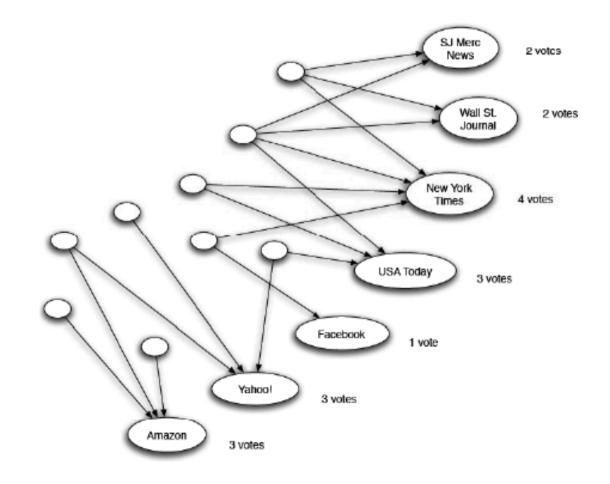
Automate the Search

- We could collect a large sample of pages relevant to "computer laboratory" and collect their votes through their links.
- The pages receiving more in-links are ranked first.
- But if we use **the network structure** more deeply we can improve results.

Example: Query "newspaper" Authorities

- Links are seen as votes.
- Authorities

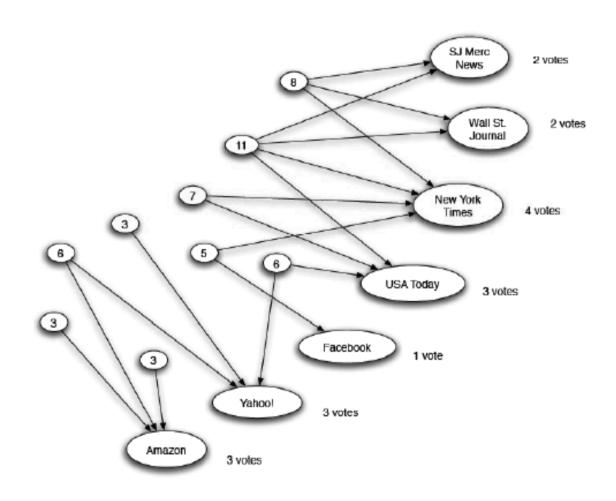
 are
 established:
 the highly
 endorsed
 pages



A Refinement: Hubs

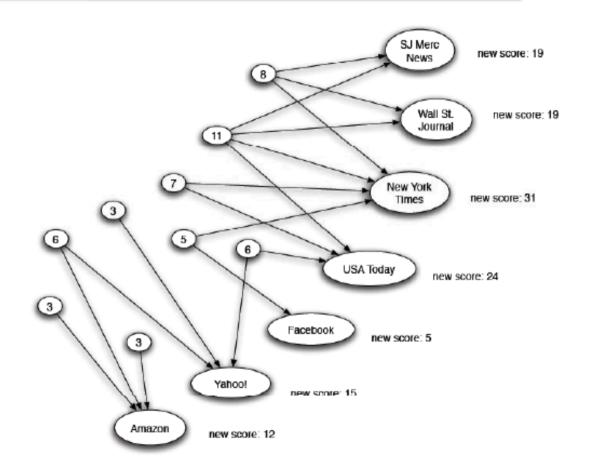
- Numbers

 are reported
 back on the
 source page
 and
 aggregate.
- Hubs are high value lists



Principle of Repeated Improvement

- And we are now reweighting the authorities
- When do we stop?



Repeating and Normalizing

- The process can be repeated
- Normalization:
 - Each authority score is divided by the sum of all authority scores
 - Each hub score is divided by the sum of all hub scores

More Formally: does the process converge?

- Each page has an authority a_i and a hub h_i score
- Initially $a_i = h_i = 1$

• At each step
$$a_i = \sum_{j \to i} h_j$$

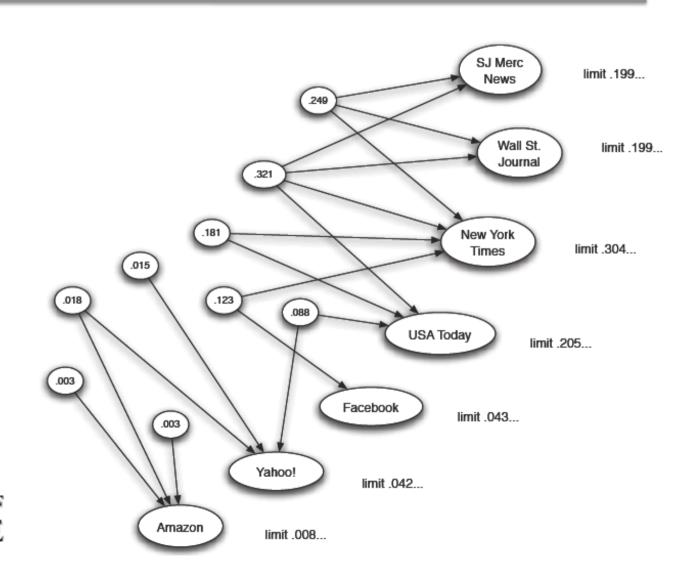
$$h_j = \sum_{j \to i} a_i$$

Normalize

$$\sum_{j\to i} a_i = 1$$

$$\sum h_j = 1$$

The process converges



- Graph seen as matrix M_{ii} [where m_{ii}=1 if i->j]
- Vectors a=(a1,a2..an), h=(h1,h2,..hn)

$$h_i = \sum_{i \to j} a_j \Leftrightarrow h_i = \sum_j M_{ij} a_j$$

• So h=Ma and $a=M^Th$

Algorithm

- Initially a=h=1ⁿ
- Step
 - h=Ma, $a=M^Th$
 - Normalize
- Then $a=M^T(Ma)=(M^TM)a$
- And $h=M(M^Th)=(MM^T)h$
- In 2k steps $a=(M^TM)^ka$ and $h=(MM^T)^kh$

Eigenvalues and eigenvectors

- Definition:
- Let $Ax=\lambda x$ for scalar λ , vector x and matrix A
- Then x is an eigenvector and λ is its eigenvalue
- If A is symmetric ($A^T=A$) then A has n orthogonal unit eigenvectors w_1 , ... w_n that form a basis (ie linear independent) with eigenvalues λ_1 ,... λ_n ($|\lambda_i| \le |\lambda_{i+1}|$)
 - Tip: M^TM and MM^T are symmetric

So...

- Given the linear independence of the w_i we can write $x=\Sigma p_i w_i$
- And x has coordinates [p1.. pn]
- If λ1,...λn (|λi|≤|λi+1|) then
- $A^k x = (\lambda_1^k p_1 w_1 + \lambda_2^k p_2 w_2, \dots + \lambda_n^k p_n w_n) = \sum_i \lambda_i^k p_i w_i$
- Let's divide by λ_1^k $A^k x/\lambda_1^k = \lambda_1^k p_1 w_{1/} \lambda_1^k + \lambda_2^k p_2 w_{2/} \lambda_1^k \dots + \lambda_n^k p_n w_{n/} \lambda_1^k$
- When k-> ∞ , A^kx/λ_1^k -> p_1w_1

Convergence

- $(M^TM)^k$ a and $(MM^T)^k$ h
- So for k->∞ these sequences converge

PageRank

- We have seen hubs and authorities
 - Hubs can "collect" links to important authorities
 who do not point to each others
 - There are other models: better for the web,
 where one prominent can endorse another.
- The PageRank model is based on transferrable importance.

PageRank Concepts

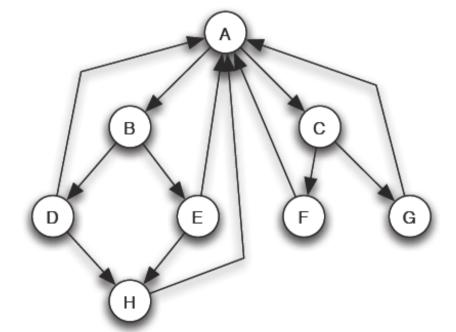
- Pages pass endorsements on outgoing links as fractions which depend on out-degree
- Initial PageRank value of each node in a network of n nodes: 1/n.
- Choose a number of steps k.
- [Basic] Update rule: each page divides its pagerank equally over the outgoing links and passes an equal share to the pointed pages. Each page's new rank is the sum of received pageranks.

Example

All pages start with PageRank= 1/8

Ste	ep	A	В	С	D	Е	F	G	Н
1		1/2	1/16	1/16	1/16	1/16	1/16	1/16	1/8
2		3/16	1/4	1/4	1/32	1/32	1/32	1/32	1/16

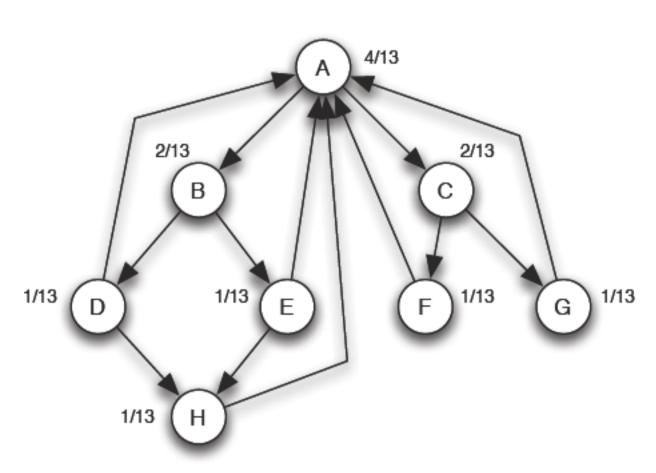
A becomes important and B,C benefit too at step 2



Convergence

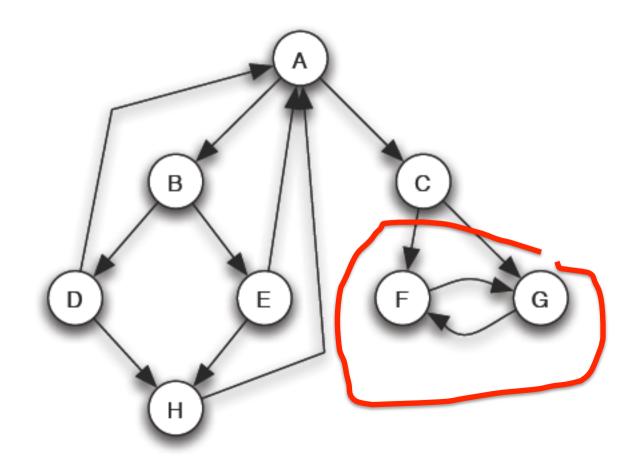
- Except for some special cases, PageRank values of all nodes converge to limiting values when the number of steps goes to infinity.
- The convergence case is one where the PageRank of each page does not change anymore, i.e., they regenerate themselves.

Example of Equilibrium



Problems with the basic PageRank Dead ends

F,G converge to ½ and all the other nodes to 0



Solution: The REAL PageRank

• [Scaled] Update Rule:

- Apply basic update rule. Then, scale down all values by scaling factor s [chosen between 0 and 1].
- [Total network PageRank value changes from 1 to s]
- Divide 1-s residual units of PageRank equally over all nodes: (1-s)/n each.
- It can be proven that values converge again.
- Scaling factor usually chosen between 0.8 and 0.9

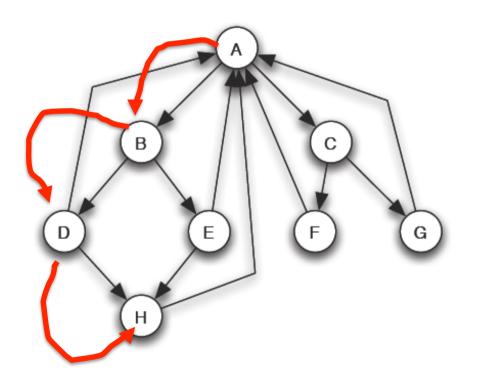
Search Ranking is very important to business

- A change in results in the search pages might mean loss of business
 - I.e., not appearing on first page.
- Ranking algorithms are kept very secret and changed continuously.

Examples of Google Bombs

Random Walks

 Starting from a node, follow one outgoing link with random probability



PageRank as Random Walk

- The probability of being at a page X after k steps of a random walk is precisely the PageRank of X after k applications of the Basic PageRank Update Rule
- Scaled Update Rule equivalent: follow a random outgoing link with probability s while with probability 1-s jump to a random node in the network.

References

• Chapter 14

