
Network Architectures 
Sensor Networks 

Lecture 1: 
Sensor Networks and MAC Layer"

Dr. Cecilia Mascolo"

About Me"
•  Reader in Mobile Systems "

–  NetOS Research Group"
•  Lecturer on Social and Technological Networks Analysis"

•  Research on Mobile, Social and Sensor Systems"
•  More specifically,"

–  Human Mobility and Social Network modelling"
–  Opportunistic Mobile Networks"
–  Mobile Sensor Systems and Networks"

In This Lecture"

•  Discussion on sensor network systems through an example"

•  Issues related to energy trade offs, reprogramming and routing"

•  Principles of sensor operating systems"

•  Discussion of possible MAC layer solutions"

Sensors and Sensor Networks"

A sensor is a device which allows “sensing” of the environment. It is
usually small and resource constrained. "

A sensor network is composed of a large number of sensor nodes,
which are deployed either inside the phenomenon or very close to it. "

•  Sometimes Random deployment"
•  Cooperative capabilities"

5	

Sensor Systems  
vs Standard or Mobile Systems"

•  Sensor nodes are limited in power, computational capacities and
memory."

•  Sensor nodes are prone to failures (especially because they are often
deployed in challenging conditions)"

•  The topology of a sensor network might not change frequently:"
–  Many deployments involve sensors with fixed location"
–  Some deployments may have mobile sensors"

Example applications"
•  Micro-sensors, on-board

processing, wireless
interfaces feasible at very
small scale--can monitor
phenomena “up close” 

•  Enables spatially and
temporally dense
environmental monitoring!

 Embedded Networked
Sensing will reveal
previously
unobservable
phenomena!

Seismic	
 Structure	

response	

Contaminant	
 Transport	

Marine	
 Microorganisms	
 Ecosystems,	

Biocomplexity	

Experimental Platform"
•  Standards Based"

–  USB"
–  Radio:"

•  IEEE 802.15.4 (CC2420 radio)"
•  Zigbee: Ultralow power"

•  8-bit microprocessor, 4MHz CPU"
–  ATMEGA 128, ATMEL 8535, or Motorola HCS08"

•  ~4Kb RAM "
–  holds run-time state (values of the variables) of the program"

•  ~128Kb programmable Flash memory"
–  holds the application program"
–  Downloaded via a programmer-board or wirelessly"

•  Additional Flash memory storage space"

Wireless Sensor Networks  
for Habitat Monitoring"

A.  Mainwaring, J. Polastre, R. Szewczyk, D. Culler, J.
Anderson!

First ACM International Workshop on Wireless Sensor
Networks and Applications, WSNA 2002, Atlanta,

Georgia, USA, September 28, 2002!

•  How much can they vary?"

•  What are the occupancy patterns during incubation?"

•  What environmental changes occur in  
the burrows and their surroundings during 
the breeding season?"

•  What environmental factors make for a good nest?"

Mo%va%on	

Current Observation Techniques"

•  Prolonged Observation"
•  Adding colours to food"
•  Counting on aerial pictures"

•  More advanced:"
•  Cameras [usually watching what happens on the video for hours]"
•  VHF tracking"

VHF tracking"

VHF	
 =	
 Very	
 High	
 Frequency	
 radio	

Data	
 =	
 bearing	

Motivation"

Solution"
•  Deployment of a sensor network"

•  The impact of human presence can distort results by changing
behavioral patterns and destroy sensitive populations"

•  Repeated disturbance will lead to  
abandonment of the colony"

Problems"
•  Seabird colonies are very sensitive to disturbances"

Great	
 Duck	
 Island	
 Project	

GDI Sensor Network"
Patch	
 	

Network	

Gateway	

(low	
 power)	

Base-­‐Remote	
 Link	

Data	
 Service	

Internet	

Client	
 Data	
 Browsing	

and	
 Processing	

Transit	
 Network	

Base-­‐sta%on	

(house-­‐hold	
 power)	

Sensor	
 Patch	

Sensor	
 Node	

(µpower)	

Mica	
 Sensor	
 Node	

Left: Mica II sensor node
2.0x1.5x0.5 cu. In."

Right: weather board with
temperature, thermopile (passive
IR), humidity, light, accelerometer
sensors, connected to Mica II
node"

•  Single channel, 916 Mhz radio
for bi-directional radio
@40kbps"

•  4MHz micro-controller"
•  512KB flash +4KB RAM"
•  2 AA batteries (~2.5Ah)"
•  Sensors are pre-calibrated

(±1-3%) and interchangeable"

Sensor Node Power"
•  Limited Resource (2 AA batteries)"
•  Estimated supply of 2200 mAh at 3 volts"
•  Each node has 8.128 mAh per day (9 months)"
•  Processor draws apx 5 mA => can run at most 1.4 hours/day"
•  Nodes near the gateway will do more forwarding"

Power Management"

hours (Ah). However we can neither use every drop of en-
ergy in the batteries nor are the batteries manufactured with
identical capacities from batch to batch or from manufac-
turer to manufacturer. We make a conservative estimate
that the batteries will be able to supply 2200 mAh at 3 volts.

Assuming the system will operate uniformly over the de-
ployment period, each node has 8.148 mAh per day available
for use. The application chooses how to allocate this energy
budget between sleep modes, sensing, local calculations and
communications. We note that since different nodes in the
network have different functions, they also may have very
different power requirements. For example, nodes near the
gateway may need to forward all messages from a patch,
whereas a node in a nest may need to merely report its own
readings. In any network, there will be some set of power
limited nodes; when these nodes exhaust their supplies, the
network is disconnected and inoperable. Consequently, we
need to budget our power with respect to the energy bottle-
neck of the network. To form an estimate of what is possible
on a Mica mote with a pair of AA batteries, we tabulated
the costs of various basic operations in Table 2.

Operation nAh

Transmitting a packet 20.000
Receiving a packet 8.000
Radio listening for 1 millisecond 1.250
Operating sensor for 1 sample (analog) 1.080
Operating sensor for 1 sample (digital) 0.347
Reading a sample from the ADC 0.011
Flash Read Data 1.111
Flash Write/Erase Data 83.333

Table 2: Power required by various Mica operations.

The baseline life time of the node is determined by the cur-
rent draw in the sleep state. Minimizing power in sleep mode
involves turning off the sensors, the radio, and putting the
processor into a deep sleep mode. Additionally, I/O pins on
the microcontroller need to be put in a pull-up state when-
ever possible, as they can contribute as much as 100 µA of
leakage current. Mica architecture uses a DC booster to pro-
vide stable voltage from degrading alkaline batteries. With
no load, the booster draws between 200 and 300 µA, depend-
ing on the battery voltage. While this functionality is crucial
for predictable sensor readings and communications, it is not
needed in the sleep mode. Furthermore, the current draw
of the microprocessor is proportional to the supply voltage.
We modified Mica motes with a Schottky diode, which al-
lows us to reliably bypass the DC booster while reducing
the supply voltage in sleep modes. The modification allows
us to achieve between 30 and 50 µA current draw (battery
dependent), which reduces the energy available for tasks to
6.9 mAh per day.

4.4 Sensor Deployment
We deployed a wireless sensor network using Mica motes

with Mica Weather Boards in July 2002. The network con-
tains all elements of the architecture described in Section 3.

To withstand the variable weather conditions on GDI, we
designed environmental protective packaging that minimally
obstruct sensing functionality. Mica motes by their design
are fairly robust mechanically, with the battery case firmly
integrated with the main processing and sensor boards, and

Figure 3: Acrylic enclosure used for deploying the

Mica mote.

mounting holes for securing the sensor boards. To provide
weather-proofing, we coat the entire sensor package with a
10 micron parylene sealant, which protects exposed electri-
cal contacts from water. The sensors remain exposed to
protect their sensitivity. Each coated node is then enclosed
in a transparent acrylic enclosure. The enclosure is venti-
lated to not distort the sensor readings; its primary func-
tion is to provide additional protection against mechanical
failures and to raise the sensor off the ground. Acrylic pack-
aging was chosen because it is infrared and radio frequency
transparent, which won’t obstruct sensor readings or wire-
less communication.

The acrylic enclosure shown in Figure 3 is used for de-
ploying nodes above the ground on Great Duck Island. The
size of the Mica mote itself was almost too large to fit in pe-
trel burrows; therefore we placed the parylene sealed motes
into the burrows without enclosures. Not using the enclo-
sure is less robust; we’ve noticed expansion and contraction
of connectors over the course of four weeks leading to faulty
electrical connections. We advocate the future use of sol-
dered connections to solve this problem.

4.5 Patch Gateways
Using different gateway nodes directly affects the underly-

ing transit network available. We implemented two designs:
an 802.11b single hop with an embedded linux system and
a single hop mote-to-mote network.

Initially, we chose CerfCube [1], a small, StrongArm-based
embedded system, to act as the sensor patch gateway. Each
gateway is equipped with a CompactFlash 802.11b adapter.
Porting functionality to CerfCubes is fairly easy; they run
an embedded version of Linux operating system. Perma-
nent storage is plentiful – the gateway can use the IBM
MicroDrive which provides up to 1 GB of storage. Sup-
plying adequate power for this device is a challenge, with-
out power management features this device consumes about
2.5W (two orders of magnitude more than the motes). To
satisfy the CerfCube power requirements, we considered a
solar panel providing between 60 and 120 Watts in full sun-
light connected to a rechargeable battery with capacity be-
tween 50 and 100 Watt-hours (e.g., sealed lead-acid). Re-
searchers from Intel Research and JPL have demonstrated
delay-tolerant networking using CerfCubes and motes [10]

Data Sampling"
•  Compression on the data is used "

–  Distributed aggregation can be used to only send a portion of the
data (min/max temp value)"

–  Coding techniques (Huffman coding)"
•  Energy needed for sampling is allocated and the rest of the energy

is considered for communication and network management"

Routing"
•  Sensors transmit multihop to gateway which is an always on node"
•  Determine initial routing tree and assign a “level” to each sensor"
•  Nodes at same level communicate at same time and “wake up time”

moves as a wave through the tree."
•  [alternatively wake up sub-trees instead of levels]"
•  Schedule is fixed and not reconfigurable. Power is wasted when

certain paths are not very productive."
•  For more reconfigurable/efficient schedule use low power MAC

protocol [see later slides]"

Network Re-tasking"
•  Initially collect absolute temperature readings"

•  After initial interpretation, could be realized that information of
interest is contained in significant temperature changes"

•  3 ways of retasking"
•  Parameter changes through network management/monitoring"
•  Virtual machine retasking [only small functions]"
•  Full retasking of native code [more expensive but more efficient

than VM code]"

Sensed Data: Occupancy of Burrow"

Data from GDI during 19-day period from 7/18-8/5/2002. Show
difference between ambient temperature and the object in the
thermopile’s field of view. It indicates that the petrel left on 7/21, return
on 7/23, and between 7/30 and 8/1

Health and Status  
Monitoring"

•  Monitor the moteʼs health and the health of neighbouring motes"
•  Sensor duty cycle can be dynamically adjusted to alter lifetime"
•  Periodically include battery voltage level with sensor readings

(0~3.3volts)"
•  Can be used to infer the validity of the moteʼs sensor readings"

Conclusions"

Seminal paper (2002)"
Applied wireless sensor networks to real-world habitat monitoring"
•  Two small scale sensor networks deployed at 

Great Duck Island and James Reserve (one patch each)"
•  Not extensive validation and evaluation of results"

•  Very high level paper "
•  Gives an idea of problems faced by these deployments"
•  Lots of discussion of what could be applied: not clear what has

been…"

What Operating System  
runs on a sensor?"

•  Operating system useful to simplify programming tasks and to allow
more control over operations of the system "

•  But what can we do with such a constrained device?"

•  Given the kind of applications needed it is important to support
concurrency…[frequent and parallel collection from different sensors]"

•  If you want to read about a more recent deployment paper:"

"Evolution and Sustainability of a Wildlife Monitoring Sensor Network.
Vladimir Dyo, Stephen A. Ellwood, David W. Macdonald, Andrew
Markham, Cecilia Mascolo, Bence Pasztor, Salvatore Scellato, Niki
Trigoni, Ricklef Wohlers, Kharsim Yousef. In Proceedings of the 8th
ACM Conference on Embedded Networked Sensor Systems (Sensys
2010). Zurich, Switzerland. November 2010. !

Main issue: How to support
concurrency"

•  Simplest option: No concurrency, sequential
processing of tasks"
–  Not satisfactory: Risk of missing data

(e.g., from transceiver) when processing
data, etc."

 ! Interrupts/asynchronous operation has to
be supported "

•  Why concurrency is needed"
–  Sensor nodeʼs CPU has to service the

radio modem, the actual sensors, perform
computation for application, execute
communication protocol software, etc."

Poll	
 sensor	

Process	
 	

sensor	
 	

data	

Poll	
 transceiver	

Process	
 received	
 	

packet	
 	

Traditional concurrency:
Processes"

•  Traditional OS: processes/threads"
–  Based on interrupts, context

switching"
–  But: memory overhead, execution

overhead "
•  concurrency mismatch"

–  One process per protocol entails
too many context switches"

–  Many tasks in WSN small with
respect to context switching
overhead"

Handle	
 sensor	
 	

process	

Handle	
 packet	
 	

process	

OS-­‐mediated	

process	
 switching	

Event-based concurrency"
•  Alternative: Switch to event-based programming model"

–  Perform regular processing or be idle"
–  React to events when they happen immediately"
–  Basically: interrupt handler"

•  Problem: must not remain in interrupt handler too long"
–  Danger of losing events"
–  Only save data, post information that event has happened, then return"
 ! Run-to-completion principle"
–  Two contexts: one for handlers, one for regular execution"

I	
 d	
 l	
 e	
 /	
 R	
 e	
 g	
 u	
 l	
 a	
 r	

p	
 r	
 o	
 c	
 e	
 s	
 s	
 i	
 n	
 g	

R	
 a	
 d	
 i	
 o	

e	
 v	
 e	
 n	
 t	

R	
 a	
 d	
 i	
 o	
 e	
 v	
 e	
 n	
 t	
 h	
 a	
 n	
 d	
 l	
 e	
 r	

S	
 e	
 n	
 s	
 o	
 r	

e	
 v	
 e	
 n	
 t	

S	
 e	
 n	
 s	
 o	
 r	
 e	
 v	
 e	
 n	
 t	

h	
 a	
 n	
 d	
 l	
 e	
 r	

TinyOS: Tasks and Command/
Event Handlers"

•  TinyOS: an OS for sensor networks"
•  Event handlers must run to completion"

–  Must not wait an indeterminate amount of time"
–  Only a request to perform some action"

•  Tasks, on the other hand, can perform arbitrary, long computation"
–  Also have to be run to completion"
–  But can be interrupted by handlers"
 ! No need for stack management, tasks are atomic with respect to

each other"

Energy Management"
•  We have seen that processing is not the greatest source of energy

consumption"
•  Communication is the main source of energy consumption"
•  The paper used a static assignment of sleep and awake times"
•  More advanced protocols have been proposed which allow dynamic

assignment but also allow to adapt to current traffic load"

Sensor-MAC (S-MAC)"
•  idle listening is particularly unsuitable if average data rate is low"

–  Most of the time, nothing happens"
•  Idea: Switch nodes off, ensure that neighboring nodes turn on

simultaneously to allow packet exchange (rendez-vous)"

–  Only in these active periods,
packet exchanges happen"

–  Need to also exchange
wakeup schedule between
neighbors"

–  When awake, essentially
perform RTS/CTS"

•  Use SYNCH, RTS, CTS
phases"

S-MAC"
•  SYNC phase divided into time slots using CSMA and backoff to

send schedule to neighbours"
•  Y chooses a slot and if no signal was received before it will start

to transmit its schedule to X otherwise wait for next wake up of X"
•  RTS phase: X listens for RTS packets (CSMA contention)"
•  CTS phase: X sends one and extends its wake up time "

S-MAC synchronized islands"
•  Nodes try to pick up schedule synchronization from neighboring

nodes"
•  If no neighbor found, nodes pick some schedule to start with "
•  If additional nodes join, some node might learn about two different

schedules from different nodes"
–  “Synchronized islands”"

•  To bridge this gap, it has to follow both schemes and use more
energy"

Ad	
 hoc	
 &	
 sensor	
 networs	
 -­‐	
 Ch	
 5:	
 MAC	
 protocols	

Preamble Sampling"
•  So far: Periodic sleeping supported by some means to synchronize

wake up of nodes to ensure rendez-vous between sender and
receiver"

•  Alternative option: Donʼt try to explicitly synchronize nodes"
–  Have receiver sleep and only periodically sample the channel"

•  Use long preambles to ensure that receiver stays awake to catch
actual packet. Example: WiseMAC:"

Check	
 	

channel	

Check	
 	

channel	

Check	
 	

channel	

Check	
 	

channel	

Start	
 transmission:	

Long	
 preamble	
 Actual	
 packet	

Stay	
 awake!	

Low-Energy Adaptive Clustering
Hierarchy (LEACH)"

•  Given: dense network of nodes, reporting to a central sink,
each node can reach sink directly"

•  Idea: Group nodes into “clusters”, controlled by clusterhead"
–  Setup phase; details: later"
–  About 5% of nodes become clusterhead (depends on scenario)"
–  Role of clusterhead is rotated to share the burden"
–  Clusterheads advertise themselves, ordinary nodes join CH with

strongest signal "
–  Clusterheads organize "

•  CDMA code for all member transmissions"
•  TDMA schedule to be used within a cluster"

•  In steady state operation"
–  CHs collect & aggregate data from all cluster members"
–  Report aggregated data to sink using CSMA"

LEACH rounds "

References"
•  Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., and Anderson, J. 2002. Wireless

sensor networks for habitat monitoring. In Proceedings of the 1st ACM international
Workshop on Wireless Sensor Networks and Applications (Atlanta, Georgia, USA,
September 28 - 28, 2002). WSNA '02. ACM, New York, NY, 88-97."

•  TinyOS tutorial: http://www.tinyos.net/tinyos-1.x/doc/tutorial/"
•  SMAC: Ye, W., Heidemann, J., and Estrin, D. 2004. Medium access control with

coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Trans. Netw.
12, 3 (Jun. 2004), 493-506."

•  WISEMAC: El-Hoiydi, A. and Decotignie, J. 2004. WiseMAC: an ultra low power MAC
protocol for the downlink of infrastructure wireless sensor networks. In Proceedings of
the Ninth international Symposium on Computers and Communications 2004 Volume 2
(Iscc"04) - Volume 02 (June 28 - July 01, 2004). ISCC. IEEE Computer Society,
Washington, DC, 244-251. "

•  LEACH: Wendi Heinzelman, Anantha Chandrakasan, and Hari Balakrishnan, Energy-
Efficient Communication Protocols for Wireless Microsensor Networks, Proc. Hawaaian
Int'l Conf. on Systems Science, January 2000."

