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Spatial properties of online social services:

measurement, analysis and applications

Salvatore Scellato

Summary

Online social networking services entice millions of users to spend hours every day

interacting with each other. At the same time, thanks to the widespread and growing

popularity of mobile devices equipped with location-sensing technology, users are

now increasingly sharing details about their geographic location and about the places

they visit. This adds a crucial spatial and geographic dimension to online social

services, bridging the gap between the online world and physical presence.

These observations motivate the work in this dissertation: our thesis is that the

spatial properties of online social networking services offer important insights about

users’ social behaviour. This thesis is supported by a set of results related to the

measurement and the analysis of such spatial properties.

First, we present a comparative study of three online social services: we find that

geographic distance constrains social connections, although users exhibit heteroge-

neous spatial properties. Furthermore, we demonstrate that by considering only

social or only spatial factors it is not possible to reproduce the observed properties.

Therefore, we investigate how these factors are jointly influencing the evolution of

online social services. The resulting observations are then incorporated in a new

model of network growth which is able to reproduce the properties of real systems.

Then, we outline two case studies where we exploit our findings in real application

scenarios. The first concerns building a link prediction system to find pairs of users

likely to connect on online social services. Even though spatial proximity fosters the

creation of social ties, the computational challenge is accurately and efficiently to

discern when being close in space results in a new social connection. We address this

problem with a system that uses, alongside other information, features based on the

places that users visit. The second example presents a method to extract geographic

information about users sharing online videos to understand whether such videos

are going to become locally or globally popular. This information is then harnessed

to build caching policies that consider which items should be prioritised in memory,

thus improving performance of content delivery networks.

We summarise our findings with a discussion about the implications of our results,

debating potential future research trends and practical applications.
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The First Law of Geography is: everything is related

to everything else, but near things are more related

than distant things.

Waldo R. Tobler

1
Introduction

The popularity of online social networking services has grown at an extraordinary

pace over the last years, dramatically altering how hundreds of millions of users

spend their time. The numbers are overwhelming: to date, Facebook has more than

900 million active users, with half of them using the service on a daily basis, while

Twitter has more than 350 million users; YouTube and LinkedIn have similarly large

user bases, while dozens of smaller services boast millions of active users.

The importance of online social networks is growing in parallel with their popular-

ity: as users spend more and more time socialising online, service providers can offer

sophisticated features such as targeted advertising, personalised recommendations

and content delivery. As a result, it becomes of crucial significance to study and

understand the online behaviour of such users and the characteristics of the social

connections that bind them. Also, the need to design and build systems and ap-

plications that revolve around online social connections has sparked research into

understanding the structure of online ties among users.

These attempts have often adopted methods of complex network [RB02, BLM+06]

and social network analysis [WF94], combining them with algorithmic techniques

drawn from computer science to manage massive social graphs. Thanks to the

availability of large-scale data about online social interactions, it is now possible to

make sense of billions of friendship connections and to infer notable patterns and

useful properties.

Some seminal works have characterised the structure of these online social net-
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CHAPTER 1. INTRODUCTION

works, finding common properties which appear across different social services.

For instance, heavy-tailed degree distributions, where a non-negligible fraction of

users have many social connections, and the presence of locally dense social com-

munities appear as the most significant traits of many different online social net-

works [MMG+07, AHK+07]. Other work has focussed on studying the evolution

of online social networks over time, trying to reproduce their observed properties

with generative models that are inspired by mechanisms purportedly driving user

behaviour [KNT06, LBKT08].

In general, studying online social networks has allowed researchers to extend the

scope of traditional social network analysis, scaling up to millions of individuals

and billions of social links. The combination of large-scale data analysis, insights

provided by sociological theories and problems arising from system engineering has

resulted in a plethora of applications and systems that mine online social interac-

tions to provide suggestions, offer recommendations and filter information. This

has impacted the Web in an unprecedented way, as these features are profoundly

different from the predominantly static content, lacking any personalisation, that

was available to users only a decade ago.

In fact, insights into the properties of online social services can be exploited to

design novel applications that provide recommendations about items [Gol08], answer

Web search queries [EC08, HK10] and reduce spam [GKF+06], among many other

examples. Information related to online social ties can even be used to improve

existing distributed systems and applications: for instance, by taking into account

how people use online social services to share and consume content items, it becomes

possible to optimise delivery and storage of online content [THT+12].

More recently, the widespread adoption of powerful mobile devices has led to a dra-

matic change in the way the Web is accessed. In particular, every day hundreds of

millions of individuals use a smartphone to interact online with their friends. The

launch of new operating systems for mobile devices has drastically reshaped which

applications and services are available to end users. Both Google’s Android and

Apple’s iOS, the two most successful smartphone platforms to date, offer applica-

tion stores where developers can publish, and sell, their mobile applications. The

abundance of such applications further stimulates the adoption of mobile devices:

the overall effect is that this field is developing fast and in many directions.

An important related aspect is the increased access to social networking services

through mobile devices: mobile users spend more minutes every day interacting

with social applications than desktop users [Mas10] 1. Simultaneously, mobile Web

access has caused a substantial shift in the feasibility of pervasive and ubiquitous

1As early as in 2010 mobile users were using Facebook on their mobile devices on average for

45 minutes a day, while desktop users only for 32 minutes.
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CHAPTER 1. INTRODUCTION

services.

The deployment of location-based services has been made possible by the location-

sensing capabilities of these devices; they are able to generate location-tagged in-

formation and enable users to share their physical whereabouts. As a result, online

services are increasingly becoming location-aware.

1.1 How geography affects online social network-

ing

The combination of the upsurging popularity of online social networking, especially

on mobile platforms, and the rise of mobile location-based services allows us to

merge together two facets of user behaviour that were previously difficult to connect,

adding a crucial spatial dimension to online social networking services.

For the first time, the wealth of information about online social interactions can

be augmented with geographic information. Online social networks were previously

studied ignoring their spatial properties, as these were not accessible. Now, instead,

users can be considered to be embedded in a data-rich geographic space.

1.1.1 The rise of location-based mobile services

This connection between social and local services has been epitomised by location-

based online social services such as Foursquare2, Brightkite3 and Gowalla4, which

have attracted millions of users in recent years. These services are targeting a mainly

mobile user audience: they are based on the concept of disclosing the presence of the

user at a particular venue, broadcasting such notifications to friends. It is crucial to

stress that not only the geographic location of each user is revealed to these services,

but also a detailed set of additional data related to individual places: for instance,

users could disclose that they are in a stadium, visiting a museum or spending time

in a cafeteria.

At the same time, reviews, tips or other information related to such places can be

generated and shared. Therefore, a vast and detailed user-generated catalogue of

venues is continuously growing within each service, compiled by users themselves

and providing fine-grained data about where people go. Places, with their simulta-

neous online and offline presence, represent a new entity that drives and shapes user

behaviour, bridging the gap between physical location and online activity [CTH+10].

2http://www.foursquare.com
3http://www.brightkite.com
4http://www.gowalla.com
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CHAPTER 1. INTRODUCTION

More generally, all online social services are increasingly becoming location-aware,

allowing users to create and access information about their geographic whereabouts.

The trend is progressively going from specialised providers offering location-as-a-

service to a widespread new concept of location-as-a-feature, where every online

social platform integrates geographic information into their services. For instance,

Facebook recently introduced a new feature allowing every single piece of information

generated on the service, being it a status update, a photo or a notification from a

third-party application, to be tagged with a specific spatial location. Hence, spatial

details related to online social activities become progressively more available and

exploitable.

1.1.2 The effect of geographic space on online social ties

Among the many interesting research questions sparked by the availability of spatial

data on online social services, a fundamental one is whether geographic space affects

social interactions taking place on the Web.

Systems where space and distance constrain connections between networked enti-

ties have been extensively studied, like in transportation networks [KT06], Internet

router connections [YJB02, BGG03], power grids [AAN04] and urban road net-

works [CSLP06]. In general, metric distance directly influences these systems by

imposing higher costs on the connections between distant entities. When there is a

cost associated with link length, the appearance, and the persistence, of longer links

is usually compensated by some other advantage. As an example, long-distance

commercial flights are often directed to well-connected airport hubs.

However, social networks have been largely studied from a purely topological per-

spective, focussing mainly on the structure of the graph. Some sociologists have

studied the effect of geographic distance on social ties before the advent of on-

line social services, with the underlying expectation that most individuals would

try to minimise the efforts to maintain a friendship link by interacting more with

their spatial neighbours. This would be in accordance with the broad “Principle of

Least Effort” theorised and proposed by Zipf to explain multiple facets of human

behaviour [Zip49]. Individuals could be less likely to meet people who live further

away because overcoming distance needs more time or more money, in other words,

more effort.

In fact, as early as 1941 Stewart observed an inverse relationship between distance

and the likelihood of friendship between college students [Ste41]. Similar statistical

regularities have been later observed in new housing developments [FSB63], resi-

dences for the elderly [NL75] and urban interactions [ML76]. Nonetheless, the con-

nection costs imposed by spatial distance may not be important in social systems,
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particularly when focussing on online interactions. The Internet and, in general,

other communication technologies may potentially lessen the costs associated with

social interaction, removing geographic barriers and reducing overhead.

1.1.3 An historical perspective

As McLuhan theorised in 1962 [McL62], years before the inception of the Internet,

the enhanced transmission speed of information given by modern mass media would

turn the world into a “Global Village”. Thirty years later, such a concept became

widely popular thanks to the birth of the Web, which fostered the idea that people

can communicate with ease and simplicity as a single, planetary community.

It is reasonable to say that, thanks to the Web, people now are connected, and keep

in touch, with greater simplicity and proficiency than at any time in the past. As

proposed by Cairncross, spatial distance may finally cease to play a rôle because of

the increasing availability of affordable long-distance travel and cheap communica-

tion channels, resulting in the inevitable “Death of Distance” [Cai01], while other

scholars have similarly discussed the “End of Geography” [TL88]. The implied con-

sequence is that in this new scenario the process of friendship formation might easily

become completely disentangled from spatial distance [Gra98].

Interestingly, similar arguments had been already put forward when other techno-

logical breakthroughs were made. For instance, the introduction of the telegraph in

1844, with an initial 40-mile link between Washington and Baltimore, provided for

the first time the effective separation of communication from transportation, freeing

the transmission of information from the constraints of geography, as discussed by

Carey [Car89]. This idea goes back to Cooley, who wrote in 1894 that “Space –

distance – as an obstacle to communication has so nearly been overcome that it is

hardly worth considering” [Coo94].

Similar considerations can be made about the reactions sparked by the introduction

of the telephone or the radio: common people and academic scholars anticipated a

far-reaching revolution, bound drastically to alter how individuals would communi-

cate with each other. Yet, as it became apparent after each individual innovation,

a new communication technology hardly cancels out or completely replaces existing

systems. Instead, it is easily adopted to maintain and nurture social communication

channels that were already in place: face-to-face contacts and the shared experience

of spatial locality remain dominant across communication media [HW01].

Similar reasoning might apply to social interactions on the Web: they could re-

flect social ties and contacts that develop and exist through other communication

channels, such as face-to-face encounters or phone calls. The effect of distance on

such social ties would then be still important, even if online communication tools
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are widely available. In reality, precisely because of the latest technological changes

in travel and communication, evidence suggests that social groups have become

“glocalised” [WH99], with both extensive short-range links and occasional long-

distance relationships. Even more convincingly, some initial results clearly demon-

strate that online social connections are more likely to appear at shorter geographic

distances [LNNK+05, BSM10].

As the death of distance seems postponed, space and proximity might continue

to play a pivotal rôle on the Web, influencing whom individuals connect to and

how they interact with others. Thanks to the wealth of geographic information

increasingly available, it is possible to understand the effect that space and distance

have on online social services. This is likely to provide a more complete picture of

social interactions on the Web, with important and far-reaching implications. In

addition, as the relative importance of the Web grows, this knowledge might shed

more light on social behaviour in a broader sense.

1.2 Potential implications

Augmenting social structure with geographic information adds a new dimension to

social network analysis and a large number of theoretical investigations and prac-

tical applications can be pursued for online social systems, with many promising

outcomes.

From one point of view, spatial information can help to explain social phenomena

taking place online, such as the creation of friendship ties or the spreading of infor-

mation. Even though the structure and the dynamics of social networks have been

under scrutiny for many years [CFL09, WF94], only a few works have addressed

how geographic distance affects online social ties [LNNK+05, BSM10]. These initial

results still leave untouched issues such as how online users establish new social con-

nections over space and whether their online interactions are affected by distance.

Similarly, users could be characterised by their preference towards global, long-range

interactions rather than towards local, short-distance online ties, in order to classify

their behaviour and profile them.

On the other hand, location-sharing on online services opens possibilities for new

applications and systems. Details about the type of places where individuals go

are increasingly available, providing rich information about user preferences and

choices. Applications such as local search, content recommendation and advertising

would greatly benefit from such geographic information. Search queries about local

content could be targeted to nearby users, while both advertising and recommender

systems could better profile users by knowing how their social ties stretch over space,

thus improving their accuracy. Moreover, information about social links, content
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consumption and geographic location can reveal how tastes and interests disseminate

over an online social service. Some potential applications of these ideas include

targeted advertisement, more effective content spreading (e.g. shop promotions,

local news, job openings) and even local activism and advocacy.

Finally, large-scale systems would greatly profit from a better knowledge of how

online users are connected over space and how information spreading over space

creates demand for content and services around the planet. In particular, with the

recent rising interest in cloud services [Hay08] and content delivery networks [Lei09],

it has become extremely important to understand the geographic patterns of traffic

requests. A challenging problem is to understand whether it is possible to improve

the design of such systems by exploiting the geographic properties of social pro-

cesses. For instance, popularity of content can be geographically and temporally

characterised to devise new strategies for replica placement and caching.

1.3 Thesis and its substantiation

As we have discussed, gaining knowledge about how geographic space influences on-

line social services could be of great importance to understand better many research

problems and to improve systems related to these services. The effect of geographic

distance seems still to be present in the online world: a more complex and broad

research question regards how spatial and social factors simultaneously influence

the structure of online social networks and the dynamic processes that take place on

them. Closely related to this theme is the problem of exploiting the spatial dimen-

sion of online user behaviour to provide better and more useful features in online

social networking services and to devise new systems and application.

Consequently, the thesis of this dissertation is that the study of the spatial char-

acteristics of online social interactions is useful to provide a more comprehensive

understanding of their structure and to build more efficient and effective systems

and applications on top of them.

We substantiate this statement with two closely related threads of research. First,

we aim to expand the understanding of the spatial properties of online social net-

works, focussing on measuring, analysing and modelling such properties and their

connection to social patterns. Second, we plan to demonstrate that such spatial

characteristics can be used in the design of new systems and applications related to

online social networking services.
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1.4 Contributions and chapter outline

This thesis offers three major contributions: firstly, the measurement and the anal-

ysis of social and spatial properties of online social services, secondly, the study of

models which capture the spatial and social properties of user behaviour on such

services, and finally the design and the evaluation of applications and systems that

exploit spatial and geographic information in online social networks.

As we have considered, the impact of spatial distance on online social networks seems

still to be important, even though the Internet and the Web allow individuals to

communicate easily and cheaply. As a consequence, the properties usually observed

in online social networks could be influenced by geographic distance in a variety

of different ways. Hence, in Chapter 2 we introduce and explore the properties of

online social services, discussing the rôle of space in shaping them. We also examine

whether location-sharing features, which reveal the spatial patterns of online social

interactions, might be changing how users engage with online social platforms. This

discussion provides insights into why the spatial properties of these online services

are of significant importance to understand better online user behaviour and to build

related systems.

The rest of the dissertation presents our novel contributions, which are summarised

as follows:

• In Chapter 3 we discuss the effect that spatial factors have on online social

platforms through a comparative study of the spatial properties of the social

graphs arising among users of popular online services. We exploit location

data available on such services to embed users in geographic space, studying

the resulting social networks as spatial networks. We define two randomised

null models of the social graph that take into account either only the spatial

properties or the social properties of the original graph: this allows us to

discern what characteristics we would observe if only spatial, or social, factors

were in place. Using these two null models we discuss the interplay between

the spatial and social dimensions, which generates a wide heterogeneity of

properties across different users. We also propose two new network measures,

node locality and the geographic clustering coefficient, which help to

differentiate users with respect to their preference for short-range or long-

distance ties.

• In Chapter 4 we aim to understand the temporal evolution of an online social

network and its spatial properties with a longitudinal study of a real service.

Our goal is to define basic evolutionary models that can reproduce the social

and spatial patterns observed in the real data and the properties discussed in
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Chapter 3. We show that social factors and spatial distance simultaneously

influence the establishment of new user connections: this can be modelled

as a gravitational attachment process that mimics the attraction forces

between physical bodies influenced by mass and distance. At the same time,

we note that triadic closure is also strongly shaping the creation of social

links, although this process appears to be driven purely by social factors.

These findings allow us to propose a new gravitational model of network

growth, which is able to reproduce the social and spatial properties observed

in real networks. We further discuss how our new model compares to other

frameworks previously introduced to study spatial networks.

• In Chapter 5 we explore one practical application that takes advantage of

spatial data available on online social networks: link prediction. Link pre-

diction systems have been largely adopted to recommend new friends in online

social networks using data about social interactions. We propose to exploit

an additional source of information: the places people visit. We study the

problem of designing a link prediction system for online location-based social

networks. We investigate how users create new connections over time and we

study the relative link prediction space: we find that about 30% of new links

are added between “place-friends”, i.e., between users who visit the same

places. We show that this prediction space can be made 15 times smaller,

while still 66% of future connections can be discovered. Finally, we define

new prediction features based on the properties of the places visited by users,

which are able to discriminate potential future links among them. Building

on these findings, we describe a supervised learning framework which exploits

these prediction features to predict new links between friends-of-friends and

place-friends, offering high link prediction performance.

• In Chapter 6 we explore a different application that benefits from the con-

straints imposed by spatial distance on online social connections: video con-

tent delivery on a planetary scale. More and more, the diffusion of content

items happens on online social networks, where social cascades can be observed

when users increasingly re-post links they have received from others. We take

advantage of the fact that such social cascades can propagate in a geographi-

cally limited area to discern whether an item is spreading locally or globally.

This informs cache replacement policies used in content delivery networks,

which utilise this information to ensure that content is kept close to the users

who may be interested in it. We build a proof-of-concept geographic model

of a distributed content delivery network and we simulate its performance on

real traces; our evaluation shows that we improve cache hits by up to 70%

with respect to cache policies without geographic and social information.
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To conclude, in Chapter 7 we discuss and summarise the insights offered by this

dissertation and we explore their consequences, presenting directions for further

research.
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The social sciences are granted eternal youth because

findings must be revisited.

Max Weber

2
Online social services: an overview

Starting from instant chat and bulletin boards systems, and then with email, news-

groups and discussion forums, people have engaged in online social interactions since

the inception of the Internet. Nonetheless, at the beginning of the 21st century a

new generation of “social networking services” came to prominence, revolutionis-

ing, within a few years, the way users access the Web and spend their time online.

Nowadays services like Facebook and Twitter boast hundreds of millions of active

users; in addition, the amount of time spent by users on such sites is soaring.

These online services are already so popular, and their usage so entrenched in our

society, that they have even changed our common language, introducing words such

as unfollow (“verb: stop tracking a person, group, or organisation on a social net-

working site”) or adding new meanings to existing words such as friend (“verb: add

someone to a list of friends or contacts on a social networking website”)1.

In this chapter we provide a broad overview of online social networking services, dis-

cussing their classification and their main properties. We also review related systems

and applications that exploit social information to offer a wide set of functionali-

ties. Our main emphasis is on highlighting how spatial and geographic factors may

influence the properties of online social connections, considering their consequential

impact on social-based systems and applications.

1The Oxford English Dictionary introduced these modifications in 2011 and 2010, respectively.
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Chapter outline Section 2.1 introduces a definition of social networking services

and then examines their general taxonomy. The most important properties of the

social networks arising among online users are discussed in Section 2.2, which re-

views a vast set of related works in the literature. In Section 2.3 we describe the

new generation of social services mainly based on location sharing and we discuss

the connection they offer between online social interactions and real entities in the

physical world. Systems and applications related to online social services are dis-

cussed in Section 2.4. Finally, Section 2.5 draws lessons from the research results we

survey, discussing how this dissertation differs from the growing body of literature,

opening new research directions.

2.1 Classification of social networking services

The abundance of online services providing social features or supporting social in-

teractions among users makes it difficult to define properly when a service can be

considered an online social networking platform. We discuss a definition recently

proposed by scholars and, then, we analyse a classification of these services according

to the semantics of the social connections they support and the related structural

directionality. We conclude this section with a review of recent results focussing on

the characteristics of the most important online social services.

2.1.1 Core features of social networking services

As discussed earlier, social interactions were taking place online before the rise of

services such as Facebook and Twitter. For instance, instant messaging applications

were already widely used about 15 years ago to keep a list of friends and chat

with them in real time. However, social networking sites present a unique set of

characteristics that clearly differentiate them from earlier services.

One concise definition relies on the fact that a social networking service is a Web-

based service that offers these three features to its users [bE07]:

1. the creation of a public or semi-public profile within a bounded system;

2. the ability to create and maintain a list of other users with whom they share

a connection;

3. the ability to view and traverse their list of connections and those made by

others within the system.

From this definition we note that what identifies social networking services is not

the fact that they enable online social interaction between connected members, but,
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more importantly, that users can carefully craft and make publicly visible their

social connections, and interactions, on the service. This is the crucial feature that

differentiates social networking services from older online communication tools.

A consequence of this visibility of social ties is that they often represent a display

of social identity [Db04]. However, there are deep differences in the structural na-

ture and the social semantics of ties supported by different services. These factors

are of paramount importance to understand the characteristics of a given social

networking service, its target user base and the social interactions it supports and

fosters; equally, the applications and systems that each service enables will be differ-

ent. These variations are also likely to impact the spatial properties of the resulting

social ties.

2.1.2 Link semantics

As different online social networking services offer different features, and target

different users, the significance of the social connections that their users establish

varies widely. A coarse-grained yet effective distinction is between services that

support social relationships and services that create connections between people

who share interests. For instance, Facebook users tend to recreate online the set

of friendship and acquaintance ties they have in their daily lives, while LinkedIn

supports work-related connections, mainly to help job-seekers and foster professional

collaboration.

Other social networks try to entice users with particular interests, such as Last.fm for

music-lovers, aNobii for individuals passionate about books, Flixster for cinephiles

and Flickr for amateur and professional photographers. Finally, social services such

as Twitter and Google Plus encourage their users to connect to other users, celebri-

ties, media organisations or product brands, effectively supporting a wide range of

link semantics.

Implication: The effect of space and distance differs across these services as the

focus of link semantics shifts from supporting existing social relationships to con-

necting users who share interests. Users connecting because of a common interest

in a given topic might be less likely to be constrained by geographic proximity, as

their tie is fostered by factors less related to the social sphere.

2.1.3 Link structure

At a structural level, the main property of online social platforms is whether new

social connections established by users are unidirectional or bidirectional: in the
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latter case, both users must confirm the existence of the social tie that connects

them on the service.

Social services which aim to support trusted relationships, such as Facebook and

LinkedIn, adopt the bidirectional model: users are required to request, and accept,

the creation of friendship connections. In this case there is only an implicit direction-

ality of the resulting link, as one user has to initiate the contact and the other has

to react. Instead, services based on shared interests tend to adopt the unidirectional

model, where users can connect with freedom without requiring any reciprocation.

In this case the act of creating a friendship connection is more oriented towards

the consumption of user-generated information: for instance, book reviews, photos,

music tracks, videos or Web links.

This consumer-producer paradigm, where a user generates information and a set of

“followers” receive it, has been hugely successful. Such unidirectional connection

models, more akin to subscriptions than to friendship connections, are epitomised

by services such as Twitter and YouTube, where every user profile is seen as a

channel of updates which is pushed to the subscribers. Google launched its own

social networking service in 2011, Google Plus, with a unidirectional sharing model

that allows users to subscribe to any other user’s updates; at the same time, each

user can specify the preferred audience for every single piece of shared information,

with highly granular privacy control. Shortly after, Facebook amended its historical

preference for mutual bidirectional connections and allowed users to “subscribe” to

each other, providing sharing filters for users to limit the visibility of each post.

Bidirectional ties are more difficult to establish: malicious users or spammers can

indiscriminately make unidirectional links to several unrelated users, whereas bidi-

rectional links must be vetted by both parties. Even when unidirectional links are

arising because a user has a genuine interest in connecting to another user, there

is little indication that the connection has a social nature, unless the tie is recip-

rocated. On the other hand, unidirectional ties allow a richer social structure to

emerge, since there are now four possible relationships between any couple of users.

Tie asymmetry can be exploited to infer status or reputation, as the PageRank

mechanism used by Google does to rank Web pages [PBMW99]. TunkRank, based

on the same principles of PageRank, has been proposed to rank influential Twitter

users based solely on link structure [Tun09].

Implication: We expect spatial constraints to be stronger when online connections

reflect relationships that are as close as possible to social ties in real life: as a

consequence, social services requiring bidirectional ties could be more affected by

geographic distance, whereas services allowing unidirectional followers could be less

constrained by space.
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2.1.4 Examples

Even though only in the last decade online social networking has seen an explosion

of interest, social interactions were taking place online much earlier. In fact, Ward

Christensen and Randy Suess created the Computerised Bulletin Board System, or

CBBS, in 1978 to allow computer enthusiasts to exchange messages in a comput-

erised way, predating modern social forums2. While CBBS was used actively by only

a handful of users, current online social platforms have a massive user base. For in-

stance, Facebook boasts more than 900 million active users, over 50% of whom access

the service on any given day [Fac12]. Similarly, LinkedIn has more than 135 million

members over all the planet, establishing professional ties with one another [Lin12].

Modern online social services have offered researchers the opportunity to study on-

line social interactions at an unprecedented scale. In addition, since online ser-

vices keep track of such interactions in a structured and digital way, they offer

computation-friendly means of recording, storing, accessing and manipulating the

graph of social relationships. However, the sheer size of modern social networking

services has generated extremely large social graphs, which pose several analytical

and technical challenges. The social connections between users, together with any

additional available information, are often obtained through Application Program-

ming Interfaces (APIs) exposed by each service to provide access to their data in a

structured form. Yet, this data acquisition process may be severely time-consuming,

as API calls are typically rate-limited and closely monitored by the service providers.

At the same time, analytical techniques, algorithms and computational resources

used to study the resulting graphs need to cope with the size of current social plat-

forms. For instance, one of the largest social systems ever analysed consisted of

about 30 billion instant messaging conversations exchanged over 30 days among 240

million users, gathering about 4.5 terabytes of text logs for each day [LH08]. An

even larger example is a recent study, which adopted a methodology based on prob-

abilistic counters to compute graph distances between Facebook users [BBR+11]:

the authors analyse a network with about 720 million users and 70 billion friendship

connections, discovering that, on average, Facebook users are only 4 hops apart,

with smaller regional networks exhibiting even lower values.

In the following paragraphs we discuss different kinds of online social services that

have been studied by researchers, ranging from online communities predating the

inception of the Web to modern large-scale social platforms.

2A brief yet vividly sketched account of online social networking is The Cartoon History of Social

Networking [Lon11]. Other short reports with similar material include [Nic09, Sim09, Bia11].
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Earlier online communities

Before the advent of current online social networking services, online services were

neither explicitly recording nor storing social ties between users. Yet, personal home

pages were linking to each other and users were replying to each other on forums,

leaving a digital trace of these social interactions. Thus, social graphs arising in

older online communities tend to be inferred based on records of such interactions.

One of the first works on the analysis of online social relationships used email con-

versations to infer a social graph and study shared interests among people [SW93].

ReferralWeb [KSS97] was a system built to reconstruct a social network among in-

dividuals by mining their online presence, sifting through Web links across home

pages, co-authorship and citations in academic papers, news archives and organi-

sation charts, with the aim of exploiting the network structure to locate experts

across different topics. Similarly, social statistics about online interactions in the

LambdaMOO Multi-User Dungeon were collected by an autonomous social software

agent, Cobot [IKK+00]. Conversations taking place on instant messaging platforms

were used to extract a planetary-scale social network and investigate homophily

effects [LH08].

There are other online platforms where social features do not represent the main

focus, such as online shopping and product reviews sites. Such services also sup-

port social interactions between members, usually involving products in which users

share an interest: such social graphs have been exploited to enhance confidence in

sellers, by providing explicit feedback, as well as to provide useful product recom-

mendations. Several such social networks have been examined: examples include

Epinions [RD02], Amazon [LAH07] and Overstock [SWB+08].

Modern online social services

With the rise of the Web 2.0, loosely defined as the set of online services centred

around consumption and sharing of dynamic user-generated content, the digital rep-

resentation of social connections between users became of pivotal importance, giving

birth to the first online services mainly focussed on social features. As these ser-

vices accumulated millions and millions of users, researchers turned their attention

to them.

One of the earliest studies analysed the social networks arising among the members

of two services, the photo sharing community Flickr and the social networking site

Yahoo!360, finding that each network is segmented into a well-connected core of users

and a fringe of disconnected smaller communities and isolated nodes [KNT06]. More

studies soon followed, investigating different social services and offering the first

evidence that online social networks exhibit certain universal features [MMG+07,
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AHK+07]. Other online communities that have attracted the attention of re-

searchers include the hugely popular, albeit now in decline, MySpace [CW08, TRW09]

and the social aggregation service FriendFeed [GGM+09].

Some services have received abundant attention due to their sheer popularity and

to their importance, with hundreds of millions of users accessing them on a daily

basis. We consider a sample of studies for three of the most common platforms on

which people interact: Facebook, Twitter and YouTube.

Facebook In addition to the basic topological properties, various social processes

have been investigated on Facebook, since it allows users to interact in a rich man-

ner across several different media (statuses, photos, likes). Such user interactions

reveal a picture very different from the entire graph of social connections: when so-

cial links with lower interaction levels are removed the network shrinks and changes

structure, thus raising the challenge to individuate when a tie on Facebook represents

a meaningful social bond between two users [WBS+09, VMCG09]. Further, since its

inception, user engagement on Facebook is so pervasive that temporal periodicities

connected to human rhythms can be extracted from user interactions [GWH07]. The

analysis of information diffusion, for instance in terms of users sharing Web links

received from their friends, has been another process largely investigated on Face-

book [SRML09]. In particular, a recent work by Bakshy et al. [BRMA12] confirms

that being exposed to information through online friends increases the likelihood of

re-sharing that information.

Twitter Launched in 2006 as an SMS-based service, Twitter has been steadily

growing as the main service for publicly sharing status updates: its public nature,

together with the unidirectional nature of its social connections, has created a unique

social ecosystem that has attracted plentiful of research attention. The motivations

that brought early adopters to use Twitter were discussed in [JSFT07], while a

classification of Twitter users was proposed in [KGA08]. As a few Twitter users

gained celebrity status by accumulating millions of followers, researchers addressed

the problem of finding the most influential users, adopting different metrics to quan-

tify the impact of user influence [CHBG10]. A large-scale study of the entire social

network of Twitter users found low levels of reciprocity among users, unlike other so-

cial networks, but a considerable number of news URLs being shared and forwarded

over social connections [KLPM10]. Based on these findings, the hybrid nature of

Twitter as both a social network and a news media site has been suggested.

YouTube Even though YouTube is not strictly a social service, since it mainly

allows user to publish and share their video creations, social interactions take place
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on a massive scale: users subscribe to one another’s channels and comment on

video items published by others. Video popularity on YouTube has been extensively

studied: one of the central findings is that there is a strong heterogeneity across

videos, with a few of them rising to extremely high levels of popularity and the vast

majority experiencing only a handful of views [CKR+09]. Far from being irrelevant,

the huge number of non-popular items still drives user consumption, attracting

people interested in a vast quantity of niche topics: this effect has been popularised

by Anderson as the “Long Tail” [And06] and greatly impacts systems designed to

host and deliver YouTube videos. The temporal dynamics of video popularity has

also attracted research efforts, trying to understand the factors that drive success for

video items [FBA11]: in particular, both social sharing and external influence affect

video popularity growth, giving rise to characteristic patterns in temporal evolution

of the number of daily hits [CS08].

2.2 Characteristics of online social networks

The graphs arising among the members of online social services exhibit certain char-

acteristic features, many of which are equally found in other types of social networks.

Some of these properties have even entered common knowledge and popular culture.

Many of these features are not unique to social networks, but are commonly found

in other networked systems.

We present in this section a review of the most important features observed in social

graphs, arising in online services or elsewhere. Our intention is to introduce the

characteristics that are traditionally associated with social systems and to discuss

which properties are likely to be influenced by the spatial constraints imposed by

geographic distance.

2.2.1 Node properties

A first observation about social graphs is that they tend to be sparse: a large frac-

tion of node pairs are not connected, with the result that the number of links is

comparable to the number of nodes. The degree of a node, that is, the number of

connections it has to other nodes, is of particular interest when analysing complex

networks. When each node has the same topological properties, one would ex-

pect a homogeneous degree distribution to arise, where every node degree is tightly

distributed around a well-defined average value. In these scenarios nodes are al-

most interchangeable, lacking any distinguishable individual feature. Instead, real

networked systems often exhibit a much broader distribution, with a noticeable pos-

itive skewness or, in other common terms, with a heavy tail. Such distributions have
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been found, among other examples, both in the network of Web pages [HA99] and

in the graph of connections between Autonomous Systems on the Internet [FFF99].

This broad degree distribution has two important consequences: first, individual

nodes are different from a topological perspective, as there exist huge variations

between them; second, the co-existence of a few highly connected nodes and a large

number of poorly connected elements has important consequences for the overall

network structure and for processes such as information diffusion [Rap53], epidemic

spreading [PSV01] and attack tolerance [AJB00]. In online services, where connec-

tions can easily be established and then accumulated, this heterogeneity can be even

more marked [KNT06, MMG+07].

Another remarkable feature of social graphs is that they tend to exhibit positive

correlations between node degrees [New02]. In other words, individuals with more

connections tend to connect to other individuals with many connections: conversely,

individuals with fewer ties connect among themselves. In contrast, other complex

networks with a similar degree distribution exhibit negative correlation, with high

degree nodes preferentially connecting to low degree ones [YJB02, BBPSV04]. Pos-

itive assortativity, together with transitivity (Section 2.2.2), are the two main struc-

tural features that differentiate social networks from other types of networks: their

presence seems to be intimately connected to the tendency of individuals to cluster

in groups or communities (Section 2.2.4) [NP03]. As a result, these structural prop-

erties have important effects on several dynamic processes that take place on social

networks.

Implication: The heterogeneity observed across nodes in social networks could

translate to a similar heterogeneity with respect to spatial properties. In particular,

popular users with large numbers of connections might tend to be less affected by

spatial distance than users with fewer connections. Given the importance of such

highly connected individuals for the processes taking place over the social network,

the spatial implications would become significant.

2.2.2 Transitivity

Sociologists have often discussed the fact that social connections are transitive, in

the sense that friends of friends are also likely to be friends [WF94]. Several theories

have been put forward to understand what drives this behaviour: Heider was the first

to suggest that people tend to seek structural balance in their relationships [Hei46].

The idea of balance focusses on the concern that individuals have about how their

personal attitudes and opinions coincide with the attitudes and opinions of their

friends. Thus, if John is friends with Isaac, and Isaac is friends with Kim, then if
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John is not friends with Kim there will be a perceived imbalance3. Even though

the original theory was proposed to explain the more general case of directed rela-

tionships, structural balance has been an inspiration to many triadic closure models

that aim to mimic the formation of new social ties [BC96].

A crucial property of social networks is that they exhibit high levels of transitiv-

ity: high transitivity is not common in other networked systems such as biological

and technological ones. In fact, one would expect a certain number of existing

triads in a network arising merely because of a certain level of edge density: in-

deed, such a value can be calculated in a straightforward way in simple random null

models, where probabilities of connections between nodes can be theoretically ma-

nipulated [EMB02]. Hence, transitivity is often quantitatively measured by counting

the number of triangles, or triads, in the social graph, and checking whether this

value is larger than one would expect in a random graph of comparable size and

density [NWS02]. While in several non-social systems the amount of transitivity

present can be explained by simple random models, thus suggesting the absence of

significant mechanisms influencing local network structure, the same is not true for

social networks. In general, social graphs exhibit a far higher degree of transitivity

than their random counterparts [NP03].

From another point of view, the abundant presence of such triangles might be seen

as evidence of tightly connected local neighbourhoods or groups. Each social tie

belonging to a triangle is a short-range connection between two nodes that are

already close to each other, since they share at least one common neighbour. In

complex networks literature, this property has also been referred to as clustering :

in particular, the clustering coefficient of a single node is defined by taking into

account the number of triangles present in its neighbourhood with respect to the

total number of possible triangles [WS98]. Again, social networks tend to have higher

values of the average clustering coefficient than random graphs of comparable size.

Statistical analysis of the evolution of large-scale online social systems suggests that

the likelihood that two individuals will establish a social connection greatly increases

as they have more friends in common [LBKT08] or as they are affiliated to more

common groups or communities [KW06], confirming the transitive nature of online

social ties. This has an important impact on link prediction and recommendation

systems, which aim to find pairs of disconnected users who are likely to establish a

friendship tie.

Implication: Transitivity appears to be a strong influence behind the creation of

social ties and its importance for online services is unquestionable. Since spatial

distance affects the likelihood of connection between individuals, one would expect

3More precisely, Heider’s structural balance theory pertains to the perceptual level, thus the

perceived existence of a social relationship is far more important than its real existence.
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that triads tend to arise between spatially close individuals. However, whether this

process is purely driven by spatial factors, by social ones, or by a combination of

them is open to discussion.

2.2.3 The small-world effect and navigability

The rich local structure present in social networks, which implies a large number of

short-range connections, would suggest that, on average, the path length between

two random nodes can be large. For instance, a regular lattice possesses an ordered

local structure, with edges between nodes which are close to each other, but longer

paths are needed to connect nodes that are further away. However, social networks

tend to exhibit short distances between individuals, as found in random graphs that

lack clustering.

This concept has been popularised to the general public by Stanley Milgram’s fa-

mous experiment about social chains of acquaintances [TM69], being termed as the

“small-world effect”. Milgram’s experiment took place in 1967: he asked 160 ran-

domly selected individuals living in the US town of Omaha, Nebraska, to deliver

a package to a specified person living in Boston, Massachusetts, about 1,500 miles

away. Participants merely received a limited set of information about the target:

name, address and occupation. However, participants were not allowed to mail the

package directly; they had to rely, instead, on their own friends and acquaintances,

forwarding the package to someone they felt could get it “closer”, in any sense, to

the final destination. These friends or acquaintances were provided with the same

instructions, until the package was eventually delivered to the target in Boston. For

each transition a postcard was sent back to Milgram with the details of the receiving

party.

Even though the majority of these delivery chains did not reach the target, 64

packages were successfully dispatched to the final destination. Among these, the

average path length was close to 6 hops, which led to the popular culture reference

about the “six degrees of separation” between any couple of individuals on the

planet4.

The apparent incongruity between clustering at a local level, which could lead to

long paths as in regular lattices, and the global property of short connection paths

was unravelled by Watts and Strogatz in their groundbreaking work [WS98]. A

regular lattice structure can be slightly modified by randomly rewiring a few edges,

creating long-range shortcuts; even a negligible number of rewired edges dramati-

cally decreases the average path length, while the local clustering remains almost

4Milgram never used this exact phrase in his original works; rather, it was later made popular

by the Broadway play and, later, by the movie bearing the same name [Gua90]
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unchanged. The conceptual implication of the Watts-Strogatz model is that the

small-world effect in real networks represents a middle point between a totally or-

dered and a completely disordered system. Further, the powerful practical impli-

cation is that any information or signal can quickly propagate through small-world

networks.

The existence of such short paths on the network does not imply that they can be

found through decentralised mechanisms with only limited local knowledge. In fact,

participants in Milgram’s experiment struggled to locate the target in the majority of

cases, breaking the chain before completion. The problem of navigability in a social

network was initially discussed by Kleinberg considering a simple graph model where

long-range connections are added to a regular lattice with probability proportional

to r−α, where r is the Manhattan distance between nodes [Kle00]. In this model,

a simple decentralised greedy search strategy is adopted to forward messages to a

target: such a strategy is only successful, with an expected path length O
(
log2N

)
in the number of nodes N , only if α = d, where d is the dimensionality of the lattice.

Any other value of α results in asymptotically longer paths. This suggests that the

correlation between long-range connections and local network structure provides

important cues to navigate the network.

Both in Milgram’s experiment and in similar more recent reenactments the path fol-

lowed by the forwarded message moves geographically closer to the target [DMW03].

Together with information about occupation, geographic cues are predominantly

used to select the next step in the chain, particularly in early steps [KB78]. The inter-

play between friendship and geography with respect to the navigability of real-world

social networks has been discussed in a work by Liben-Nowell et al. [LNNK+05].

Through simulation of the message-forwarding experiment on a large-scale online

social network in the USA, a purely geographic greedy search strategy is shown to

achieve results comparable to the original experiment by Milgram. Yet, the social

network exhibits long-range connections spanning geographic distance d with prob-

ability proportional to d−α, with α ≈ 1. The apparent contradiction between the

navigability of the network, which would require α ≈ 2 as the Earth’s surface is

two-dimensional, and the spatial distribution of connections is then resolved by con-

sidering the large variance in population density and adopting a novel geographic

notion, rank-distance, to control for heterogeneous population density and hence

reconcile the two results.

Implication: As demonstrated by Liben-Nowell et al. [LNNK+05], and also as

suggested by Backstrom et al. [BBR+11], geography plays a huge rôle in forming the

global structure of social networks, with important consequences for the navigability

of the network itself. However, the relationship between the topological position of

social connections and their geographic properties is still unknown.
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2.2.4 Community structures

Individuals tend to organise themselves into social groups at different scales: fami-

lies, working and friendship groups, villages, towns and nations. The properties of

these groups have been studied for a long time, as they constitute the building blocks

of human society [Col64]. Researchers in the social sciences have often investigated

the emergence of structurally cohesive groups of individuals and the tendency of the

members of such groups to exhibit high levels of homogeneity [WF94].

From a structural point of view, the presence of such groups causes the social net-

work to exhibit specific patterns. More precisely, the structure of social ties between

people presents strong local inhomogeneities, with a higher concentration of connec-

tions within social groups and fewer links between them. This feature of networks

has been termed community structure and has been observed not only in social net-

works but in numerous other networked systems: for instance, links among Web

pages reveal communities which likely correspond to clusters of sites related to the

same topic [DGP07].

Yet, even though an abundance of measures have been proposed [WF94, GN02,

FLGC02, NG04, RCC+04], no clear consensus has been reached on a quantitative

definition of community. Several algorithms have been devised to partition a net-

work into communities [New04, DDADG05, For10]: each method relies on a given

assumption about which properties a community should exhibit and most of them

are computationally intensive and unable to scale to large networks. A fast and

widely adopted algorithm is the Louvain method [BGLL08], based on the optimisa-

tion of the modularity measure proposed by Newman and Girvan [NG04] and able

to scale to large networks.

Finally, Newman and Park suggested that both transitivity of friendship and assor-

tativity can be captured by a simple model where social connections arise from users’

affiliations to one or more groups or communities [NP03]. This suggests that the

existence of social groups has a strong impact on the properties of social networks.

Implication: The existence of communities in social networks reflects the tendency

of individuals to form groups. These groups tend to be constrained by geogra-

phy, with smaller communities being spread over a smaller area [OAG+11]. Since

people close together are more likely to be connected, dense communities might

arise merely because of geographic proximity. Researchers have therefore proposed

community detection methods that control for spatial proximity to extract more

meaningful communities [EEBL11]. Since the relationship between social and spa-

tial factors could be more complex than the one captured by controlling for the

distance-dependent probability of connection, a better understanding of spatial pat-

terns of social connections could greatly benefit our understanding of communities.
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2.2.5 Homophily, social influence and information diffusion

Homophily is the tendency of people to establish links with other similar and like-

minded individuals. Homophily is a powerful driver of social link formation [MSLC01];

several studies have shown that there are important connections between rising sim-

ilarity between individuals and potential social connections [CCH+08]. Many sys-

tems to predict social link formation are based on the assumption that similar users

might want to connect with each other [LNK07]. However, homophily can also lead

to segregation. Schelling demonstrated that, even in an uncomplicated model, global

patterns of spatial segregations can arise from homophily sought by agents at a local

level, even if no individual actively seeks segregation [Sch69]. Local homophily can

thus easily partition a social system into spatially segregated components.

While similarity tends to foster new social links, existing ties can cause individuals to

become more similar by fostering the spreading of trends and innovations [Rog95].

A few studies have investigated the influence that friends can have on product

adoption [SS98]. Such viral adoption, that is, behaviour spreading due to person-

to-person recommendation, has been intensively researched, trying to understand

its dynamics and control its evolution [LAH07]. However, other results suggest that

evidence of viral spreading could be greatly overestimated, since a large fraction of

such social pressure could also be explained by the fact that connected users are

likely to share interests, precisely because of homophily effects [AMS09].

Intimately related to social influence, information diffusion is another important

process taking place on online social services. Pieces of information or content items

are thought to face lower barriers than products and behaviours when spreading

over social connections, quickly and widely reaching a large portion of the net-

work [GGLNT04]. Such an information dissemination process over the network one

hop at a time is often referred to as a social cascade [BHW92]. Social cascades have

been investigated in sociology, economics and marketing for more than 60 years:

an eminent example is the threshold model proposed by Granovetter, which models

information propagation as a local process depending on friends’ adoption [Gra87].

More recently, researchers have harnessed large-scale datasets to track and study

social cascades in online services. Adar and Adamic studied the diffusion of informa-

tion in blogs by adopting epidemic models of spreading [AA05]. Another large-scale

characterisation of information cascades using data from Flickr was presented by

Cha et al. [CMG09]: their findings show that information does not spread widely

through the network, but remains close to the initial seed. A more recent study on

URL diffusion over Twitter also supports this claim [RBC+11], since the authors

find that cascades extend only over a few additional hops beyond the initiator.

Implication: Overall, there appears to be a strong connection between the be-
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haviour of similar individuals and their social connections. This has important spa-

tial implications when social connections tend to be constrained by geographic dis-

tance, as viral spreading can be similarly spatially limited. Equally, other dynamic

processes taking place on social networks could have a strong spatial component.

2.2.6 Temporal evolution

Networks are dynamic entities: they evolve over time, as their edges are rearranged

and altered, but they equally change when new nodes and connections are added

and deleted. One of the first attempts to describe the growth of real networks over

time is the preferential attachment model, put forward by Barabási and Albert to

explain the emergence of a scale-free network with power-law degree distribution

between Web pages [BA99]. This model relies on a generic growth mechanism

where new nodes with constant degree are continuously added to the network and

their new connections preferentially attach to already well-connected nodes. Further

analysis of the preferential attachment model revealed that it results in a degree

distribution where the probability of nodes having k connections is given by P (k) ∝
k−γ, with γ = 3 [BRST01]. At the same time, several modified versions of the

preferential attachment model have been put forward to describe patterns arising in

other complex networks; a thorough review is given by Boccaletti et al. [BLM+06].

The preferential attachment model reproduces the stationary properties of scale-

free networks, but it also imposes two important constraints on network growth:

the average node degree remains constant over time and the network diameter is a

slowly growing function of the number of nodes. However, in an extensive study of

several networks spanning different domains, Leskovec et al. [LKF05] found that real

networks tend to exhibit increasing average degree and decreasing diameter: graphs

appear to be densifying and shrinking at the same time. Hence, they propose two

new families of growth models based on community-driven node connections and on

a copying mechanism of neighbours’ links through an epidemic spreading process.

While online social networks exhibit scale-free structure, they also present high levels

of clustering. This appears in contrast with the preferential attachment model,

which predicts vanishing clustering as the system size grows. This discrepancy has

been addressed by a tunable model that adds a triad formation step to the original

mechanisms [HK02]. The final result is that the scale-free degree distribution is

maintained but the level of clustering can be increased up to what is found in

existing networks. This modification suggests that a triangle closing mechanism

could be as important as the preferential attachment principle in driving network

growth: both these processes mimic how social networks could grow, namely by

means of users connecting to popular individuals and to friends of friends.
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The evolution of online social networks at a microscopic level has been quantita-

tively studied by Leskovec et al. [LBKT08]. Their findings suggest that the three

main processes driving network growth are a preferential attachment mechanism for

new nodes joining the network, inter-edge waiting times distributed according to a

truncated power-law and a simple triangle closing mechanism to provide clustering.

Implication: The two main processes driving the growth of social networks seem

to be a global attachment process that favours popular nodes, and a local clustering

mechanism that results in triads, communities and clusters. The interplay between

these two forces and geographic factors is yet to be understood fully, in order to

devise evolutionary models that describe the spatial properties as well as the social

characteristics of social networks.

2.3 Location-based social services

The emergence of online social networking services has revolutionised the Web, driv-

ing the transition from a static, one-way information transfer to a dynamic, user-

generated and interactive communication. Another important trend we have seen

is the growing popularity of powerful mobile devices, making available accurate and

cheap location-sensing technologies to mobile users.

The combination of these two powerful trends has recently resulted in an innovative

generation of services: location-based social networks. These platforms combine ge-

ographic services, such as geocoding and geotagging, with online social interactions,

enabling users to generate and share information about the locations they visit. In

this section we briefly summarise the timeline of location-based social services; we

then focus on the concept of place as an integral part of the mobile experience of-

fered to users by these services. Finally, we discuss the influence that these novel

location-sharing features might have on online user behaviour.

2.3.1 A brief history of location-based social services

The first attempts at building location-based services with explicit support for user

social interactions were mainly research experimental designs, exploring the impli-

cations and consequences of these services in a controlled and monitored environ-

ment. Paulos and Goodman explored how “familiar strangers” whom people were

meeting repeatedly in public spaces could be approached through a mobile appli-

cation [PG04]. Similarly, Eagle and Pentland designed and built the Serendipity

mobile system, enabling users to detect and identify proximate people [EP05]. The

semantic concept of place was explored by Wang and Canny [WC06], studying user
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reactions to an idea of location going beyond the raw geographic coordinates often

used in previous location-based services.

The first large-scale commercial location-based social service to gain appreciable

traction among users was Dodgeball. Created in 2000, Dodgeball was a mobile

application to distribute location-based information to friends, in order to facilitate

social gatherings within cities [Hum07]. Among the many innovations introduced

by the service, Dodgeball pioneered the concept of a “check-in” as used by today’s

location-based social services, in the form of a SMS text message sent to the central

server with the indication of the user’s current location; this information was then

sent to the user’s friends, again via SMS messages.

Dodgeball was bought by Google in 2005, which later discontinued the service to

make way for their own location-based system, Google Latitude. However, other

location-based social services soon followed. Brightkite was founded in 2007 as

a social networking website that allowed users to share their location with their

friends, providing a crowdsourced database of places that users could access and

modify. Similar features were offered by Gowalla, another location-based social

network created in 2009; this again supported check-ins, which were shared with

friends on the service. Also in 2009, the original creators of Dodgeball launched

Foursquare, an innovative location-based social network that added game mechanics

on top of traditional place check-ins; the user with the highest number of check-ins

in the last 60 days is deemed the mayor of a place, encouraging location sharing as

users compete to win such “mayorships”. Foursquare has since overshadowed the

other services, accruing millions of users and becoming the most popular location-

based social service available. It now allows users to leave tips about places, create

lists of places to visit; it also features a sophisticated place recommendation system.

The landscape of location-based social services includes many other examples. The

most popular online social services have launched location-based features, enabling

users to specify a particular location when they share an item, a status or a photo.

For instance, Twitter offers the option of tagging each status update with a ge-

ographic location. Facebook has launched a similar feature, allowing its users to

specify a location or a place when posting updates.

These developments are likely to bring location-based features to the vast majority

of users, expanding the initial nucleus of eager early adopters. Other services mainly

used on mobile devices, such as the popular photo sharing application Instagram or

the local businesses directory Yelp, take advantage of a large catalogue of venues to

facilitate the creation and retrieval of information related to physical places. Overall,

the main technological trend seems to be the convergence of social, mobile and local

applications towards a unique user experience, with the potential to bridge the gap

between online information and the physical world.
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2.3.2 Features of location-based social networks

There are many location-based services available to mobile users, with purposes

ranging from searching for local businesses and locating the user on a map, to

recommending interesting places to tourists. As online social networks become in-

creasingly location-aware, the line between purely location-based services and more

general online social platforms is blurring.

This dissertation focusses mainly on the interplay between spatial factors and online

social services; hence, we concentrate on location-based services that feature both

a strong social component and an engaging experience revolving around physical

places. Our aim is not a complete classification of location-based social services,

and we focus our interest on services based on these key concepts:

• users establish social connections among them and can interact with each

other, publicly sharing their friend lists;

• users are able to access, search and modify a database of places and their

related information;

• users mainly interact with the service through a mobile device, which is able

to personalise the service based on the user’s current location;

• users can voluntarily disclose to the service the exact place where they are,

through an action referred to as a “check-in”: such information can then be

made public or shared only with friends.

As individuals use these location-based social services they leave behind them digital

traces of both their social interactions and their spatial movements. These are

enriched with data about the nature of the places visited by each user, adding an

additional layer of information with rich semantic implications.

Location-based social networks represent the ideal systems to investigate the spatial

properties of online social services. First of all, they uniquely and simultaneously

provide data about both social connections and geographic movements, making

detailed spatial analysis possible. In addition, user location information in these

services is often more accurate than text-based descriptions available in other on-

line systems [HHSC11], since it is directly acquired through location-sensing mobile

devices. Finally, to this date, these services have already accumulated hundreds of

thousands, and sometimes millions, of users, thus enabling large-scale studies that

can uncover general properties and trends.
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2.3.3 The importance of places as online entities

The main innovation introduced by location-based services is that user activity takes

place in the physical world, and not in intangible Web space. Thus, in order to be

represented in the online setting, real locations have to be mapped to a new virtual

counterpart, the place.

These places, also called venues in the context of such services, represent references

to geographically placed physical entities. The concept of place on location-based

services is strongly similar to the concept of Point Of Interest (POI), widely used

in cartography to signal that a set of coordinates on a map is relevant or interesting

with respect to a given context. In our scenario, a place is a human-defined POI;

the difference between a location and a place is subtle but important. Whereas a

location is a geographical construct immutable over time, like a fixed point on the

Earth’s surface, a place is a POI loosely coupled with a location. In other words, in

theory a place can move to another location and still be the same place, maintaining

its semantic implications for users [Gal10].

The importance of representing places on the Web is a theme that goes beyond

location-based platforms. In fact, there is a potentially vast set of additional data

that can be added to the virtual representation of a place, such as an address, a

name, a description, category or type information, contact details, and so on. As

online services start offering the ability to create and search for information related

to physical places, new applications and systems will be designed and implemented

to take advantage of these new layers of information. To achieve this, new standards

and methods will be required to harmonise how places are referred to and represented

on the Web; the importance of this aspect is confirmed by the existence of the W3C

Points Of Interest Working Group, launched in 2010 with a “mission to develop

technical specifications for representation of POI information on the Web”5. As

more and more places are represented on the Web, and as providers exploit this vast

catalogue to build location-based services, the connection between the online and

the physical worlds will become stronger and more interesting.

2.3.4 The impact of location sharing

The landscape of location-based social services appears exciting and highly dynamic:

given their infancy, there are some important factors that are influencing user adop-

tion and, as a consequence, the characteristics of user activity.

Since these platforms are still in a relatively early stage, they tend to attract mainly

enthusiastic early adopters; as discussed by Rogers, these users are eager to try new

5More information is available online: http://www.w3.org/2010/POI/.
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innovations and tend to be young, to have high social status, to be highly educated

and to be socially open [Rog95]. This means that the user audience of these services

is far from being representative of the bulk of Web users, and even more different

from the overall composition of the society.

The act of sharing one’s location raises important privacy concerns; users are in-

creasingly aware that information about their whereabouts can be highly sensitive

and easily misused. For instance, in 2010 a Web service called “Please rob me” 6

was set up to extract automatically Foursquare check-ins publicly shared on Twit-

ter, raising users’ awareness about giving away the type of information a burglar

would love to have. In addition, privacy groups argue that the privacy policies of

online companies collecting location data are “uneven at best and inadequate at

worst” [Mor10]. Overall, when users are concerned about sharing their location

they could react by selectively avoiding to disclose when they are at certain places

or by entirely refusing to join a location-based service.

Finally, these services need to be accessed via applications available only on mobile

devices, because they take advantage of location-sensing technology to help the user

navigate nearby venues. While smartphones are quickly widening their user base,

the considerations about the particular demographics of early adopters equally apply

in this case. At the same time, affluent people living in cities are known to be

more eager to try online social networking services7. This bias could be of greater

importance for location-based platforms, as users located in cities with a high density

of places are more likely to be enticed to join than users living in less populated

and sparse areas that offer less spatial variety. In addition, the potential interest

in discovering new venues is higher in dense urban environments than in smaller

settings, where users may already be familiar with most of their surroundings.

2.4 Social-based systems and applications

The study of the properties of online social services, which has largely drawn from

related findings in physics and social sciences, has several practical applications. In

particular, as users spend more and more time using online social platforms, a better

understanding of the structural properties of the resulting social graph is needed to

design architectures and services appropriately.

In this section we discuss some examples of systems related to online social services,

emphasising how spatial information could be exploited to improve existing design

6http://pleaserobme.com/
7This was true as early as 2009 for large-scale services, as presented by a

Nielsen report (available online at http://blog.nielsen.com/nielsenwire/online_mobile/

the-more-affluent-and-more-urban-are-more-likely-to-use-social-networks/).
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choices or to create new applications. The mechanisms and factors that drive the

temporal evolution and growth of the social network are of paramount importance

to design link prediction systems. At the same time, the diffusion of information and

trends across social ties and the importance of homophily greatly impact the design

of recommender engines. Finally, since online content consumption is increasingly

driven by social sharing, a wide range of storage and delivery infrastructure solutions

could largely benefit from information extracted from the social connections among

users.

2.4.1 Link prediction systems

Social networks are highly dynamic, since they grow and change over time with

the addition of new edges as individuals engage in new interactions or lose contact

with old acquaintances. Online social services equally exhibit temporal evolution,

primarily because new users join and establish new connections from scratch, but

also because existing members form new relationships. By understanding the mech-

anisms by which social networks evolve it becomes feasible to predict which social

relationships are likely to appear in the future.

More generally, the problem of link prediction is an important task in network sci-

ence, with important applications in every field that makes use of network models

to represent real systems. Despite this, the link prediction problem was initially

formulated explicitly for social networks by Liben-Nowell and Kleinberg [LNK07]

as the task of accurately predicting the edges that will be added to the network

during a future temporal interval, using a snapshot of the network at current time.

In this formulation there is emphasis on predictive power rather than on capturing

global structural features, such as the degree distribution or the level of clustering.

Initial results demonstrated that different proximity measures, based on informa-

tion entirely contained in the social network itself, can be effectively exploited to

algorithmically predict which new ties will occur.

Link prediction methods enjoy increasing popularity thanks to their importance for

online social services. Such services strive to entice and retain their users by offering

them a pleasant experience, which often involves a rich set of social interactions.

Since users with more friendship connections benefit more from the service them-

selves, systems to recommend and suggest the creation of new online ties are put

in place. Such recommending engines largely draw from models that predict which

social connections are more likely to develop. Since Facebook launched the “People

You May Know” feature [Rat08], devoting vast engineering efforts to finding other

members that users might want to add as Facebook friends, it has become customary

to deploy such systems on social platforms.
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It is interesting to note that these approaches only focus on finding suitable recom-

mendations in a subset of the prediction space: namely, Facebook considers only

pairs of users who already share at least one friend. This is due to the fact that in

a large graph the total number of node pairs grows quadratically with the number

of nodes. Facebook, with its 900 million users, would face a prohibitively large task

if it searched the entire prediction space for useful predictions.

More recently, researchers have advocated supervised approaches to link prediction,

given the possibility of modelling the task as a binary classification problem. In par-

ticular, Lichtenwalter et al. [LLC10] have presented a detailed analysis of challenges

in link prediction systems, discussing the extreme imbalance inherent in link predic-

tion tasks, where the number of positive instances is overwhelmed by the number

of negative cases. They propose to mitigate these problems by treating prediction

separately for different classes of potential friends.

Implication: Information about spatial movements of users across places can reveal

a great deal about their preferences and interests, thus improving models of link

prediction based on user similarities. In addition, spatial distance could be used

as a filtering mechanism to select promising prediction candidates on which more

complex models could be run.

2.4.2 Recommender engines

As soon as the Web allowed users to access unprecedented amounts of information,

recommender systems emerged to help individuals navigate such large collections

of data according to their personal interests. These systems are designed and built

around the principle of collaborative filtering, the central hypothesis of which is

that content items should be ranked “based on the premise that people looking

for information should be able to make use of what others have already found and

evaluated” [ME95]. The key insight here is that the collective set of user preferences

can be used to help each individual. Similarity between users is computed according

to their item preferences. Then, user preferences that are unknown for certain items

can be predicted by considering ratings by similar users.

Social connections have mainly been introduced in recommender engines as trust

relationships; in this context, trust is considered to be the level of belief established

between two individuals [JIB07]. In a much broader sense, social trust can be

described as the willingness to take some action as the result of receiving information

from a given producer [Gol08]. Hence, the main challenge is to estimate the level of

trust between users. Trust-based connections can be implicit, when inferred from

user preferences over the set of items, and explicit, when based on declared social

links between users. In the latter case, connections between users can be established
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by requiring individuals to rate other users explicitly and quantify whether they

agree with their item preferences, or by asking them to import or otherwise reveal

their friendship ties.

While such connections may merely be adopted as an alternative to item-based

similarity measures, recommendations also have a powerful social aspect that goes

beyond user similarity. In fact, individuals turn to their friends for recommenda-

tions in their daily lives, seeking advice about products or content items. Further-

more, users’ perception of recommendation is strongly influenced by social aspects;

experiments have shown that users overwhelmingly favour recommendations from

familiar rather than from similar individuals [BSH07]. Hence, in order to improve

recommender systems and to provide more personalised recommendation results,

researchers have proposed to incorporate the large amount of social network infor-

mation available on online services into recommendation engines [MZL+11]. These

first attempts demonstrate that social ties might greatly extend the scope and im-

prove the performance of recommendation systems.

Implication: A large fraction of information tends to have a spatial locality of

interest, such as news, politics, sports, shopping items and restaurants. Moreover,

as the focus of recommender systems shifts from online content to physical entities

such as places, the spatial factors shaping social user behaviour are bound to become

increasingly more relevant.

2.4.3 Social-inspired system design

A natural way of exploiting the properties of the social connections between mem-

bers of an online service is to guide and suggest design choices regarding its sup-

porting infrastructure and its software implementation. Given the sheer size of their

user audiences and their planetary scope, successful online social services face the

problem of replicating as much of their data as possible across the globe, in order to

distribute the load on their infrastructure and reduce service latency. Numerous fea-

tures offered by such services correspond to a many-to-many paradigm, with users

simultaneously producing and consuming content through their social connections.

This creates many complex inter-dependencies between data items, complicating the

design of the service infrastructure and of the distributed storage architecture.

However, by exploiting the complex structure of the social network formed by users’

connections, design choices can be made to optimise the services offered to users.

Wittie et al. showed that Facebook interactions take place mainly between friends

in the same geographic region [WPD+10]; hence, they propose to ease the load ex-

perienced by a centralised server infrastructure by introducing distributed regional

proxies, reducing latency experienced by users at the same time. The inherent
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community structure arising from social connections has been exploited to parti-

tion service users into communities and, thus, optimise data distribution across

storage locations, as done in a company’s email network [KGNR10] and on Twit-

ter [PES+10].

Since social connections between users drive content consumption on online services,

other attempts have tried to improve how such content is delivered and served. Sil-

berstein et al. [STCR10] sought to optimise personalised news feeds by differentiating

users based on their content production rate. By querying in real-time content pro-

duced by high-rate users and caching content created by low-rate users, they reduce

both latency and system load. The viral diffusion of content across online social con-

nections has been exploited to rank popularity of content items dynamically based

on the fraction of social-generated requests they experience, and to optimise content

storage across disks in order to reduce energy consumption [SC10].

Finally, by observing network properties of individual users it becomes possible to

find outliers that substantially deviate from expected behaviour; these individuals

could be malicious users or could signal that a particular user account has been com-

promised. For instance, a security mechanism devised by Backstrom et al. [BSM10]

is based on a probabilistic framework to predict the geographic whereabouts of Face-

book users by inspecting where their friends are located; when a user logs in from an

unexpected location, additional security mechanisms could be set in place to prevent

fraudulent activity.

Implication: The geographic properties of online social services have a huge po-

tential to inspire the design of systems and infrastructure; in fact, some research at-

tempts have already explored ways of exploiting some characteristics such as spatial

locality of access patterns. However, a better understanding of the spatial character-

istics of dynamic social processes would greatly expand the scope of social-inspired

system design.

2.5 Present dissertation and future outlook

This chapter has reviewed the different types of online social services available to

users and the most important characteristics of the social networks arising among

their members, introducing also the new generation of location-based social ser-

vices and their particular characteristics. We then discussed systems exploiting the

characteristics of online social services.

Since social ties are constrained by spatial distance, our discussion mentioned several

times its effect on all the main characteristics usually exhibited by online social net-

works. Furthermore, the emergence of the mobile Web makes location-based services
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a pervasive reality, allowing the introduction of a novel entity in the online realm:

the place. This innovation enables users to interact not only among themselves, but

also with spatial entities, revealing their whereabouts and their usual geographic

movements. In summary, the spatial properties of online social services are increas-

ingly more accessible and, at the same time, more important to understand their

structure fully and to design effective systems and applications.

This dissertation is a step in this direction. Given the impact that geographic

space has on online social ties, as discussed in Section 1.1, we plan to study and

understand the relationship between social and spatial factors. To this end, we

present a comparative study of the spatial properties of different online social services

and we discuss new measures that can be used to capture social and geographic

characteristics of online users simultaneously (Chapter 3). These findings are then

extended to define a temporal model of network growth that reproduces social and

spatial patterns seen in real data (Chapter 4).

We also present two practical applications that stem from the availability of spatial

data about online social networks: a link prediction engine based on the places

visited by users (Chapter 5), and a family of caching policies for distributed content

delivery networks that exploit content diffusion over the social graph to discover

geographic patterns of item popularity (Chapter 6).

Given the results and findings about online social networks discussed in this chap-

ter, many research directions that consider space and geography could be further

explored. We will consider them at the end of this dissertation (Chapter 7).
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Science is what we understand well enough to explain

to a computer. Art is everything else we do.

Donald Knuth

3
Measurement and structure

As discussed in the previous chapter, location-aware capabilities are gradually being

offered as a feature by many online services. People appear more willing to share

information about their geographic position with friends, while companies can cus-

tomise their services by taking into account where the user is located. Therefore,

online platforms are able to gather data not only on social interactions, but also

on users’ physical movements. Such information is available for the first time at

unprecedented scales, posing new questions about what spatial properties of user

behaviour it might reveal.

In this chapter our aim is to exploit this simultaneous availability of social and spatial

data given by online services to study the spatial properties exhibited by the social

connections arising among users. By embedding the social graphs in physical space,

we will focus on understanding whether, and how, spatial and social characteristics

are related to each other. Our findings suggest that geographic space influences users

in a heterogeneous way; hence, we will present new social network measures that

simultaneously capture social and spatial aspects. These measures allow users to be

distinguished quantitatively according to their geographic and social characteristics,

enabling comparative analysis of different spatial social graphs.

Chapter outline In Section 3.1 we present and describe our data collection

methodology, which has allowed us to acquire extensive traces about the geographic

and social properties of three popular online location-based social services. These
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digital records about the interplay between online friendship ties and user locations

make it possible to pursue a set of further investigations.

In Section 3.2 we take advantage of user check-ins to assign a geographic position

to each individual, embedding social connections in space. This allows us to study

the spatial properties of online friendship ties, with emphasis on the effect that geo-

graphic distance might have on online relationships. Our analysis focuses on whether

space homogeneously affects users or if, instead, different individuals tend to have

online ties spanning different geographic distances, leading to a more heterogeneous

system. By adopting randomised null models we are able to investigate the statisti-

cal significance of the empirical properties found in these networks. Furthermore, we

discuss how social and spatial factors jointly influence the structure of connections

between users, resulting in heterogeneity between users.

Since our analysis suggests that space influences the social connections established by

online users, we then aim to include the effect of spatial distance in standard network

measures. Thus, in Section 3.3 we define two novel geosocial measures that combine

standard network properties with spatial distance. We demonstrate the effectiveness

of these measures in capturing the impact of geographic distance on online social

ties with a case study; we compare location-based social services to other online

platforms where location-sharing features are not dominant, discussing observed

similarities and differences. Using our measures we discover that spatial constraints

do not uniformly affect different categories of online social services; users of location-

based services exhibit a stronger preference for short-range social connections than

users of content-sharing platforms. We discuss the implications of our findings in

Section 3.4, while Section 3.5 reviews related results and Section 3.6 concludes the

chapter.

3.1 Data collection methodology

Our first goal has been to collect extensive traces about the spatial and geographic

properties of online social services. We have acquired traces from three different

online social platforms. Each service offers location-sharing features, such as check-

ins, or status updates where places are tagged, as well as social networking features.

As we detail in this section, for each service we gathered data about both social

ties and user check-ins. This allows us to extract the social network arising among

users and to assign a geographic home location for each user, effectively embedding

the social graph in geographic space. When users do not explicitly specify their

location, we assign to each user the geographic location of the place where he/she

has made the greatest number of his/her check-ins. We discard users who have no

check-ins.
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3.1.1 Brightkite

Brightkite was founded in 2007 as a social networking website that allowed users to

share their location, to post notes and to upload photos through different interfaces.

It was initially based on the idea of performing check-ins at places, where users can

see who is nearby and who has been there before. Brightkite users could establish

bidirectional friendship links and send public and private messages to each other.

Brightkite has recently transformed its service, offering a group-messaging mobile

application.

Our measurement took place when the service was still mainly based on mobile

location-sharing. Brightkite offered a public API which provided geographic coordi-

nates of user home locations and lists of friends. We fetched data from their API in

September 2009; we seeded a crawler with 1,000 users randomly selected from the

public timeline offered by Brightkite and then we exhaustively retrieved friends and

followed social links until we collected all users connected to the seed users. The

resulting dataset contains information about 54,190 users; it represents a complete

snapshot of a location-based social platform in its initial evolution phase, including

the entirety of its social graph.

3.1.2 Foursquare

Foursquare is a location-based social networking service launched in 2009 which

engages its users in a competition. Users check in at venues in order to be awarded

points that contribute to their position on a leaderboard. In addition, users can

publish and share tips and suggestions related to the places they visit. The service

also enables the creation of bidirectional friendship links.

Foursquare does not provide public access to user check-ins. However, many Foursquare

users choose to push their check-in messages to Twitter automatically, which pro-

vides a public API to search and download these messages. By using this API, we

have recorded approximately 4 million tweets, each one containing a check-in made

by a Foursquare user during June 2010. These messages come from about 250,000

different users and cover about 1.5 million locations on the planet. We estimate that

our sample contains approximately 20% to 25% of the entire Foursquare user base

at collection time, or between 40% and 50% of all active Foursquare users 1.

Since Foursquare does not provide unauthorised access to users’ friend lists, we have

acquired friendship ties that Foursquare users have between them on Twitter, where

they are publicly available, to extract a social network. Our assumption is that a

friendship connection between two Foursquare users is likely to be present also on

1Foursquare reached 1 million users in April 2010 [Sie10].
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Twitter, if the two users are Twitter users as well. While this resulting social graph

is not expected to be identical to the original Foursquare graph, we will show that it

conveys meaningful information, providing results comparable to the other datasets.

3.1.3 Gowalla

Gowalla is a location-based social networking service created in 2009. Users can

check in places through a dedicated mobile application; such check-ins are then

pushed via notifications to other friends on the service and, by linking accounts, to

Twitter and Facebook. The friendship relationship is mutual, requiring each user

to accept friendship requests to allow location sharing. Gowalla was discontinued

at the end of 2011 as the company was acquired by Facebook.

We acquired a complete snapshot of Gowalla in August 2010. Gowalla provided

a public API offering access to information about user profiles, friend lists, user

check-ins and place details. For every user we have gathered the user profile, the

friends list and the list of all the places where the user has checked in. The API did

not provide unauthorised access to fine-grained temporal information about user

check-ins. However, the API presented the timestamps of the earliest and latest

check-ins for each place where a user had checked in. Since users were identified by

consecutive numeric IDs, we were able to exhaustively query all user accounts and

download all the aforementioned information.

3.2 The spatial structure of online social networks

Our exploration now focuses on understanding the spatial structure of the social

graphs in these online services. Specifically, we want to focus at first on global

properties, studying the effect of geographic distance on online ties and the likelihood

of connection between individuals at different distances from each other. Then,

given the heterogeneity shown by individuals in social networks, exhibiting a wide

variability in their number of connections, we expect their spatial properties to be

similarly heterogeneous. In other words, space could homogeneously affect users or,

instead, some individuals may exhibit a preference for long-distance connections.

In this section we address these issues with a comparative study of data collected

from the three services described previously. At first, we focus on the global spa-

tial properties of the social graphs: we study whether distance affects social ties

by looking at the likelihood of connection between users as a function of their geo-

graphic distance. We then shift the focus of our analysis to individual users, showing

that both their connections and the triads they belong to are influenced by spatial

proximity.
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Figure 3.1: Empirical Complementary Cumulative Distribution Function (CCDF)

of the number of friends for each user in Brightkite, Foursquare and Gowalla. The

inset shows the same distributions rescaled by dividing by the average number of

friends in each network; the three datasets fall on the same curve.

Service N K NGC 〈k〉 〈C〉 HEFF 〈D〉 〈l〉
Brightkite 54,190 213,668 50,896 7.88 0.181 5.73 5,683 2,041

Foursquare 258,706 2,854,957 254,532 22.07 0.191 5.90 8,494 1,442

Gowalla 122,030 577,014 116,910 9.28 0.254 5.43 5,663 1,792

Table 3.1: Properties of the traces: number of nodes N and edges K in the social

network, number of nodes in the largest connected component NGC , average node

degree 〈k〉, average clustering coefficient 〈C〉, 90th percentile of shortest path length

distribution HEFF , average geographic distance between nodes 〈D〉 [km], average

link length 〈l〉 [km].

We assess the statistical significance of the observed spatial properties by designing

two randomised null network models; the comparison of the real graphs with the null

graphs sheds light on whether spatial and social factors are influencing the structure

of the network. Overall, we observe robust and universal features across the three

services; this suggests that there might be social processes that are not specific to

one particular online tool adopted by users.

3.2.1 Global spatial properties

We study the spatial properties of the social networks by representing them as spatial

graphs, where nodes are positioned in a space equipped with a metric. In our case,

online users are located over the 2-dimensional surface of the Earth and we adopt

the great-circle distance as our metric; the distance Dij between any two nodes i and
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Figure 3.2: Empirical Cumulative Distribution Function (CDF) of the geographic

distance between all users (dotted line) and between connected friends (solid line) for

the three datasets. Logarithmic binning has been adopted to estimate the number

of samples in each range of values.

j is then computed given their geographic coordinates. Then, the social network

can be represented as an undirected graph G with N nodes and K links, with users

as nodes and where a link exists for each social tie (i.e., a person lists another user

as one of his/her friends). We assign a length lij to each social link so that lij = Dij.

Each social link may be undirected or directed; in the latter case, the existence of

a link from node i to node j does not imply the existence of the reverse link from

j to i. Unless explicitly specified, we always consider undirected connections in our

graphs.

The general properties of these three datasets are reported in Table 3.1. The so-

cial networks are heterogeneous in size, ranging from 54,190 nodes in Brightkite

to 258,706 in Foursquare; the average degree is lower in Brightkite and Gowalla,

respectively 7.88 and 9.28, than in Foursquare, where users have on average 22.07

friends. In all the networks, the largest connected component, also known as the gi-

ant component, contains the vast majority of the users. The degree distributions for

the three networks are reported in Figure 3.1; they all show a heavy tail, with some

users having thousands of friends. Rescaling the degree distributions by dividing by

their average values results in a common trend, as shown in the inset. These net-

works also exhibit high values of the average clustering coefficient, between 0.18 and

0.26, and short topological distances between their nodes, with 90% of all pairs being

fewer than 6 hops away from each other. These properties confirm the small-world

nature of these networks, as found in many other online social systems.

The average geographic distance between users 〈D〉 is consistently larger than the

average distance between friends 〈l〉 across all the datasets; while the first value
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Figure 3.3: Probability of friendship between two users as a function of their ge-

ographic distance, for the three datasets under analysis. Logarithmic binning has

been adopted to estimate the probability in each range of values.

ranges between 5,600 and 8,500 km, the latter has much smaller values, between

1,400 and 2,000 km. This already provides evidence that the probability of a social

link between two users decreases with distance; we will further investigate this rela-

tionship later. The distribution of social link length is comparable across the three

datasets, as shown in Figure 3.2: about 40%-50% of all couples of friends are within

100 km, with more than 3% of all links being shorter than 1 km. The distribution

of distances between users, also depicted in Figure 3.2, is different; about 50% of

users are at distances larger than 4,000 km, across all the networks.

3.2.2 The effect of distance on online friendship

To further investigate whether social links are more likely to exist between geograph-

ically close rather than distant users, we estimate the probability of friendship P (d)

as a function of distance d by counting Ld, the number of social links with length

d, and by estimating Nd, the number of pairs of users at distance d. This gives us

P (d) = L(d)/N(d). As discussed before, this relationship has been found in other

studies to be close to a law P (d) ∼ d−α, with values of α ranging between 1 and 2.

As reported in Figure 3.3, our datasets present noisy patterns: we notice an almost

flat probability in the range 1-10 km, then all curves decrease as distance grows,

reaching another steady probability between 1,000 and 4,000 km. This final plateau

might denote a background probability that affects ties spanning more than 1,000

km. Similar constant trends at short and long geographic ranges have also been

found in other online systems [LNNK+05, BSM10]. The appearance of social ties

longer than 4,000 km is constrained by the fact that both Europe and North America,
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where a large proportion of users are based, are not large enough to allow such long-

range connections and the distance between these two regions is about 6,000 km.

We find that our traces are closer to a decay d−α with α = 0.5, whereas larger expo-

nents have been found in other similar studies; it seems that in the location-based

services under analysis long-range social ties have a relatively higher probability of

occurrence than in other social systems. A potential explanation of this behaviour is

that these platforms are relatively new, so they have mainly attracted early adopters.

These users tend to be tech-savvy, with many existing long-distance online friend-

ship ties which they bring to these services. This might not happen in other types

of social networks, such as those extracted from mobile phone communications or

Facebook interactions, which are already mature.

Indeed, mobile phone connections exhibit a larger exponent α than online social

networks: phone conversations are much more constrained by geographic distance

than interactions on Facebook. This might be due to the fact that mobile phones

represent a mature technology, adopted by the vast majority of the population. Also,

mobile phone calls could often be exchanged to arrange face-to-face meetings, which

take place between spatially close individuals, as discussed by Calabrese et al. in a

large-scale study of mobile phone call records [CSBR11]. As location-based services

become more mainstream their user audience may broaden and include individuals

who are affected by distance in a stronger way.

Decoupling social and spatial factors: network randomisation

After these initial investigations, we assess the statistical significance of the empirical

spatial properties of these networks using two randomised models, which capture

either the geographic or the social properties of the original social networks and

randomise everything else:

• Geo: this null model keeps the user locations unmodified and then creates a

social link between two users at distance d according to the relative probability

of friendship P (d) (as reported in Figure 3.3).

• Social: this null model keeps the social connections as they are, shuffling at

random all user locations.

The overall properties of these models are a direct consequence of their definition.

Both models result in a network with exactly the same number of nodes and, on

average, the same number of edges. The Social model has the social properties

of the original network, including degree distribution, clustering coefficients and

topological network distances, but link geographic lengths are distributed as the
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pairwise user spatial distances: as a result, the average link length becomes higher

than in the original network, with 〈lSOCIAL〉 = 〈D〉. On the other hand, the Geo

model has the same distribution of link geographic lengths as the original network,

so that 〈lGEO〉 = 〈l〉, but the social properties are now lost: the degree distribution

is peaked and has no heavy tail, while the average clustering coefficient is much

lower, since there are fewer social triads. However, the two network models present

similar distributions of topological distances, with about 90% of all pairs of nodes

always within 6 hops.

We will exploit these two null models by comparing their properties to those of the

real networks, in order to understand whether the observed socio-spatial charac-

teristics might be explained in terms of simple geographic or social factors. Every

analysis performed on a randomised null model will be averaged over 100 different

random realisations.

3.2.3 User spatial properties

We now focus on individual users, studying the extent to which their social ties

stretch across space. We define

wi =
1

ki

∑
j∈Γi

lij (3.1)

to be the friend distance of user i, where Γi is the set of neighbours of node i and

ki = |Γi| is its degree. The overall distribution of w is reported in Figure 3.4 for the

original social network and for the two randomised versions. The existence of values

over all geographic scales is due to the existence of users with different characteristic

lengths of interaction. For instance, about 10% of users have connections with an

average length shorter than 10 km, whereas around 20% of users have values of

friend distance above 2,000 km. Links with different geographic lengths do not

appear homogeneously across all users; instead, there is heterogeneity between users,

with some having only short-range connections and others with long-distance ties.

These correlations are stronger than one would expect by chance; in fact, the two

randomised models suggest that values of w should be more peaked around the

average, not spread over a large range of magnitudes.

Another interesting result is obtained by studying the correlation between the friend

distance wi and the degree ki. We study the user distance strength [BBPSV04],

defined as

si =
∑
j∈Γi

lij = kiwi (3.2)

and then we compute the average distance strength s(k) for all users with degree k.

In the absence of any correlation, this measure should be linearly correlated with the
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Figure 3.4: Empirical Cumulative Distribution Function (CDF) of the friend dis-

tance w for each user in the social network, together with the distributions obtained

in the randomised models.

degree s(k) ∼ k〈l〉, while a relation of the form s(k) = Akβ with β 6= 1 or A 6= 〈l〉
would imply correlation between the distance strength and the degree. In particular,

β > 1 signals that users with more friends tend to have longer connections than users

with fewer friends. This relationship is reported in Figure 3.5 for the three datasets

under analysis: we obtain values of β in the range 1.10-1.18 across the different

networks, showing weak positive correlation. Real data reveal a pattern much closer

to the Social model, which has s(k) ∼ k, with β = 1, than to the Geo model, which

has much lower values of β in the range 0.2-0.4, showing negative correlation between

node degree and friend distance. The case of the Geo model suggests that if only

spatial factors were shaping social connections, then users would accumulate several

links only when these links are predominantly covering short geographic distances.

In reality, as users add more and more friends, on average their link length slightly

increases. This contrasts with what is found in the null models, providing evidence

that users with more connections tend to have friends further away.
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Figure 3.5: Average distance strength s(k) as a function of node degree k for the

original network and for its two randomised versions. Each trend is fitted by a law

s(k) ∼ kβ.

3.2.4 Spatial properties of triads

We now shift our attention to understanding the geographic properties of social

triangles. Social networks usually present many triads, resulting in high values of

clustering coefficient. Our networks exhibit similar patterns, with clustering values

between 0.18 and 0.26. We extract 377,438 triangles in the Brightkite social net-

works, 18,764,129 in Foursquare and 1,327,559 in Gowalla. Between 70% and 86%

of all links in each social network belong to at least one triangle, given the highly

clustered structure of these social networks. We find that social triangles arise at a

wide range of geographic lengths. Investigating the probability that a link belongs

to a triangle as a function of its length provides a surprising result: this probability

is largely unaffected by distance, as shown in Figure 3.6. A link is equally likely to

belong to a social triangle regardless of its length. A related result was found by

Lambiotte et al. [LBD+08]: many spatially local clusters of people tend to appear

in mobile phone communication networks, with social links below 40 km more likely

to participate in social triads, but then this likelihood reaches a constant value for

longer links. As we have already seen, online behaviour appears less sensitive to

distance than mobile phone communication. Overall, the trend that longer links
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Figure 3.6: Probability that a social link belongs to a triangle as a function of its

geographic length for the three datasets under analysis. The solid lines show the

average probability that a link belongs to a triangle for each network.

equally participate in social triangles holds also in our datasets.

To assess user heterogeneity, for each social triangle we compute the geographic

triangle length l∆. That is, we compute the arithmetic average of the spatial length

of the three links that constitute the triangle. Then, we compute 〈l∆〉i for each

user i, which averages l∆ over all the triangles he/she belongs to. This value does

not take into account how many triangles a user might belong to, as the clustering

coefficient does so by normalising with respect to the number of potential triangles.

Instead, we aim to assess merely the geographic span of a user’s social triangles,

however many there are. In Figure 3.7 we show the distribution of 〈l∆〉 over all

users: triangles with different geographic span do not arise equally among all users,

but instead there are users with smaller triads and users with wider ones.

For example, there are at least 20% of users with an average triangle length below

100 km, while the top 20% have values above 2,000 km. This heterogeneity is much

higher than one would expect if space did not matter, as the Social model mainly

exhibits values in the range 1,000-10,000 km. However, if social mechanisms were

not a factor at all, then social triads should be smaller, as the Geo model shows.

The existence of both local, short-range triads and global, long-distance ones needs

to be related to the influence both of geographic distance and of social processes

such as homophily, triadic closure and focus constraint [MSLC01, Gra73, Fel81].

We further study this heterogeneity arising among users by computing the average

〈l∆〉 for users with a given degree, as a function of the degree. In these social networks

〈l∆〉 increases with the number of friends, as shown in Figure 3.8. This effect is not

present in the randomised networks: the Social model shows no correlation at all,
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Figure 3.7: Empirical Cumulative Distribution Function (CDF) of average triangle

link length 〈l∆〉 for the original network and for the two randomised models.

while the Geo model exhibits the opposite trend, with smaller triangles appearing

among users with higher degrees. Apparently, there are both social and geographic

factors influencing social triangles, since having only one type of factor does not

reproduce the empirical data.

These results signal that users with fewer friends tend to generate social triangles

on a smaller geographic scale, while users with more friends belong to triangles with

longer links. This confirms the strong connection between the number of connections

of a given user and the geographic distance of these friendship connections.

3.3 Geosocial network measures

Online social networks are affected by geographic distance but, as discussed in the

previous section, users exhibit large variations in the spatial characteristics of their

social ties. Since network measures have been used extensively to differentiate the

social properties of users, our aim moves now towards defining measures that com-

bine network properties and spatial distance, allowing us to identify also geosocial

differences. Measures that augment social structure with geographic information

would add a new dimension to social network analysis and could enable a large
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Figure 3.8: Average geographic triangle link length 〈l∆〉 for all users with degree k, as

a function of degree k. Results for the original network and for the two randomised

models.

number of practical applications related to social systems. One example will be

presented in Chapter 6.

In this section we present two novel geosocial measures: the node locality, which

quantifies how much an individual is connected to a local rather than global set of

friends, and the geographic clustering coefficient, which extends the standard notion

of clustering coefficient by taking into account the extent to which clusters of people

are connected by short-range ties. These measures offer a way to compare individual

users inside the same network but also to compare different spatial social networks,

regardless of the particular geographic space they span.

In order to explore the benefits offered by our measures, we apply them to four

different online social networks which provide location information for their users.

We compare social graphs with different spatial properties by choosing two location-

sharing social services, one blogging community and a social micro-blogging plat-

form. The range of functionalities offered by these services and the differences arising

with respect to their semantics will enable us to use our measures to understand the

effect of spatial distance across different online platforms.

In particular, using our new measures we show that the four services present con-
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trasting characteristics, which may be explained by different attitudes of their users

towards the social and geographic aspects of online friendship. Location-based plat-

forms exhibit users with higher preference for short-range social connections than

sharing-based services, where social ties appear less constrained by spatial distance.

3.3.1 Augmenting network measures with spatial distance

Our main motivation to introduce these measures is given by the heterogeneity we

have observed across users in Section 3.2: in online social services users with social

ties, and social triangles, spanning only short distances coexist with users having

long-distance connections. Even though we have observed correlations of spatial

properties with the number of connections users have, individual users could still

deviate from the average behaviour.

When defining our new geosocial network measures our chief objective is to individ-

uate users who predominantly exhibit short-range connections: this might be useful

for a wide set of purposes, such as geographically caching data related to online in-

teractions [WPD+10] and distributing content items by sending them where traffic

requests are anticipated to arise [THT+12]. Our aim is to create measures that take

into account the fact that users have different numbers of connections; we achieve

this by introducing normalisation by node degree. Our measures should capture

spatial properties regardless of the geographic scale of the social system. In other

words, each measure should be related to the spatial size of the social graph, so that

one can compare social connections within a city to connections between individuals

across a large country. We will highlight in our discussion how our measures meet

these requirements. The definitions of our new network measures are based on the

spatial representation of a social graph already introduced in Section 3.2.1.

Node locality The first measure quantifies the geographic closeness (i.e., the

locality) of the neighbours of a certain node to the node itself. Let us consider

an undirected geographic social network, a node i with a particular geographic

position and the set Γi of its neighbours. The node degree ki is the number of these

neighbours, that is ki = |Γi|. Then, the node locality of i can be defined as a measure

of how geographically close its neighbours are and it is computed as follows:

NLi =
1

ki

∑
j∈Γi

e−lij/β (3.3)

where β is a scaling factor to avoid extremely small values of node locality when

links have large lengths. This definition fits the three main requirements that we

discussed earlier. By definition, NLi is always normalised to be between 0 and 1,

where the latter is achieved only when all friends of a user are in the same location
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as the user herself. The value of β can be chosen so that networks with different

geographic size can still be compared to each other, as we will discuss more in detail

later. We adopt an exponential decay to highlight social ties that span over short

geographic distances and to penalise longer ties. Finally, normalisation by node

degree is needed to take into account the huge heterogeneity observed in the degree

distribution of such graphs.

In a similar way, in the case of directed graphs the node in-locality can be defined

considering only the incoming connections of a node

LINi =
1

kINi

∑
j∈ΓINi

e−lji/β (3.4)

where ΓINi is the set of its incoming neighbours and kINi = |ΓINi | is the in-degree

of the node. The node out-locality is defined in a similar manner considering only

outgoing links:

LOUTi =
1

kOUTi

∑
j∈ΓOUTi

e−lij/β (3.5)

Geographic clustering coefficient While node locality captures how close the

neighbours of a node are, another measure is needed to quantify how connected

the neighbourhood of a node is over space. The geographic clustering coefficient

can be defined as an extension of the clustering coefficient used for complex net-

works. The clustering coefficient measures the fraction of existing triangles among

the neighbours of a given node, compared to the number of possible triangles. This

geographic adaptation gives more weight to triangles when they are formed by nodes

that are close to each other than when nodes are at a greater distance. The geo-

graphic clustering coefficient of node i is thus defined in the same way as the clus-

tering coefficient, but each existing triangle between nodes i, j and k is assigned a

weight wijk defined as:

wijk = e−
∆ijk
β (3.6)

where ∆ijk is the maximum length among the three links, that is ∆ijk = max(lij, lik, ljk).

We define wijk = 0 if there is no link between j and k.

Since this measure uses the maximum weight among all the links of a triangle, it

focusses on nodes that are all close to each other: when just one of the three nodes

is not close to the other two, the weight will immediately decrease. This emphasises

social triangles where the three users are close to each other. Again, the parameter

β is used to scale the values of the measure with respect to the geographic span of

the entire network.

In the case of directed graphs, as for the standard clustering coefficient, we consider

triangles containing undirected links joining node i to its neighbours and directed
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links for the remaining side. If we consider Γi as the set of all the neighbours of

node i (considering both incoming and outgoing links), with ki = |Γi|, the geographic

clustering coefficient is defined as:

GCi =
1

ki(ki − 1)

∑
j,k∈Γi

wijk (3.7)

where the sum is extended only to existing triangles. Since there are exactly ki(ki−1)

different ordered couples of neighbours in Γi, GCi is normalised to be between 0 and

1 by definition. This definition also fits the same requirements met by node locality.

Choice of scaling factor When using these geosocial measures on different spa-

tial networks, one should be able to compare results across them regardless of the

specific geographic span. These measures should scale with the geographic size of a

system, so that when the system is enlarged, or made smaller, the measures do not

change. For instance, one could compare a spatial social graph arising between indi-

viduals in an urban area, with a maximum span of about 50 km, and a graph formed

from connections across a large country, with distances up to 1,000 km. In other

words, these measures should capture whether nodes preferentially exhibit short-

range rather than long-distance ties with respect to the expected spatial dimension

of the system.

This is accomplished by choosing an appropriate value for the scaling factor β used

in Equations 3.3 and 3.6. Using the same value for every network, the graph whose

nodes are at shorter distances from each other might have higher values of geosocial

measures than the other. Instead, we want to be able to compare the spatial struc-

ture of two networks even if it arises at different geographic scales, e.g., city-wide

or nation-wide. A reasonable choice for each network is to adopt a scaling factor β

equal to the average spatial distance between all its nodes. This choice is dependent

only on the positions of the nodes of the social graph, not on their links. It is worth

noting that when considering a single social network the scaling factor becomes less

important and could be ignored by setting β = 1, for instance.

3.3.2 Case-study: assessing the impact of location-sharing

We explore the effectiveness of our measures by applying them to a set of four

different social services with location information about their users.

Traces

We use traces from four different social services, created with different goals and

offering different features to their users. Two of them, Brightkite and Foursquare,
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Dataset N K 〈k〉 〈C〉 〈Dij〉 〈lij〉 〈NL〉 〈GC〉
Brightkite 54,190 213,668 7.88 0.181 5,683 2,041 0.82 0.165

Foursquare 258,706 2,854,957 22.07 0.191 8,494 1,442 0.90 0.173

LiveJournal 992,886 29,645,952 29.85 0.185 6,142 2,727 0.73/0.71 0.146

Twitter 409,093 182,986,353 447.29 0.207 6,087 5,117 0.57/0.49 0.108

Table 3.2: Properties of the datasets: number of nodes N and edges K, average

node degree 〈k〉, average clustering coefficient 〈C〉, average distance between nodes

〈Dij〉 [km], average link length 〈lij〉 [km], average node locality 〈NL〉 (in/out), av-

erage geographic clustering coefficient 〈GC〉.

are location-sharing services: the other two are LiveJournal, a blogging network,

and Twitter. They all provide static geographic information about their users, in

explicit or implicit form (e.g., geographic coordinates or a city name). The traces

used for Brightkite and Foursquare are the same as those described in Section 3.1,

while for LiveJournal and Twitter we describe our collection methodology here.

LiveJournal LiveJournal is a community of bloggers with over 10 million active

users as of the end of 2010. Users can keep a blog or a journal and establish friend-

ship connections to other users. Each user provides a personal profile, which often

includes home location, personal interests and a list of other bloggers considered

as friends. Friendship links are not always reciprocal. The data collection process

involved both crawling the social network links through the API and downloading

the user profile pages. The duration of the collection was 9 days, from November

2 to November 9, 2009, obtaining a sample of 1,502,684 users. Given the 1,226,412

users who provided location information, we successfully obtained a meaningful ge-

ographic location for 992,886 users.

Twitter Our crawling process was seeded collecting 1,000 seed users from the

public timeline, which shows a list of the 20 most recent tweets posted by users with

unrestricted privacy settings to the entire service. The duration of the data crawling

was 6 days from December 3 to December 8, 2009, gathering information about

profiles and follower lists for 814,902 different users. Of these, 535,653 reported

some information about their home location. We have successfully geocoded 409,093

users, translating their location information into a point on the Earth.

To extract and collect information from LiveJournal and Twitter we crawled a sam-

ple of users employing snowball sampling: the data extraction starts from a set of

seed users and expands the extraction by following the outgoing links of these users

to reach new users, and so on.
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General properties

In Table 3.2 we compare some basic properties of the traces under analysis. The

graphs extracted from these services are different in size: Brightkite and Foursquare

have average node degrees 〈k〉 of 7.8 and 22.0 respectively, LiveJournal has an aver-

age degree of about 30 and Twitter shows a larger value of 447. The case of Twitter

is peculiar: this social network encourages users to follow a large number of other

users and, since no reciprocation in link creation is needed, it is easier for a user to

accumulate a large number of social connections. Also, Twitter users may accumu-

late many connections as sources of updates, as the service is used as a news feed by

many [KLPM10]. Our samples show a giant component containing almost all the

nodes in each sample.

Differences between the social graphs are present also with respect to the average

clustering coefficient 〈C〉: Twitter and Foursquare have higher coefficients of 0.207

and 0.191 respectively, while LiveJournal scores 0.185 and Brightkite 0.181. In

addition, since LiveJournal and Twitter are represented as directed graphs, we report

their value of reciprocity ρ [GL04], which measures how likely each link is to be

present in both directions and spans from ρ = 1 for perfect reciprocity to ρ = −1

if each link is present only in one direction. We have ρ = 0.69 for LiveJournal,

while Twitter has ρ = 0.79. Hence, both networks exhibit high values of reciprocity,

although Twitter appears more symmetric; this property might be related to the

fact that it encourages more reciprocal interactions than LiveJournal.

Geographic properties

After investigating the social structure of the services, we now analyse their ge-

ographic properties. One of the most important characteristics is the geographic

distance that social connections span; even if a link between two users denotes some

sort of social relationship, it is also important to take into account how it stretches

across space. First of all, the networks under analysis present different values of the

average distance 〈Dij〉 between users: Foursquare users exhibit an average distance

of about 8,500 km, while in Brightkite this value goes over 5,600 km and in Live-

Journal and Twitter it is above 6,000 km. The higher value in Foursquare reflects

the wider global audience of that service, popular in the USA, in Europe and in

Asia.

In Figure 3.9 we compare the cumulative probability distribution of edge length for

the four different social networks. The distributions for Foursquare and Brightkite

have already been presented in Figure 3.2 and they are reported here again to aid

comparison with the other two services. Foursquare has the smallest average, only

1,442 km, yet only about 4% of its links are shorter than 1 km. Similarly, only about
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Figure 3.9: Empirical Cumulative Distribution Function (CDF) of the geographic

link length for the four datasets. Logarithmic binning has been adopted to estimate

the number of samples in each range of values.

4% of the links in Brightkite are extremely short, with a global average length of

2,041 km. However, between 60% and 70% of links are shorter than 1,000 km in these

two networks. An opposite trend appears in LiveJournal, with around 30% of links

being shorter than 1 km, but an average link length of 2,727 km. Finally, Twitter

links have an average length of 5,117 km: below 5% of these links are shorter than

100 km, while more than 80% are longer than 1,000 km. This is a clear indication

that Twitter users are likely to be engaged with a global audience of followers, even

though there are also short-range social connections.

3.3.3 The effectiveness of geosocial measures

After discussing the social and geographic properties of these services, we apply our

two novel measures, node locality and geographic clustering coefficient, which blend

social and spatial factors together.

Node locality

The probability distributions of node locality for the four datasets are shown in

Figure 3.10. The main observation is that in Brightkite, Foursquare and LiveJournal

there is a non-negligible fraction of users with node locality close to 1. Hence, there

are some users who have social connections only with other individuals within a

close geographic distance. In the Brightkite network about 40% of users have a node

locality higher than 0.90, and an even higher proportion is seen in the Foursquare
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Figure 3.10: Empirical Cumulative Distribution Function (CDF) of node locality

for each dataset.

dataset. Users of these location-based services exhibit high average node locality:

Brightkite has an average value of 0.82, while in Foursquare this value is 0.90.

In the LiveJournal network only 20% of users have a node locality higher than 0.90

and the mean values are 0.73 for in-locality and 0.71 for out-locality. The node

locality distribution appears similar both for in- and out-locality. In Twitter the

distribution of node locality shows fewer nodes with high values. This may provide

evidence that Twitter users are more likely to engage with a geographically spread

set of individuals rather than only with users at closer distances. Moreover, in- and

out-locality exhibit different patterns, since there are more than 15% of nodes with

an out-locality of 0, probably nodes without outgoing connections. The average

values are lower than in the other networks: 0.57 for in-locality and 0.49 for out-

locality.

These results show that location-based services such as Brightkite and Foursquare

are characterised by short-range friendship links between users, resulting in a vast

proportion of them having high values of node locality. Thus focussing merely on

user location, rather than on what users share and post, may give more opportunities

to discover potential friends who live nearby. In contrast, these patterns are not

present in social networks that are less centred on user location; in LiveJournal
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Figure 3.11: Average node locality as a function of node degree for each dataset. For

directed networks the relationship is shown both for incoming and outgoing links.

users have connections with heterogeneous length and this effect is even greater in

Twitter. Their users may be more interested in becoming friends with individuals

who post and share interesting content rather than simply with people at close

distance.

Node locality and node degree

We now analyse the correlation between node degree and node locality to understand

the geosocial properties of users with different numbers of connections. The average

node locality as a function of node degree for Brightkite and LiveJournal is shown in

Figure 3.11: node locality is slowly decreasing with node degree and only users with

many connections have lower values of node locality. Since LiveJournal and Twitter

are modelled as directed graphs we investigate the correlation in both directions. In

LiveJournal the decreasing trend is evident for both in- and out-locality. Twitter

users reach a maximum value of out-locality as their number of outgoing links grows

larger than 100, whereas in-locality shows a maximum just before 100 incoming

connections. Both relationships then decrease until they reach a plateau.

While it is expected that nodes with larger degrees exhibit smaller locality values,

since it is statistically more likely that they are connected to distant users, this
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Figure 3.12: Empirical Cumulative Distribution Function (CDF) of geographic clus-

tering coefficient for each dataset. Logarithmic binning has been adopted to estimate

the number of samples in each range of values.

behaviour is not observed in Twitter: users with about 10 outgoing connections have

lower values of out-locality, but as the out-degree grows there is a maximum at 100.

One possible explanation is that users with a small number of links are probably

mainly connected to popular accounts, e.g., institutions, media and commercial

entities, which are usually not geographically close to them.

Note that during the data collection, when users joined Twitter they were presented

with a list of 20 popular users to follow; these celebrities are unlikely to be located

close to the joining user. As a consequence, people who just added those suggested

connections when they joined the service may have ended up with a small number

of connections which are not close from a geographic point of view.

Geographic clustering coefficient

The other geosocial measure that we have studied is the geographic clustering coef-

ficient. Since social networks are widely known to be characterised by the presence

of triangles, the aim of this measure is to understand whether triplets of mutu-

ally connected users are more likely to be geographically close or, instead, distant

from each other. A user with high geographic clustering coefficient has neighbours

who are tightly interconnected and close to the user themselves and to each other.

The four datasets exhibit different values of geographic clustering coefficient; while

Brightkite has an average value of 0.165 and Foursquare of 0.173, the average for

LiveJournal is 0.146 and Twitter scores 0.108. Also, the first two datasets exhibit a

geographic clustering coefficient close to their standard clustering coefficient, while

LiveJournal and Twitter present lower values when geographic distance is taken into
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Figure 3.13: Average geographic clustering coefficient as a function of node degree.

For directed networks the relationship is shown both for in- and out-degree.

account. Thus, in the former two networks clusters form at shorter distances than

in the latter.

The probability distributions of the geographic clustering coefficient are shown in

Figure 3.12. The higher mean values for Brightkite and Foursquare are explained by

the fact that a non-negligible portion of users have a coefficient of 1.0: about 10%

in Brightkite and about 5% in Foursquare. On the other hand, in Twitter higher

values are less likely to be observed and there is no discernible proportion of users

with a coefficient of 1. These results show that location-based platforms tend to

have more geographically confined triangles than social networks more focussed on

content production and sharing such as Twitter.

Geographic clustering coefficient and node degree

We now investigate the relationship between geographic clustering coefficient and

node degree. As reported in Figure 3.13, in Brightkite, Foursquare and LiveJournal

the geographic clustering coefficient steadily decreases as the number of neighbours

grows: thus, if a user has only few friends they are more likely to create connections

with people nearby. On the other hand, Twitter shows a different behaviour: the

geographic clustering coefficient is slowly decreasing as the degree increases, but
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then it grows again until reaching a local maximum around the value of 1,000, while

it decreases again for larger degrees.

This particular property of the Twitter network may be explained by the existence

of users which are popular only in a particular region: they have both incoming

and outgoing links with a large audience which has, however, several interconnec-

tions on a confined scale. Indeed, a user which is locally popular might have lower

values of node locality because of his/her large audience, as shown in Figure 3.11,

but users which are following him/her are also likely to share the same interests

(since they follow the same popular user) and to become connected with each other.

Instead, when a user reaches a wider popularity, his/her followers will be both more

geographically spread and less interconnected.

3.4 Discussion and implications

In this chapter we have seen that spatial distance affects the social structure of

online services and that users exhibit different geographic and social characteristics,

with weak positive correlation between the number of friends and their average

distance. Also, a similar heterogeneity appears with respect to social triads, with

users participating in geographically wider triangles as their degree increases. Our

findings appear robust across the three traces under analysis, as they arise regardless

of the particular service we consider, the data collection methodology, the time

elapsed since the creation of the service or the number of users in the social graph.

However, the properties we observe in the real systems do not appear in the two

randomised versions of these networks; therefore, their socio-spatial structure cannot

be explained by taking into account only geographic factors or social mechanisms.

Indeed, this claim can be further supported by considering the average length of a

link lij as a function of the product of the degrees kikj. As observed in Figure 3.14,

longer links tend to arise between users with more friends, while links connecting

users with fewer friends tend to be much shorter. This effect signals significant

correlation between users’ social properties and their spatial behaviour. In fact, it is

not seen at all in the Social model; this suggests that there might be an underlying

spatial process taking place that results in this correlation, since social ties are not

equally likely to appear regardless of their geographic length. On the other hand,

the Geo model exhibits the opposite trend, with shorter links appearing mainly

between well-connected users. Hence, distance is not the only factor affecting the link

formation process; in other words, when only mechanisms that depend on geographic

distance are in place, a user accumulates many friends only where there are many

potential friends living nearby, i.e., if he/she is located in an area with high density

of users. Furthermore, this geographic model cannot reproduce how some users
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Figure 3.14: Average link length 〈lij〉 as a function of the product of the node degrees

kikj for the original network and for its two randomised versions.

accumulate thousands of friends, creating a heavy-tailed degree distribution.

Since both social factors and geographic space need to be considered when studying

these systems, we have proposed two new geosocial measures, node locality and the

geographic clustering coefficient, that take spatial distance into account. Using these

novel network measures we have been able to study four different online services from

a social and a spatial perspective at the same time. Our measures have highlighted

that purely location-based social networking services, which mainly focus on the

geographic dimension of social interaction, tend to have users with stronger prefer-

ence for spatially short social ties. In contrast, services based more on the idea of

sharing information and content have users with lower node locality and geographic

clustering coefficient values, showing that space has a weaker effect on these services.

All these findings support the claim that accurate modelling of spatial social net-

works requires the incorporation of processes combining social and spatial factors.

We have discussed how the effect of node degree on network evolution is captured

well by the preferential attachment model, where the probability of connection

between nodes i and j, Pij, is proportional to the degree of node j, Pij ∝ ki.

The effect of geographic distance can be included in this attachment probability,

Pij ∝ kikjf(Dij), where f is a decreasing deterrence function of the geographic
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distance Dij between the nodes. Thus, long distances tend to be covered only to

connect to important hubs, while nodes with fewer connections become attractive

when they can be reached over a short distance. When the deterrence function

has a simple functional form such as f(d) ∼ d−α, then the probability of a con-

nection between two nodes becomes similar to the gravitational attraction between

celestial bodies, Pij ∝ kikj
Dαij

. Hence, these attachment models are known as gravity

models [Car56, ES90].

A gravity model balances the effect of spatial distance with other node properties;

the underlying assumption is that longer (and more expensive) ties will appear

mainly between important entities, while a node will connect to an unimportant

one only if they are close to each other. These models have long been used to model

connections in spatial networks such as trade flows across countries [BMS+08], traffic

flows in highway networks [JWS08] and mobile phone calls between cities [KCRB09].

Gravity models are only a first tentative step to reproduce the patterns we have

observed. In particular, gravity models only focus on pairs of nodes, without taking

into account social effects such as triadic closure and focus constraint [Gra73, Fel81].

Furthermore, even though the degree of a node represents a reasonable choice as a

“mass” variable for a social gravity model, any notion of “importance” in a social net-

work might avoid quantification, thus making the definition of a sound social gravity

model hard to specify. Such individual importance may be an exogenous variable

which affects the socio-spatial structure, such as being a well-known celebrity or any

other type of individual popularity or social influence measure. It is likely that any

social gravity model will need to take into account this type of heterogeneity across

individuals. We will explore these issues in more depth in Chapter 4.

3.5 Related work

In this chapter we have presented our findings concerning the spatial properties

of online services, studying the spatial structure of the social graph arising among

individual users. Hence, the main thread of research related to these results involves

studies of the spatial properties of complex networks and social systems.

The effect of geography on complex networks has been studied mainly in systems

such as transportation networks and infrastructure networks, that is, structures

able to convey energy, matter or information at different scales and in different

scenarios. Some examples include Internet router connections [YJB02, BGG03],

airline flights between airports [GN06], subway networks [LM02], electrical power

grids [SRCCMV08], urban road networks [CLP06, CSLP06], maritime cargo ship-

ments [HZ09] and other systems where nodes are embedded in a metric space. A
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more complete review discussing many of these examples in depth has been compiled

by Barthélemy [Bar11].

This abundance of work on spatial networks does not extend to social systems:

mainly because geographic data about individuals have been difficult to obtain,

especially for large systems, social network analysis has often neglected the spatial

perspective. Thanks to some dedicated and relatively small-scale data collection

efforts, some sociologists have studied the effect of distance on social ties. For

instance, through a longitudinal study spanning different decades, Mok and Wellman

discuss how spatial proximity influenced social interactions among resident of a

neighbourhood in Toronto before the advent of the Web [MW07], but also when

online communication tools became widely available [MW09]. Their results suggest

that the effect of distance remained strong over 20 years, even though communication

was made easier and more effective over the entire range of geographic distances.

Some studies have explored a fundamental spatial property of social networks: the

probability P (d) of having a social connection between two individuals as a function

of their distance d. Even though there seems to be agreement that P (d) decreases

with distance, the exact relationship between these two variables is still unclear.

Lambiotte et al.[LBD+08] found that it decays as P (d) ∼ d−2 in a mobile phone

communication network, while Liben-Nowell et al. [LNNK+05] found a different

relationship P (d) ∼ d−1 + ε among online bloggers on LiveJournal in the USA, ε

being a constant probability which acts on online communities regardless of distance.

In another study, Backstrom et al. [BSM10] have similarly found spatial scaling

P (d) ∼ 1/d of Facebook connections; they show that this association appears so

strong and important that it can be safely exploited to infer where users are located

only from the location of their friends.

It has also been proposed that the spatial structure of social networks might be

scale-invariant, with a universal distribution P (d) ∝ d−1 [HWL+11]. Butts suggests

that this relationship between physical distance and connection probability in social

networks is so important that it can be used to explain entropy and predictabil-

ity of the social structure, provided that an upper bound can be defined for the

likelihood that distant individuals are connected [But03]. Our study goes beyond

the investigation of this basic relationship between ties and distance, analysing user

heterogeneity and addressing the interplay between spatial and social factors.

Finally, a few other studies have investigated the structural properties of a location-

based social network and how social and geographic distance influences the creation

of new connections between its users [LC09a, LC09b]. Such investigations fail to

address the heterogeneity we have observed across users and do not discuss whether

the global structure of the network is influenced by social and spatial factors. In

doing this, our findings represent some important initial steps towards a better
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and more comprehensive understanding of the spatial properties of online social

networks.

3.6 Summary

Location-sharing features offered by online social services allow users to engage in a

new way with the physical world around them and with their friends. At the same

time, as individuals create and share location-tagged information, they reveal their

geographic position and their spatial movements. In order to understand the effect

of space and distance on online social connections we need to measure and interpret

traces extracted from such services.

In this chapter we have addressed these issues, offering a series of results. We have

presented a large-scale study based on traces collected from mobile location-based

social services. We have used check-in data to assign geographic positions to users

and to study their social graph as a spatial network. Through a comparative study

of three different services, and by adopting randomised null models to disentangle

social from spatial factors, we have discovered that the spatial properties of users

are heterogeneous. These findings will be revisited in Chapter 4 when we discuss

the temporal evolution of a spatial social network.

Finally, we have devised two new network measures that combine social and spatial

characteristics: node locality and the geographic clustering coefficient. We have

explored their potential by using them to assess the effect of spatial distance on

different online social services. We will also see in Chapter 6 that these measures

can be successfully used when designing content delivery distribution systems.
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Essentially, all models are wrong, but some of them

are useful.

George E. P. Box

4
Modelling social network growth over

space

Connections established between users of online social networks are often influenced

by basic social mechanisms such as preferential attachment, which captures how

popular users attract more and more new links, and triadic closure, which models

how shared friends are powerful indicators of future friendships of a user. However,

we have seen that geographic distance is also a factor which impacts online social

links; our results indicate that spatial proximity fosters the creation of online social

ties. Yet, the underlying spatial processes that might shape the creation of new

social links are still largely unknown.

Different evolutionary models have been proposed and tested to explain the growth

of online social networks; in many cases they describe the behaviour of individual

nodes that results in some global structural properties observed in real-world sys-

tems, such as power-law degree distributions and high clustering coefficients [LBKT08].

The fundamental importance of such models is due to the fact that they often high-

light universal characteristics of user behaviour; for instance, mechanisms such as

preferential attachment and triadic closure are thought to mimic the actions of in-

dividuals creating their social connections, thus offering practical insights to predict

future links [LNK07, LLC10]. However, these growth models often neglect factors

that are not inherently connected to the structure of the social network itself; in

particular, they neglect spatial distance.
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Among the many interesting questions arising from the inclusion of spatial informa-

tion in social network analysis, we aim to understand how distance is affecting the

establishment of new online social ties. In the previous chapter we have seen that

by considering only social or only spatial factors one cannot reproduce the overall

properties of real spatial social networks. The open question is therefore how to

merge space and social influences successfully to reproduce what is observed in real

graphs. In this chapter we answer this question: we present a detailed study of

the temporal evolution of a social network by quantifying the impact of spatial and

social factors on the growth of a popular location-based social service. We exploit

our findings to propose a new model of network growth, which is able to describe

the social and spatial properties observed in real networks.

Chapter outline In this chapter we study the temporal evolution of a social

network using daily snapshots of a popular location-based social service, with infor-

mation about users’ location and social connections. We discuss how the network

grows over time in Section 4.1. Using this fine-grained temporal information about

network evolution, in Section 4.2 we test whether different edge attachment and tri-

adic closure models can explain the observed data, adopting an approach based on

likelihood estimation. This methodology allows us to compare quantitatively differ-

ent evolution models according to their statistical ability to reproduce real events.

Section 4.3 studies the temporal patterns of individual user behaviour, namely the

lifetime of a node, that is the amount of time a user is actively creating new edges,

and the inter-edge waiting time, which governs the amount of time elapsed before a

node will create a new edge.

Based on these findings, in Section 4.4 we describe a new model of network growth

which is able to reproduce both the social and spatial properties observed in the

real data. Our results show that geographic constraints should be considered when

dealing with online social networks and suggest that a gravitational attachment

model is able to capture the effect of geographic distance on users. We consider

the implications of our study in Section 4.5, reviewing related work in Section 4.6.

Section 4.7 closes the chapter.

4.1 Measuring network growth

In this section we describe the temporal evolution over 4 months of a popular

location-based social service, Gowalla. We have acquired traces which include fine-

grained temporal information about when individual social connections between

users were created; this enables us to explore the temporal evolution of the Gowalla

social network.
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Figure 4.1: Temporal evolution of the number of nodes (a) and links (b) in the

spatial social network of Gowalla users, as captured by our periodic measurements.

4.1.1 Data collection

We have downloaded daily snapshots of Gowalla data between May and August

2010 by accessing their public API, obtaining for each snapshot the data outlined in

Section 3.1. This dataset represents a sequence of complete snapshots of a large-scale

location-based service, allowing us to study how the social network grows over time

and over space. In particular, we have temporal information about all the social

links created during our measurement process; this enables us to study the social

and spatial factors that may influence the creation of social links.

The dataset contains about 400,000 registered users at the end of our measurement

period, but only a fraction of them are actively using Gowalla, while many of these

accounts do not show any type of activity: no social connections and no check-ins.

There are 183,709 users with at least one check-in and 162,239 with at least one

friend. We focus our analysis on 122,030 active users who have both friends and

check-ins.

Notation

Formally, we represent the spatial social network of Gowalla users as an undirected

graph. We denote by N and K the total numbers of nodes and edges, while Gt =

(Nt, Kt) is the graph composed of the earliest t edges (e1, . . . , et), with GT being the

final network at the end of the measurement process. The time when edge e was

created is t(e) and t(u) is the time when node u joined the service, that is, the time

when it created its first connection or made its first check-in. The age of node u at

time t is denoted as au(t) = t− t(u). The degree of node u at time t is ku(t), while

the number of nodes with degree k at time t is denoted as nk(t).

As in the previous chapter, every node of this network is embedded in a metric

space: we assign each user to the geographic location of the place where he/she
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Figure 4.2: Complementary Cumulative Distribution Function (CCDF) of node de-

gree (a), node age (b), and link geographic length (c) at the end of the measurement

period.

has made the greatest number of his/her check-ins at the end of the measurement

period. Since we do not change user locations over time, link lengths and distances

between nodes do not change either.

4.1.2 Basic properties

The number of nodes and the number of links grow approximately linearly over time,

with the number of links growing at a faster pace. On average, the network gains

about 375 new nodes and about 1,900 new edges per day, as shown in Figure 4.1.

Note that the graph at the end of our measurement period corresponds to the

Gowalla dataset already studied in Chapter 3.

In Figure 4.2(a) we present again the degree distribution, which exhibits a heavy

tail. In contrast, both the distributions of node age and link geographic distance, in

Figures 4.2(b)-4.2(c), do not exhibit heavy tails but instead an almost exponential

decay (notice the linear x-axis). There is a large fraction of short-range geographic

connections: about 50% of social links span less than 200 km, with only a small

fraction being longer than 4,000 km. At the same time, the distribution of node
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age shows that nodes have joined the network with some irregular temporal spikes;

overall, about 99% of all nodes have joined the service in the last 300 days.

4.2 Modelling network growth

In this section we study how the creation of individual social links is influenced by

both global and local properties of the network, adopting a methodology based on

the Maximum Likelihood Principle to evaluate and compare how a set of models

describe the empirical data.

In more detail, we analyse two core facets of temporal network evolution:

• how edges are created: we test different attachment models that select the

target of a new connection given the social and spatial properties of network

nodes;

• how social triangles are created: we test a family of triadic closure mech-

anisms based on node properties and spatial distance.

Our results demonstrate that node degree and spatial distance are simultaneously

influencing edge creation, suggesting that a gravitational attachment model describes

real network evolution better than purely social or spatial models ; we also find that

social factors are more important than spatial constraints when an edge closes a

triangle. These findings will be revisited and exploited in Section 4.4, where we will

define a new model of network growth.

4.2.1 Maximum likelihood estimation

When assessing whether a model reproduces empirical properties observed in the

data, a common approach is to test if global properties are equally found in the real

data and in the output of the model. Instead, we take advantage of the fine-grained

temporal information present in our traces and we adopt a quantitative approach to

compare how different models describe the empirical traces. We directly compute

the likelihood that a model has of generating the events observed in our sequence

of traces. The Maximum Likelihood Principle can then be applied: historically, this

principle has been used to compare numerically a family of models and, as a result,

pick the “best” model (and parameters) to explain the data [Sti02].

Studying networks with likelihood methods requires a probabilistic model describing

the evolution of the graph itself. In other words, the network is considered the result

of an evolutionary stochastic process which has driven its growth, both in terms of
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new nodes and new edges [WBHS06]. For instance, the preferential attachment

model discussed in Section 2.2.6 describes the evolution of a network in terms of the

probability of connection between new nodes and existing nodes. Given real data

about the evolution of a network, one can test the extent to which the assumptions

of preferential attachment model are supported by the data.

In our case, estimating the likelihood of a model M involves considering each indi-

vidual edge et = (i, j) created during our measurement period and computing the

likelihood PM(et) that the source i selects the actual destination j according to the

model M . Thus, the likelihood PM(G) that model M reproduces graph G is given

by the product of the individual likelihoods according to model M :

PM(G) =
∏
t

PM(et) (4.1)

We use log-likelihood for better numerical accuracy, obtaining

log(PM(G)) = log(
∏
t

PM(et)) =
∑
t

log(PM(et)) (4.2)

Equation (4.2) suggests a simple algorithm to compute the log-likelihood of a given

model M : for each new edge created during the graph evolution, we compute the

probability that it would be created according to model M , we take the logarithm

of this probability and we sum all the values obtained for each edge. When this

procedure is repeated for several models, we can choose the model with the highest

likelihood to explain the data.

Since every edge is undirected and we do not have information about which user

initiated the social contact, we consider every new edge et = (i, j) in both directions

in the rest of our analysis, in order to avoid any bias. This methodology can be

extended easily to handle directed graphs.

4.2.2 Modeling edge attachment

We investigate the effect of three global characteristics on the creation of individual

social links between users: node degree, node age and spatial distance between

nodes.

Attachment by node degree According to the preferential attachment model [BA99],

the probability of creating a new connection to a node is proportional to the number

of its existing connections. The cumulative advantage held by high-degree nodes re-

sults in a degree distribution with a heavy tail, as some nodes accumulate a large

number of connections. We test whether a similar mechanism is compatible with
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Figure 4.3: Probability of creating a new social link as a function of node degree.

our data by computing the probability Pdeg(k) that a new link will be created with

a node with degree k:

Pdeg(k) =
|{et : et = (i, j) ∧ kj(t− 1) = k}|∑

t nk(t− 1)
(4.3)

where the numerator counts how many edges have been created connecting a node

with degree k and the normalisation factor considers how many nodes with degree k

were present when the edge was created. If preferential attachment is not governing

the growth, then Pdeg(k) should not depend on k. However, we see in Figure 4.3 that

Pdeg(k) ∝ k0.74, showing that nodes with higher degree are more likely to attract

new edges than nodes with fewer connections. Although the trend is not exactly

linear as in the original preferential attachment model, node degree is related to the

creation of new edges.

Attachment by node age The period of time a node has been part of the service

could also be a factor affecting the creation of edges. Older nodes might have more

visibility or more authority in the network; at the same time, when new users join

the network they might experience intense activity as they search the network for

potential connections. We compute E(a), the number of edges created by nodes of

age a normalised by dividing by the total number of nodes that ever achieved at

least age a:

E(a) =
|{et : et = (i, j) ∧ t(e)− t(i) = a}|

|{n : T − t(n) ≥ a}| (4.4)

where T is the time when the last node joined the network during the measurement

period. As depicted in Figure 4.4, there is a spike at age 0: this represents nodes
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Figure 4.4: Probability of creating a new social link as a function of node age.

that join the network, create some links and then never come back. The number of

created edges then quickly goes down with age a but grows again for higher values

of a. Many links are created when a node joins the network, followed by lower levels

of edge creation; older nodes then tend to establish further links.

Attachment by spatial distance Another important factor for edge attachment

may be geographic distance. We compute the probability Pgeo(d) that a new edge

spans geographic distance d, normalised by dividing by the number of nodes at

distance d from the source:

Pgeo(d) =
|{et : et = (i, j) ∧Dij = d}|∑

t |{n : Din = d}| (4.5)

Our data show how Pgeo(d) decreases with distance d, as reported in Figure 4.5,

even though the trend appears noisy. In particular, the data roughly follow a trend

Pgeo(d) ≈ d−α with α = 0.6. While a similar functional form has been found in other

spatial social networks, but with different exponents α, in this case it is measured

at the level of individual edge creation events. Geographic distance affects the edge

creation process in a clear way: as already discussed in Section 3.2.2 in the static

scenario, even when considering individual edge creation events, longer links have a

lower probability of appearance than short-range ones.

Evidence of gravity effects in network growth

We discussed in Section 3.4 how gravity models are a suitable choice to combine

social and spatial properties. Our aim is now to uncover evidence to support the

86



CHAPTER 4. MODELLING NETWORK GROWTH

100 101 102 103 104

Link length (km), d

10−6

10−5

10−4

10−3

10−2

P
g
e
o
(d

)

Figure 4.5: Probability of creating a new social link as a function of the geographic

distance of the node. Logarithmic binning has been adopted to estimate the number

of samples in each range of values.
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Figure 4.6: Probability Distribution Function of λ(1), the geographic span of the

first social link created by a user. Logarithmic binning has been adopted to estimate

the number of samples in each range of values.

hypothesis that a similar mechanism can reproduce patterns observed in the real

data.

A consequence of the gravity model is that nodes with higher degree tend to attract

longer links. We therefore define λi(k) as the geographic length of the k-th edge

created by user i and we study how the probability distribution of λ(k) changes for

different values of k. The probability distribution of λ(1) is reported in Figure 4.6.

The distribution can be roughly divided into two regions: social connections shorter

than 5 km, a threshold compatible with the size of many urban areas, exhibit a
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Figure 4.7: Average and median geographic span gap of the k-th edge created by a

node as a function of k.

constant probability, whereas the probability of creating longer ties quickly decays.

This preference for short-range ties confirms our previous analysis of edge attach-

ment mechanisms. The influence of degree k on the geographic properties of social

links appears strong; as shown by Figure 4.7, both the average and the median value

of the geographic length 〈λ(k)〉 of the k-th edge increase with k. While the average

length of the first edge is about 1,100 km, the 100th edge is about 2,400 km. The

median value shifts accordingly with k, increasing from 150 km to more than 900 km

for higher degrees. These findings are compatible with a gravity model where node

degree and geographic distance simultaneously influence social connections created

over space.

Evaluation of attachment models

We have discovered that individual node properties and geographic distance affect

edge creation. Our aim is now to understand what type of edge attachment models

better approximate network temporal evolution.

We deliberately choose simple models, since our goal is not to reproduce exactly the

temporal evolution of the network but, rather, to understand which factors mainly

drive its growth. We consider four different edge attachment models, each one with

a single parameter α:

D: the probability of creating an edge with node n is proportional to a power α

of its degree: kn(t)α;

A: the probability of creating an edge with node n is proportional to a power α

of its age: an(t)α;
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Figure 4.8: Log-likelihood of each edge attachment model as a function of their

parameter α. The gravity model DG outperforms all the others.

G: the probability of creating an edge with node n is inversely proportional to a

power α of its geographic distance from i: D−αin ;

DG: the probability of creating an edge with node n is proportional to its degree

and inversely proportional to a power α of its geographic distance from i:

kn(t)D−αin

We will make use of the Maximum Likelihood Principle presented in Section 4.2.1 to

compare and evaluate which model and which parameters better reproduce the real

evolution. Figure 4.8 displays the log-likelihood values obtained by each model as

a function of the parameter α. First, we note that the models G and DG, which in-

corporate geographic distance, have higher log-likelihood than the other two models

D and A, with the overall maximum log-likelihood achieved by DG. The maximum

log-likelihood for DG is achieved for α ≈ 0.6, which is in agreement with the re-

sults obtained measuring Pgeo(d). Node age does not seem a key factor for edge

attachment, as the model A shows decreasing values of log-likelihood for values of

α between 0 and 2. Model D reaches its highest log-likelihood for α = −0.8 and

fails to outperform G and DG. Hence, it seems that the main driving factors in edge

attachment are node degree and geographic distance and that a gravity model which

combines them is the most suitable option.

4.2.3 Modelling triadic closure

The edge attachment models previously proposed only take into account the influ-

ence of global network properties on new edge creation. However, local network

properties can be equally or more important; for instance, new links often tend to
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Figure 4.9: Number of new links Eh created between nodes h hops away (a) and

probability Ph that a new link connects nodes h hops away (b). The single Eh

value at h = 0 denotes the number of edges connecting nodes previously in separate

disconnected components.

connect users who already share friends, creating social triangles that are extremely

common in social networks [LNK07]. Hence, in this section we study how new

links result in new social triangles and whether different triangle-closing models can

reproduce the patterns observed in the data.

The importance of triangle-closing links

Social connections tend to link together individuals who are already at close social

distance: the vast majority of new links tend to be between nodes that already

share at least one friend, thus only 2 hops away from each other, with larger social

distances exponentially less likely [LBKT08]. We observe a similar pattern in our

data: Figure 4.9(a) shows that the number of edges Eh that connect nodes h hops

away exponentially decays with h. A few edges also connect nodes that were not in

the same connected component, as when a new node joins the network and creates

its first link.

A better understanding of this process can be achieved by considering not only how

many new links connect nodes h hops away, but also considering the number of

nodes at that social distance. In fact, since Eh exponentially decreases with h and

the number of available nodes increases with h, the probability Ph that a new link

spans h hops must be decreasing much faster than exponentially. More precisely,

we compute Ph as

Ph =
|{et : et = (i, j) ∧ ht−1(i, j) = h}|∑

t |{n : ht−1(i, n) = h}| (4.6)

where ht(i, j) is the number of hops between nodes i and j at time t. Figure 4.9(b)

plots Ph as a function of h: the probability decays quickly and finally reaches a
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Figure 4.10: Geometric average geographic distance Dh of new links created between

nodes h hops away. The single Dh value at h = 0 denotes the average geographic

distance of links connecting nodes previously in separate disconnected components.

constant value. Thus, triadic closure seems to be the predominant factor shaping

network growth over time: new edges are most likely to connect people who already

share at least one friend, closing social triangles.

Given the importance of triadic closure, we focus on how this process is affected by

spatial properties. We want to understand whether there is any interplay between

the geographic distance and the social distance that a new link spans. A first

indication is given by the geometric average geographic distance Dh of all new edges

that connect nodes previously h hops away, shown in Figure 4.10. There is an evident

trend: social connections at shorter social distance tend to have higher geographic

distances, while links spanning more hops have lower spatial distance. A potential

explanation is that both social and geographic distance tend to affect the edge

creation process: a new link is created either between users sharing friends, even

if they are far from each other, or between spatially close users, even if they have

no friends in common. In particular, it appears that geographic proximity is as

important as social closeness : both factors are shaping the network, but in different

ways.

In summary, our analysis of triadic closure confirms that two users sharing at least

one friend are much more likely to create direct connections than two users without

friends in common. At the same time, geographic distance appears again as a

driving force, even if in a different way, influencing the creation of edges between

users without friends in common.
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Figure 4.11: In a triangle-closing model node s creates an edge by selecting first an

intermediate node i, which then selects target node t: the edge (s, t) is thus created.

Different strategies to select a node’s neighbour can be combined. All candidate

nodes two hops away are shaded in grey; the baseline model picks at random among

these candidates.

Triangle-closing models

Since about 60% of new edges close social triangles, such triangle-closing edges

represent an important aspect of network growth. Hence, our aim is now to under-

stand what factors influence which node to choose when a edge is closing a triangle.

Again, we make use of the Maximum Likelihood Principle to test whether different

triangle-closing models would be able to generate the triangles created during the

real network evolution.

We consider the case when a source node s chooses another target node t located two

hops away to create a new link, as illustrated in Figure 4.11. A simple model would

be for node s to choose t uniformly at random from all the nodes at a distance of

2 hops, which will be our baseline model. We then take into account more complex

models where node s first chooses according to a given strategy an intermediate

node i among its neighbours and then picks a target t among i’s neighbours with

a potentially different strategy. The edge (s, t) is then created, closing the triangle

(s, i, t).

Since every strategy involves only choosing a node i among the neighbours of a given

node n, we consider five different strategies to choose i:

1. random: uniformly at random among node n’s neighbours;
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random shared degree distance gravity

random 12.34 9.48 -3.47 -28.17 -35.26

shared 14.54 11.47 -0.95 -24.74 -34.46

degree 7.33 5.16 -6.79 -25.17 -41.98

distance -0.92 -3.70 -16.94 -39.32 -41.53

gravity 2.71 0.25 -12.11 -33.01 -43.18

Table 4.1: Performance of different triangle closing models: rows show the model

used to pick the intermediate node, and columns show the model used to then pick

the target node. The value in each cell gives the percentage improvement of model

log-likelihood over the baseline model, which chooses a random node two hops away

from the source.

2. shared: proportional to the number of shared friends between i and n;

3. degree: proportional to the degree of the neighbour i;

4. distance: inversely proportional to the geographic distance between i and n;

5. gravity: proportional to the degree of the neighbour i and inversely propor-

tional to the geographic distance between i and n.

Since there are 5 different triangle-closing models, there is a total of 25 different

combinations. We compute the log-likelihood of each combination and we measure

the percentage improvement over the log-likelihood of the baseline model. The

results are presented in Table 4.1: the general trend is that random and shared

offer the largest improvements over the baseline, with a maximum improvement of

14.54% in the combination shared-random and 12.34% for random-random. Models

based on degree or on distance have performance much lower than the baseline,

with degradation of up to 40% when the gravity model is adopted. In particular,

the random-random model works surprisingly well, as it favours connections between

nodes that have multiple 2-hop paths between them and that have higher degrees,

while being extremely simple and computationally fast.

These results show that triadic closure is mainly driven by social processes, while

geographic distance is not an important factor. Nonetheless, triangle-closing mech-

anisms only model some aspects of network evolution, as non-local edges are still

needed to globally connect the network and create the small-world effect. In sum-

mary, social processes at a local level seem complementary to spatial factors that

are shaping the network at a global level. As we will see, we need both to model

real network evolution successfully.
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Figure 4.12: Complementary Cumulative Distribution Function (CCDF) of node

lifespan and exponential fit.

4.3 Temporal aspects of network growth

After considering the edge attachment and the triangle-closing processes, we now

shift our attention to the temporal properties of the network evolution. In this

section we study how users create new connections as they spend more time on the

network. Our aim is to understand these temporal patterns in order to capture

them and reproduce them in a network growth model, rather than discussing their

statistical description.

At first, we consider the amount of time users are active on the network, their lifes-

pan, and then we investigate whether nodes with different degrees tend to establish

new edges at a different pace and at different geographic distances. We consider

only nodes that have joined the network after our measurement process started, in

order to avoid any bias in the estimation of their temporal properties: in this way

we are observing their entire temporal evolution from the very first moment they

appear in the system.

4.3.1 Node lifespan

We define the lifespan of a node to be the temporal difference between the time

the node created its last edge and the time when the node joined the service. The

lifespan of a node is likely to affect the network evolution, since nodes that cease

to be active stop creating new edges, affecting the global properties of the whole

network.

Figure 4.12 shows the distribution of lifespan for all users: the distribution shows
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Figure 4.13: Probability Mass Function (PMF) of δ(1), the temporal gap elaps-

ing between the times when the first and the second edges are created by a user.

The fits are a truncated power law δ(1)−αexp(−δ(1)/β), a shifted exponential

δ(1)β−1exp(−λδ(1)β) and a power law δ(1)−α.

approximately exponential behaviour, with a deviation only at longer lifespans for

few users who were early adopters and started using the service from the very first

days. The fit is reasonably good for a wide range of lifespan values and it can be

used to capture and reproduce how long nodes stay active in the network.

4.3.2 Inter-edge temporal gap

Different users can show significant differences in the pace at which they add new

edges: some users can be faster and more active than others. In addition, users who

have been active for a longer period on the service may attract new friends at a

faster rate. We define δi(k) as the temporal gap between the k-th and k+1-th edges

of user i and we study the distribution of δ(k) across all users for different values of

k.

Figure 4.13 displays the probability distribution of δ(1), the amount of time between

the first and the second edges created by a user. Even though many users add their

second edge after a few days, some users wait several weeks. Hence, there is a

wide range of variability in how quickly nodes start adding new edges after they

join the network. The distribution can be captured by different functional forms:

we find that an exponentially truncated power law p(δ(1)) ∝ δ(1)−α1exp(−δ(1)/β1)

yields a slightly higher log-likelihood than a pure power-law, a shifted exponential

and an exponential, even though the average log-likelihood improvement over the

exponential fit is below 5%. For our modelling purposes we will use the exponentially
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Figure 4.14: Arithmetic average value 〈δ(k)〉 (a) and exponential cut-off βk (b) of

the truncated power law p(δ(k)) ∝ δ(k)−αkexp(−δ(k)/βk), which approximates the

probability distribution of the temporal gap δ(k) between the k-th and k + 1-th

edges as a function of node degree k.

truncated power law, which provides the highest likelihood even for different values

of k.

Then, we study the effect of the current degree k on the temporal behaviour of the

user: in particular, we are interested in seeing whether the probability distribution

of δ(k) changes with k. A first indication is given in Figure 4.14(a), which plots the

average temporal gap 〈δ(k)〉 between the k-th and k+ 1-th edge for different values

of k: users with higher degrees tend to wait, on average, for a shorter amount of

time before adding a new edge. In fact, users wait on average 20 days before adding

their second edge but only 7 days when they have about 100 friends.

It is not surprising that nodes with higher degree add links at a faster pace: given a

fixed temporal period, as in our measurement, higher degree nodes add more links

than lower degree ones, so their activity has to be greater in the same temporal

period. Nonetheless, we are still interested in capturing this heterogeneous temporal

behaviour, as this fosters heterogeneity in the degree distribution as well [LBKT08].

We find that the same truncated power law p(δ(k)) ∝ δ(k)−αkexp(−δ(k)/βk) holds

for different values of k, always offering the fit with the highest log-likelihood. While

we find that αk tends to be unrelated to k, the exponential cut-off βk becomes smaller

as k grows larger, as seen in Figure 4.14(b). The effect of this trend is that nodes

with higher degrees are less likely to wait for a longer time span, as the truncated

tail of the power law P (δ(k)) increasingly constrains higher gap values.
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4.4 A new spatial model of network growth

In this section we build upon the set of results found in this chapter and we propose

a new model of network growth with spatial information. Our model combines a

gravitational attachment process with a triangle-closing model to algorithmically

grow a spatial network edge-by-edge. We demonstrate that the resulting synthetic

network exhibit social and spatial properties of the true network, whereas a similar

model without the effect of geographic distance does not.

We have seen that a gravity-based mechanism describes how new edges are created

(in Section 4.2.2), while we have discussed how triadic closure is mainly shaped by

social factors rather than geographic ones (in Section 4.2.3). These two mechanisms

seem to be complementary; while the former is responsible for edges connecting

together different parts of the network, the latter seems involved in the creation of

local edges between nodes that already share a friend. We analysed how nodes tend

to create new edges faster and faster as they acquire more connections in Section 4.3.

Building on all these results our aim is now to define a network growth model that is

able to capture and reproduce the spatial and social properties of the real network.

4.4.1 A new gravitational attachment model

Following the methodology presented in [LBKT08], we describe our model as an

algorithm to grow a network one node, and one edge, at a time:

1. A new node u joins the network and positions itself in physical space.

2. Node u samples its lifetime from an exponential distribution;

3. Node u adds its first edge to some node v according to a gravity model, with

probability directly proportional to the degree of v and inversely proportional

to their geographic distance;

4. Node u with degree k samples a time gap δ from a truncated power-law prob-

ability distribution, dependent on degree k, and then goes to sleep for δ time

steps;

5. When node u wakes up, if its lifetime has not expired yet it creates a two-hop

new edge using the random− random triangle-closing model and then repeats

step 4.

The different processes included in this model are meant to reproduce the most

important properties observed in spatial social networks. The combination of ex-

ponential node lifetimes and degree-dependent inter-edge waiting times allows few
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Figure 4.15: Comparison of our gravity-based model (GM), preferential attachment

model (PA) and real network: Probability Mass Function (PMF) of node degree (a)

and Cumulative Distribution Function (CDF) of link geographic length (b).

nodes to accumulate a higher number of connections, resulting in a heavy-tailed

degree distribution. The gravitational attachment favours geographically shorter

links and introduces correlations between the number of connections and the spatial

properties of these connections, replicating the heterogeneity observed across users.

Finally, the purely social triangle-closing mechanism mimics how social triads are

not affected by spatial constraints.

4.4.2 Evaluation

In order to test our model we take the Gowalla network at the beginning of our

measurement period, denoted with T1 and we simulate its growth by adding the

missing nodes, with their real geographic locations, according to when they joined

the real network. However, once they join the network they add new edges according

to our algorithmic model. We stop the evolution of the network when it reaches the

same number of edges as the real graph at the end of the measurement period, or

when all node lifetimes have expired.

To assess better the performance of our model, we compare it to a similar model

where in Step 3 a node creates an edge according to the preferential attachment

model, thus ignoring geographic distance and considering only node degree in the

attachment probability. We refer to our new gravitational attachment model as GM

and to the preferential attachment model, which ignores spatial properties, as PA.

Both models include the same triadic closure and inter-edge time gaps. The two

models are run 100 times with different random seeds and then their properties are

averaged over all these realisations. We compute and compare the properties of the

networks by only considering edges added after T1, both in the real network and in

the simulated models, to avoid the properties of the initial graph GT1 influencing
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the final result.

In our comparison we consider four different characteristics. First, we compute the

degree distribution and the probability distribution of geographic link length, in

order to assess whether these basic social and spatial properties are correctly repro-

duced. The degree distributions observed in the real network and in the two models

are shown in Figure 4.15(a): both models are able to reproduce the distribution,

replicating the social properties of the real network. As shown in Figure 4.15(b),

the probability distribution of link geographic length is better approximated by the

GM model, while the PA model results in social links with longer geographic length.

As expected, the PA model fails to create those short-range links found in the real

network.

Then, we focus on users and on their heterogeneity using two measures already

described in Section 3.2, briefly summarised here. For every user we compute the

friend distance and we plot the geometric mean value of this measure for all users

with k connections, as a function of k. Similarly, for every user we compute the

geographic triangle length and then we plot the geometric mean value of this measure

for all users with k connections, as a function of k. We adopt the geometric mean to

combine the values of users with the same degree because such values span several

orders of magnitude and we aim to emphasise smaller values that correspond to

short-range distance. These two user measures will shed light on whether the two

models capture the correlations between user degree and socio-spatial properties

that we discussed in Chapter 3.

These two measures highlight a large difference between the GM and PA mod-

els. When considering the average friend distance of a user as a function of the

user degree, as seen in Figure 4.16(a), both the GM and the PA models show an

increasing trend, as the original data. However, the PM model results in values

systematically higher than the GM model. Similarly, when considering the average

geographic triangle length in Figure 4.16(b), we find that the GM model reproduces

the increasing trend observed in the real graph more closely than the PA model,

which fails to capture how users with fewer than 10 connections exhibit low values

of geographic triangle length.

4.5 Discussion and implications

Our results show that the effect of geographic distance cannot be neglected when on-

line social networks are studied and modelled: preferential attachment mechanisms

need to be modified into gravity-based mechanisms, which are able to correctly bal-

ance the effects of node attractiveness and the connection costs imposed by spatial
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Figure 4.16: Comparison of our gravity-based model (GM), preferential attachment

model (PA) and real network: average friend distance for all nodes with a given

degree (a) and average geographic triangle length for all nodes with a given degree

(b), both as a function of node degree.

distance. This finding gives rise to interesting implications about processes that

may be driving the actions of individuals.

In reality, preferential attachment and triadic closure together are already able to

reproduce the global social properties observed in real social networks, namely the

degree distribution and the level of clustering. However, neglecting spatial informa-

tion about where users are located fails to account for the effect of distance: while

in real systems users preferentially connect to other users at closer distances, re-

sulting in a considerable fraction of short-range social ties, models without spatial

information give rise to an unlikely majority of long-range connections. This is at

odds with plentiful empirical evidence, both in offline and online social systems.

Our findings support the idea that distance has a simple effect on the creation of

social ties: the probability of connection between two individuals decreases as a neg-

ative power of the spatial distance between them. Yet, this effect must be combined

with a process based on “popularity” or “visibility” that introduces heterogeneity

across users, such as attachment to the best connected nodes, in order to fully recre-

ate the self-reinforcing mechanisms that lead to the scale-free degree distributions

observed in social graphs.

Gravity models, already widely and successfully used to understand several types

of spatial systems, provide an elegant and insightful way of combining the effect

of distance and the influence of popularity. The main implication of the gravity

mechanism is that one user may be interested in another because the other user

is hugely popular, regardless of their spatial distance, or because the other user is

spatially close, regardless of popularity and importance. The underlying message,

which goes beyond the specific scenario of network growth, is that the powerful

First Law of Geography is still at work: near things are more related than distant
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things, as stated by Tobler in 1970 [Tob70].

Surprisingly, the influence of distance on the formation of local network structure

appears negligible. Triadic closure does not seem affected by geographic proximity

between individuals; this suggests that network transitivity is chiefly ruled by social

factors that seem blind to geographic constraints. The overall picture is that prox-

imity both over space and over the social fabric greatly fosters the creation of new

social links; the result is that the likelihood of a new connection increases when two

individuals share many other connections or when two individuals are close to each

other. We also point out that no friend recommendation mechanism was in place

on the online service under analysis during the measurement period.

This dual rôle of distance in the social and in the spatial dimension has promising

applications in a wide range of systems. In particular, while the predictive power of

social proximity has already been harnessed by a plethora of friend recommendation

systems, spatial closeness has largely been ignored in such scenarios. However,

geographic proximity is a powerful but simplistic indicator of social ties that are

likely to be created. In fact, our model is able to reproduce the global social and

spatial properties observed in the real traces, but it could be unable to accurately

detect whether two users are going to connect to each other. This lack of precision

is due to a lack of information: the spatial distance between the locations of two

users is only one variable. In reality, there is more information about user spatial

movements, since we can tap into a rich data source: the places that users visit.

Thus, geographic distance can be used together with data about user check-ins

to provide a more comprehensive picture of user behaviour, likely to offer higher

accuracy in modelling how new social ties are established. In Chapter 5 we will

discuss how friend prediction systems can be designed based on this consideration.

4.6 Related work

The temporal patterns of network evolution have been the focus of many studies

and several models been put forward to describe the basic mechanisms that may

drive network growth.

One of the first models of temporal network growth was the simple yet powerful

Barabási-Albert (BA) model [BA99], based on two key ingredients: growth and

preferential attachment. Inspired by how new Web pages tend to link to already

popular pages, this model reproduces the scale-free degree distribution observed in

several network systems across different scenarios. The rationale behind the BA

model is to focus on the network as a dynamic entity under continuous evolution:

hence, by mimicking the dynamic mechanisms that assemble the network over time,
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one will be able to reproduce the topological properties of the system at the current

time.

The properties of the networks generated by the BA model have been extensively

studied and discussed; in particular, we note that BA graphs tend to show a van-

ishing level of clustering as the system grows in size, and also tend to exhibit nega-

tive degree-degree correlations. Hence, the BA model has attracted a considerable

amount of attention in the literature from authors who have tried to modify its basic

mechanisms to introduce such characteristics that are often found in other networks,

such as in social graphs.

A set of works studied the temporal evolution of online social networks, discussing

global properties such as densification and diameter reduction observed during the

growth of the graph [FMNW03, KNT06]. Even though online social graphs tend

to have an heterogeneous degree distribution, in agreement with the preferential

attachment principle, these findings highlighted that, in social networks, different

mechanisms seem to be in place. Leskovec et al. [LKF05] propose a “forest-fire” copy-

ing process: when a new node joins the network and connects to a first neighbour,

it starts recursively creating new links among the neighbours of the first neighbour,

effectively copying the connections already in place. This process mixes preferential

attachment, as more connected nodes are more likely to be selected, and transitivity,

which fosters new connections between nodes in social proximity. This confirms that

triadic closure is an essential ingredient in the evolution of social graphs, to generate

transitivity and community structure.

Several other works have focussed on the importance of triadic closure for social

network evolution: Simmel noted that people sharing many friends might be more

likely to become connected [Sim08]. This effect was then measured in real social

networks [LNK07, KH06] and included in growth models. With respect to these

results, our work explores, for the first time, the effect of spatial distance on network

evolution. Specifically, we study how distance influences growth mechanisms such

as preferential attachment and triadic closure.

Another large body of work has focussed on general models for spatial networks.

One of the earliest examples is the Waxman model, where nodes are distributed at

random over space and then connected with probability exponentially decreasing

with distance [Wax88]. The Waxman model has also been modified as a growth

model, where new nodes join the network and connect using a similar rule [KH04].

Barthélemy proposed to combine the preferential attachment rule with spatial dis-

tance, studying how the resulting graphs move away from being scale-free as the

effect of spatial distance is increased [Bar03], however this case only considered an

exponential decay of the effect of distance as in the original Waxman model. Barrat

et al. [BBV05] also considered a similar model for weighted networks where prefer-
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ential attachment is driven by the weight of the existing connections and hampered

by greater spatial distance.

While these works contain the initial ideas related to modifying preferential at-

tachment with spatial influence, they were based on spatial systems such as trans-

portation networks that lacked social properties. Hence, they tend to focus on an

exponential decay of the probability of connection as a function of distance, dif-

ferent to what is observed in social graphs, and they ignore properties arising from

triadic closure. Our contribution builds on these findings and brings together several

different insights in order to obtain a suitable model for spatial social graphs.

Finally, we adopt the maximum likelihood methodology, and we base our growth

model on results presented in [LBKT08], where the evolution of four different online

social networks was discussed. Again, our work differs as it addresses the effect

of geographic distance on the temporal mechanisms that govern network evolution,

providing a more complete understanding of the factors driving social behaviour.

Furthermore, we describe a model of network growth that successfully reproduces

both social and spatial properties observed in real social graphs.

4.7 Summary

In Chapter 3 we put forward the idea that spatial distance still impacts online social

services. Users tend to exhibit heterogeneous socio-spatial properties correlated with

their number of friends: as they have more and more connections, these connections

tend to span longer geographic distances. We suggested that, as found in many other

spatial networks, preferential attachment tends to be mitigated by mechanisms akin

to gravitational attraction: nodes still tend to connect to high-degree hubs even when

these are far away, but less connected nodes can still attract short-range connections

from nodes nearby.

In this chapter we have extended our results concerning the structural properties

of the spatial social graph by investigating the effect of geographic distance on the

temporal evolution of a social network. Based on our findings, we have defined

and tested a gravitational attachment growth model that reproduces the structural

properties observed in the real spatial social network. This new model highlights

basic factors driving network evolution which could greatly impact a vast range of

research efforts and practical applications devoted to spatial social networks.

Our model relies on triangle-closing mechanisms to create new edges and grow the

network. However, this fails to reproduce how new links can be created even between

users that do not share any friend, despite these links being a minority of all new

connections. In addition, our model only considers spatial distance between users
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when modelling their behaviour, but in reality users might exhibit more complex

patterns that require more detailed data about where they are located and where

they go. To overcome these limitations, we need to exploit a different source of

information to connect users who might not share any friend, but who may geo-

graphically close. In the next chapter we will investigate how the physical places

that people visit can not only bridge this gap, but also help to obtain precise and

accurate predictions about future online social connections.
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What I cannot create, I do not understand.

Richard Feynman

5
Link prediction in location-based services

Online social services greatly benefit from recommending new friends to their users,

since as users add more and more friends their engagement with the service increases.

Hence, link prediction systems have been widely deployed to find which users should

be recommended. However, the prediction space faced by these systems is huge and

highly imbalanced: given a user, the overwhelming majority of other users are not

likely to be suitable friend recommendations. Real recommendation systems merely

focus on finding friends in the 2-hop social neighbourhood, i.e., friends-of-friends

of a user. For instance, a popular Facebook feature is “People You May Know”:

launched in 2008, it suggests friends-of-friends that are likely to be suitable for new

social connections [Rat08]. As this example suggests, extending prediction efforts

to the 3-hop neighbourhood, or even further, may not be worth the effort.

The predominance of new links between users sharing at least a common friend was

also confirmed in Chapter 4: a large fraction of all new connections arising in online

social networks tend to arise between users exactly two hops away from each other.

However, we also discussed how geographic proximity is a factor that impacts new

connections. Specifically, ties arising between users that are several hops away seem

to be established between spatially close individuals. In other words, being close in

space could be as important as being close in the social graph, in order to create

a new social tie. Nevertheless, geographic proximity alone could be a simplistic

and imprecise indicator of potential future connections, as it lacks the richness of

properties that can be exploited when considering the social connections between
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two friends-of-friends. This implies that the model of network evolution presented in

Chapter 4 could offer insights about what factors mainly drive user behaviour, but

would only reproduce the average behaviour when directly applied to predict which

individual social ties are likely to be established. A link recommendation system

should offer greater accuracy: this requires more information about user actions and

more complex models.

In location-based social services there is an unprecedented source of useful additional

information about future connections: the places visited by each user. These places

also offer a set of promising candidates. Given a certain user, data about venues and

check-ins can be exploited at first to select a subset of users as prediction candidates:

these “place-friends” represent pairs of users that share at least one common place

among their check-ins. Then, the same information can be exploited to identify the

candidates that are more likely to become actual social connections.

By exploiting the properties of the venues visited by users it is possible to provide

additional predictive power to augment purely social approaches, considering how

and where different users check in. In this chapter we build upon these initial

considerations with a practical goal in sight: to design a link prediction system for

new social connections that exploits data about user check-ins.

Chapter outline To investigate the practical feasibility of our proposal, we study

longitudinal data about an online location-based service, Gowalla, with information

about friendship connections and check-ins. In Section 5.1 we analyse the link

prediction space by investigating how new friendship connections are created over

time: we discover that about 30% of all new links appear among users who check in

at the same places. Thus, these “place-friends” represent disconnected users that

can become direct connections.

Hence, we argue that effective link prediction on location-based services can greatly

benefit from focussing only on the friends-of-friends and on the place-friends of a

user. The challenge is how to exploit the information given by the check-ins of

two users, who do not share any friends but who visit the same places, to predict

whether they will become direct connections. Towards this goal, in Section 5.2 we

define prediction features which quantify how likely users are to become friends

considering the places they visit and the properties of these places.

In Section 5.3 we present the proposed prediction system: prediction features based

on visited places, combined with other measures, are exploited in a supervised learn-

ing framework to predict future links. Our evaluation in Section 5.4 shows the effec-

tiveness of our design choices; the inclusion of information about places and related

user activity offers high link prediction performance. These results open new direc-

tions for real-world link recommendation systems on location-based social networks,
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t Users Active users Places Check-ins N K

1 252,020 148,234 958,823 7,475,401 109,045 476,409

2 291,812 168,925 1,104,771 9,073,157 124,190 559,901

3 325,025 189,512 1,226,847 10,537,516 138,387 630,045

4 382,750 216,734 1,421,262 12,846,151 159,391 736,778

Table 5.1: Properties of our Gowalla dataset across the different temporal snapshots:

total number of registered users and active users, total number of different places,

total number of check-ins, number of nodes N and edges K in the social graph.

as we discuss in Section 5.5. We present an overview of related results in Section 5.6

and conclude in Section 5.7.

5.1 The importance of place-friends

In this section we analyse how new social ties are created by users of a location-based

social service. Our aim is to understand what challenges a prediction system would

face and how to overcome them.

5.1.1 Snapshot properties

We have extracted four monthly snapshots of Gowalla data from the temporal

dataset presented in Section 4.1.1. Each snapshot contains the social connections

between users at that time and it includes all the check-ins made by users up until

that time.

In the 4 consecutive monthly snapshots Gowalla increased its total number of regis-

tered users from about 250 thousand to about 380 thousand, as shown in Table 5.1.

At each snapshot, about 56% of users are active, that is, have at least one friend or

one check-in. Each snapshot of our dataset results in a social graph; as the aver-

age number of friends per user grows from 8.73 to 9.24, the social network remains

sparse, making link prediction challenging because of the scarcity of social ties.

User check-in activity also presents a heavy-tailed distribution: 90% of users with

check-ins have made fewer than 110 check-ins and have visited fewer than 95 different

venues, as detailed by Figure 5.1(a) and Figure 5.1(b) Even though users might visit

only a few places, users who visit the same places are still more likely, on average,

to become friends than would be expected, as we will see later.

Finally, we note that while many users might have social connections and no check-

ins, there are also many accounts with check-ins but no friends at all. On average,

only 57% of active users have both some friends and some check-ins, while 26% have
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Figure 5.1: Complementary Cumulative Distribution Function (CCDF) of the num-

ber of check-ins (a) and of the number of places (b) per user for the last snapshot

of the dataset (Month 4). The probability distributions do not change significantly

across different snapshots.

no friends and 17% have no check-ins. This is approximately constant across the

temporal snapshots.

5.1.2 Definitions and notation

Formally, we represent each snapshot of our dataset as an undirected graph Gt =

(Vt, Et) for t = 1, 2, 3, 4, where t indicates the different snapshots. The set of nodes

Vt = {u1, u2, . . . , uNt} is composed of Nt users and the set of edges Et is composed

of pairs of users that are present in each other’s friend lists in snapshot t. We define

Γti to be the set of users connected to user ui in graph Gt, so that kti = |Γti| is the

number of friends of ui in snapshot t. In addition, there are Lt different places

Mt = {m1,m2, . . . ,mLt} where users have checked in and ctij represents the number

of check-ins that user ui has ever made at place mj until time t. All the check-ins of

user ui until time t can also be represented as a vector ~cti = (cti1, c
t
i2, . . . c

t
iLt

). Then,

Φt
j is the set of all users who have checked in place mj and Θt

i is the set of all places

where user ui has checked in, both until snapshot t. Finally, At =
Lt⋃
j=1

Φt
j is the set

of all users with at least one check-in at snapshot t, while Ut = Vt ∪At is the set of

all users present at snapshot t with at least one friend or one check-in.

5.1.3 Dividing the prediction space

Users adding friendship connections tend to prefer other users “close” to them, either

in a social sense or along other dimensions such as geographic proximity or topic

interest [LNK07, AA03, EPL09, QC09]. As also discussed in Section 4.2.3, many
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Figure 5.2: Number of new links appearing among pairs of nodes at different social

distance (a) and their relative probability of appearance (b). Pairs of users at closer

distance are both generating a larger fraction of all social links and more likely to

generate them.

new links appear between individuals at closer social distance to each other, with the

2-hop neighbourhood of single nodes being the largest source of new ties [LLC10].

This holds also for the Gowalla snapshots: as shown in Figure 5.2(a), the number of

new links appearing between users who are d hops away exponentially decreases with

d. The likelihood that a pair of users at network distance d will have a link in the

next snapshot of our dataset decreases sharply with d, as shown by Figure 5.2(b):

the probability that two users with at least one friend in common, thus being at

social distance d = 2, will become friends is above 10−4, but this value quickly drops

below 10−5 and to 10−6 at distance d = 3 and d = 4, respectively. Hence, pairs of

users at larger distances give a weaker contribution to link formation, both in terms

of absolute number of new links and likelihood of a new social tie.

Nonetheless, in a location-based social network the social dimension is not the only

one to be exploited and investigated. Instead, in our context there is an additional

source of information about social ties: the places where users check in. In particular,

users may add a new connection not because of a shared friend but because of a

shared place.

In order to quantify how users seek and add new friends, for each snapshot and for

each user ui we define two sets of potential friend pairs:

Friends-of-friends

Sti = {(ui, u) : u ∈
( ⋃
uk∈Γti

Γtk

)
\ Γti} (5.1)

Place-friends

P t
i = {(ui, u) : u ∈

( ⋃
mk∈Θti

Φt
k

)
\ Γti} (5.2)
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Snapshot t 1 2 3

Ut 148,234 168,925 189,512

ENEW
t 43,182 (100.00%) 40,643 (100.00%) 58,238 (100.00%)

SNEWt 24,174 (56.41%) 21,118 (51.96%) 30,581 (51.51%)

PNEW
t 13,150 (30.01%) 12,572 (30.93%) 20,107 (34.52%)

SNEWt ∩ PNEW
t 7,677 (17.52%) 7,131 (17.54%) 10,935 (18.78%)

SNEWt ∪ PNEW
t 30,187 (68.90%) 26,559 (65.35%) 39,753 (68.26%)

Table 5.2: Link formation: for each monthly network snapshot we report the total

number of active users Ut, the total number of new links appearing among them

in the next snapshot ENEW
t and the breakdown of this quantity into new links

appearing among friends-of-friends SNEWt and among place-friends PNEW
t , including

the intersection and union of these two latter sets. Percentages are computed with

respect to the total number of new links.

While friends-of-friends are all those users who share at least one friend without

being directly connected, place-friends are all those users with check-ins in at least

one common place but who are not connected to each other. These two sets may

not be disjoint for a given user ui. Finally, we define two sets containing all the

pairs of nodes that are either friends-of-friends or place-friends in a given snapshot:

St =
⋃
ui

Sti and Pt =
⋃
ui

P t
i .

The monthly snapshots of our dataset make it possible to quantify how many new

social links appear within these two sets. For every network snapshot Gt = (Vt, Et)

we define ENEW
t = Et+1 ∩ ((Ut × Ut) \ Et) as the set of all new links appearing in

the next network snapshot t+ 1 between all users already present at snapshot t. In

Table 5.2 new links appearing between temporal snapshots are classified according to

their origin: SNEWt = ENEW
t ∩St and PNEW

t = ENEW
t ∩Pt are, respectively, the set

of new links between friends-of-friends and the set of new links among place-friends.

About two-thirds of all new links appear within St ∪ Pt. In particular, while about

50% of new links appear between friends-of-friends, more than 30% of new links

are added between place-friends who check in at the same venues. Finally, about

13% of new links appear between users without any friends in common but who are

place-friends.

5.1.4 Reducing the prediction space

In addition to the absolute number of new links appearing between friends-of-friends

and place-friends, it is also important to study how link prediction feasibility can

vary across these prediction spaces. In a prediction space there are both pairs of users

who will become connected and pairs who will not: the performance of prediction
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Figure 5.3: Number of potential friends (a) and imbalance ratio (b) for each class of

potential new links: for social potential neighbours St, for place potential neighbours

Pt, for their intersection, for their union, and for the entire set of users Et. Results

averaged over the temporal snapshots.

approaches depends on the total number of these potential pairs and on the relative

proportion of these two classes. Exhaustive approaches would scale with the total

number of potential links, which can become prohibitively large for real-world online

social networks with millions of users. Also, the two classes can present an extremely

skewed distribution, with new links being greatly outnumbered by pairs of users who

will never create a social tie. This problem is worsened by the fact that new links are

actually the occurrences of greater interest, as prediction systems obtain much more

value when predicting that two users will connect than when correctly predicting

that they will not.

In Figure 5.3(a) we report the prediction space size for the friends-of-friends set

St and the place-friends set Pt, including also their intersection and union, along

with the size of the overall prediction space for the entire dataset. While there are

more than 11 billion pairs of users, there are about 700 million place-friends (Pt)

and about 100 million friends-of-friends (St), with their intersection reducing the

prediction space to about 20 million entities. Thus, by focussing prediction efforts

only on place-friends or friend-of-friends the prediction space can be reduced by

about 15 times, while still covering two-thirds of all new links.

Then, we study the imbalance ratio of a prediction set, which is the ratio between

the total number of prediction candidates in the set and the actual number of new

links that will appear within it. Imbalance ratios are key indicators of link prediction

systems’ performance: they express how many real instances should be considered

and analysed, on average, before a prediction can be successfully made. Place-friends

and friends-of-friends offer lower imbalance ratios than the overall prediction space,

as shown in Figure 5.3(b): hence, not only do they offer a smaller prediction space,

but the likelihood that new links will be found is also about 20 times higher than
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Figure 5.4: Average probability that two users who have checked in a at place are

friends, as a function of the number of check-ins in that place.

the average.

However, discovering new ties between users who check in to the same places appears

challenging. Not all places have the same importance for different users and, thus,

not all places are equally likely to foster new social ties between individuals who

visit them. The key idea is then to take advantage of the properties of a place to

predict new links.

5.2 Building prediction features

In this section we will describe how the properties of the places visited by users

can be exploited in link prediction systems. More broadly, we will also introduce a

family of prediction features we will later adopt in our proposed design.

5.2.1 The social properties of places

Places can be characterised by taking into account users’ check-ins: in fact, the

average probability that two users who have checked in at the same place are friends

exhibits a decreasing trend as the place has more check-ins, as shown in Figure 5.4.

However, there is not much difference when a place has fewer than 100 check-ins.

A place where only a small number of users regularly check in is likely to be a

place with significant importance to them, such as private houses, gyms, or offices.

Conversely, a place with a similar total number of check-ins but where these check-

ins have been made by many users is likely to be a public place without considerable
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Figure 5.5: Average probability that two users who have checked in at a place are

friends, as a function of place entropy.

significance to its visitors, such as touristic places, airports, train stations and so

on.

Hence, a more suitable measure of how much a venue promotes social connections

among its visitors should take into account both the number of users that check

in and their number of check-ins. A feasible combination is to exploit information

theory and define an entropy-based measure to assess the importance of a place

for social link creation. Place entropy has been used in ecology to measure place

biodiversity [CTH+10]: the underlying assumption is that a uniform distribution

of species in a given physical environment is much more diverse than a skewed

distribution, where only a few species are overwhelmingly present.

Let CP
k be the total number of check-ins made by all users at place mk and qik =

cik/C
P
k the fraction of check-ins that user ui has made at location mk with respect

to the total number of check-ins at place mk. Therefore {q1k, . . . , qNk} is a discrete

probability distribution that describes how likely it is that a check-in at mk was

made by a certain user. Then, we define Hk as the entropy of place mk:

Hk = −
∑
ui∈Φk

qik log qik (5.3)

Venues visited by several casual users are less likely to foster the creation of social

links between them. Hence, places with higher entropy might result in fewer social

links among their visitors than venues with lower values. This is confirmed by

Figure 5.5: the average probability that two users who have checked in at the same

place are friends decreases as the entropy of the place itself increases. Place entropy

seems to have strong discriminative power; as we will see, it is a successful indicator

of whether a certain place is likely to result in social ties between its visitors.
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Place features

common p |Θi ∩Θj|
overlap p

|Θi∩Θj |
|Θi∪Θj |

w common p ~ci~cj

w overlap p ~ci~cj/
√
~ci

2~cj
2

aa ent
∑

mk∈Θi∩Θj

1
Hk

min ent min(Hk : mk ∈ Θi ∩Θj)

aa p
∑

mk∈Θi∩Θj

1
logCPk

min p min(CP
k : mk ∈ Θi ∩Θj)

Social features

common n |Γi ∩ Γj|
overlap n

|Γi∩Γj |
|Γi∪Γj |

aa n
∑

z∈Γi∩Γj

1
log(|Γz |)

Global features

geodist dist(mli ,mlj)

w geodist dist(mli ,mlj)/cilicjlj
pa |Γi||Γj|
pp |Θi||Θj|

Table 5.3: Formal definition of prediction features: Γi is the set of users connected

to user ui, cik is the number of check-ins made by user ui at place mk, the vector ~ci

contains all check-ins of user ui, mli is the home location of user ui, Θi is the set of

all places where user ui has checked in, CP
k is the total number of user check-ins at

place mk and Hk is the entropy of place mk.

5.2.2 Feature definition

Link prediction methods are based on numeric scores computed for pairs of users.

These values tend to capture proximity of two users across different dimensions, with

the underlying assumption that pairs of users who are similar or close are likely to

develop a social connection between them.

We will consider social features, which can be computed for friends-of-friends, place

features, which can be computed for place-friends, and global features, which can be

computed for any pair of users, even if they do not share any friend or place. All

features are described in Table 5.3 and discussed in the following paragraphs.
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Place features

When two users check in to the same places they might have many chances to

be in contact with each other and, therefore, to create a new connection. The two

features common p and overlap p denote respectively the number and the fraction of

common places between two users, while w common p takes into account the number

of check-ins of both users and w overlap p is given by the cosine similarity of the

two check-in vectors.

Then, we define two features based on the entropy of the places that two users share:

min ent, the minimum place entropy across all the shared venues, and aa ent, the

sum of the inverse of each place entropy value, a measure inspired by the Adamic-

Adar similarity score [AA03]. Similarly, we define corresponding features considering

the number of check-ins, aa p and min p: in this case the relevance of a shared place

is higher if it has only a few check-ins.

Social features

Several link prediction features are based on the assumption that two users who share

many common neighbours are more likely to create a direct connection. Thus, given

two users we define common n as their number of common neighbours and overlap n

as their Jaccard coefficient [Sal83]. In addition, aa n is their Adamic-Adar measure

based on the degrees of the shared neighbours [AA03].

Global features

Finally, we define measures that can be adopted for any pair of users, as they are

based on their individual properties.

We define mli as the “home-location” where user ui has made the greatest number of

their check-ins: this location might not be the place where a user lives, but it gives

a reasonable estimation of the place a user seems most attached to. Then, given two

users, we compute geodist as the geographic distance between their home locations.

At the same time, w geodist is the same distance divided by the product of the

number of check-ins each user has made at their home location.

Another method to define global features is to consider how many friends users

have added or how many places they have visited. We define pa as the preferential

attachment score of two users, while pp, or place-product, is given by the product of

the numbers of places that each user has visited. These two features tend to capture

more active users who tend to visit many places or add many friends.
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5.3 System design

In this section we describe our link prediction framework. Our proposal builds on

two key choices:

• reducing the prediction space by focussing only on friends-of-friends and place-

friends;

• exploiting prediction features based on the places visited by users.

We propose a supervised learning approach to link prediction, modelling it as a

binary classification problem which adopts the prediction features previously de-

scribed.

5.3.1 Prediction candidates

Let us consider a dataset snapshot, with Ut being the set of all users andGt = (Vt, Et)

the relative social network. The link prediction problem can be formulated as follows:

given the dataset snapshot at time t as input, compute and return a set of pairs of

users EPRED
t ⊂ (Ut × Ut) \ Et who are predicted to appear as friends in Et+1.

The entire prediction space (Ut × Ut) \ Et contains all the potential pairs between

users that are not yet connected by a link. Recall that St represents the friends-

of-friends prediction set and Pt denotes the place-friends prediction set, as defined

in Section 5.1.3. Exploiting the findings of our previous analysis of this prediction

space in Gowalla, we select three disjoint prediction sets:

1. Social: links appearing between users that are friends-of-friends but not place-

friends (the set St \ Pt);

2. Place: links appearing between users that are place-friends but not friends-

of-friends (the set Pt \ St);

3. Place-social: links appearing between users that are both friends-of-friends

and place-friends (the set St ∩ Pt).

Our choice is motivated by the fact that combining these three prediction sets results

in a set of candidates about 15 times smaller than the entire prediction space while

still allowing us to predict two-thirds of new social ties, as discussed in Section 5.1.4.
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5.3.2 Prediction algorithms

We adopt a supervised learning approach: for every snapshot t, we compute features

at time t for pairs of disconnected users and we assign a positive label to each pair

if they become connected in snapshot t + 1, and a negative label otherwise. Thus,

training and test sets are built so that features from a given time interval are mapped

to class labels in a future time interval. Hence, given our 4 snapshots, we can create

3 learning sets, each one with labels drawn from the next snapshot.

Classifiers can then be trained to build models and recognise positive and negative

items from their features. Motivated by recent results [LLC10], the choice of a

supervised learning formulation to address the link prediction problem stems from

the heavily skewed distribution of class labels. Unlike unsupervised methods, class

distributions are learned by supervised algorithms, allowing more effective discovery

of inter-class boundaries and hence better classification performance.

5.4 Evaluation

We now present the experimental evaluation of our link prediction system; this

section includes an investigation of the predictive power of each similarity feature

and then an analysis of different supervised classifiers that use these features. Our

results show how link prediction systems based on our proposal may be feasibly

deployed in similar services with high accuracy.

5.4.1 Evaluation strategy

For each snapshot t and for each prediction set we sample disjoint training and test

datasets; these datasets are always sampled to maintain the original unbalanced

distribution of positive and negative items in the real data. For every item we

compute all available prediction features; the only limitations are that in the Social

prediction set place features are not defined and in the Place prediction set social

features are not defined. All our evaluation tests have been performed with the

WEKA framework, which implements several machine learning algorithms, using

default parameters (unless otherwise specified) [WF05].

We adopt Receiver-Operating-Characteristic (ROC) curves as the main tool to eval-

uate prediction performance [PF01]. ROC curves describe how the fraction of true

positives over all the positive cases changes as a function of the fraction of false

positive over all the negative cases when the decision threshold varies. A ROC plot

is a monotonic non-decreasing plot of true positive rate as a function of false pos-

itive rate. A random classifier will result, on average, in the curve y = x, while
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Figure 5.6: ROC curves for individual features used as unsupervised prediction

methods on the Social prediction set.

better classifiers will result in curves closer to the upper left corner. ROC curves are

particularly able to assess classification performance for highly imbalanced datasets,

as in our case. The area under the ROC curve (AUC) is often adopted as a scalar

measure of the overall performance.

5.4.2 Individual features evaluation

We first study the predictive power of each individual feature; we compute predictive

scores for every pair of disconnected users in the test set and then we numerically

rank these candidates according to their score. Given a decision threshold, new

links are predicted for all the candidates with scores higher (or lower, depending

on the directionality) than the threshold. As we vary the decision threshold we

get true and false positives, generating a ROC curve; these curves are presented in
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Figure 5.7: ROC curves for individual features used as unsupervised prediction

methods on the Place prediction set.

Figures 5.6- 5.8 for each prediction set.

In the Social prediction space, as shown in Figure 5.6, the best feature is aa n.

Interestingly, we observe how the global features pa and pp perform worse than

a random predictor. This indicates that in the social neighbourhood of a given

user global indicators are not as useful as measures based on common friends: this

may be a consequence of users having no access to a global view of the network.

Instead, global features geodist and w geodist perform better, with the former

being more accurate than the latter. Overall, aa n, overlap n and geodist give

the best performance, with AUC values between 0.73 and 0.82.

In the Place prediction space, as reported in Figure 5.7, min ent, w overlap p and

min p show the best results, followed by aa ent and aa p. Sharing places with low

entropy values or with a few check-ins seems an important indicator of potential

friendship, as well as having a large overlap of visited places. These features achieve
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Figure 5.8: ROC curves for individual features used as unsupervised prediction

methods on the Place-social prediction set.

high AUC values between 0.87 and 0.90. The other features perform slightly worse,

with geodist doing better than the others. Global features pa and pp again show

inverted performance, as in the Social case.

Finally, in the Place-social prediction space, as shown in Figure 5.8, all prediction

features can be evaluated. Just as aa n dominates in Social and min ent dominates

in Place, they also achieve the best results in this case, with the former having a

larger AUC (0.80 against 0.76).

In general, prediction performance is higher in the Place set, while prediction within

the other two sets achieves lower AUC values. It seems easier to predict links between

place-friends than between friends-of-friends: this may be due to the fact that more

information is available when two users share visited places than when they share

friends. However, the prediction space is much larger in the Place set than in the

other two sets, offering an interesting trade-off between prediction effectiveness and
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Algorithm Set Precision Recall AUC

Model

S 0.79 ± 0.04 0.28 ± 0.05 0.91 ± 0.02

trees

P 0.87 ± 0.06 0.34 ± 0.06 0.93 ± 0.01

PS 0.92 ± 0.03 0.62 ± 0.07 0.96 ± 0.01

Random

S 0.92 ± 0.05 0.39 ± 0.05 0.91 ± 0.02

forests

P 0.95 ± 0.04 0.72 ± 0.08 0.94 ± 0.03

PS 0.98 ± 0.04 0.84 ± 0.09 0.95 ± 0.01

J48

S 0.63 ± 0.05 0.04 ± 0.01 0.62 ± 0.08

P 0.86 ± 0.06 0.34 ± 0.04 0.90 ± 0.04

PS 0.90 ± 0.03 0.64 ± 0.08 0.91 ± 0.02

Näıve

S 0.01 ± 0.00 0.16 ± 0.02 0.74 ± 0.06

Bayes

P 0.01 ± 0.01 0.36 ± 0.04 0.92 ± 0.04

PS 0.04 ± 0.01 0.22 ± 0.05 0.82 ± 0.06

Table 5.4: Precision and recall for the positive items, and overall AUC for different

supervised classifiers on the three different prediction sets Social (S), Place (P) and

Place-social (PS). Results obtained through 10-fold cross validation and averaged

over 20 different random training sets from snapshot t = 1.

search complexity.

In essence, the Social set provides good candidates for new links, given its lower

imbalance ratio, but then it is difficult to discriminate between them because there is

no other information except global features and shared friends. Even if the Place set

has higher imbalance ratios, the properties of the places where users check in provide

useful information to discover new friendship connections. Finally, the Place-social

set, which provides the lowest imbalance ratio across the three sets, is still a source

of good candidates like the Social set but since more information is available with

respect to location-based user activity, prediction performance is better.

5.4.3 Combining features: supervised learning

We assess whether our prediction features can be combined to characterise a model

of link formation across the three prediction sets. Our aim is to achieve at least

the same predictive power as the best individual features with a supervised algo-

rithm. We compare the performance of the following classifiers: J48 decision trees

(equivalent to decision trees built using the C4.5 algorithm, based on information

entropy [Qui93]), Näıve Bayes [Zha04], model trees (decision trees with linear re-

gression models on the leaves [FWI+98]), and random forests (10 decision trees,

4 random features each) [Bre01]. We run 10-fold cross validation over 20 different

training set sampled over each prediction dataset and we consider the AUC value as
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Figure 5.9: Prediction performance in terms of AUC of model trees (a) and random

forests (b) on the three separate Social, Place and Place-social prediction sets, in

each temporal snapshot. Results averaged over 20 random datasets.

an overall performance metric [Qui93]. In addition, we also consider two additional

metrics computed over positive items: the average precision, that is, the fraction of

positive predictions that are correct, and the average recall, that is, the fraction of

real links that are correctly predicted.

We present our results in Table 5.4. There is variability across different classifiers:

the best performance in terms of AUC is given by random forests and model trees,

which are the only two methods that outperform individual features across the

three prediction sets (the only exception being random forests underperforming on

the Place set). Random forests present higher values of precision and recall than

model trees.

As random forests and model trees outperform the other methods, we choose these

two classifiers for the next part of this evaluation, where we consider prediction

performance across consecutive temporal snapshots of Gowalla. In this case, for

every snapshot and for each prediction set we sample disjoint training and test

sets of equal size and we compute predictions, averaging results over 20 randomly

sampled datasets. As seen in Figure 5.9, model trees achieve better AUC values for

the three prediction sets and across temporal snapshots. Overall, the two algorithms

have lower performance in the Social prediction set, with AUC values between 0.88

and 0.91, whereas Place and Place-social present higher values. Model trees offer

slightly better performance than random forests: in particular, the latter algorithm

performs worse than individual features on the Place prediction set. A potential

explanation for this behaviour is that random forests tend to perform poorly when

faced with a large heterogeneous set of features, since randomly chosen features

are more likely to include less relevant information [GGCM08]. This may be the

case for the Place set, while this is not the case for the Social set, where there are

fewer features, nor for the Place-social set, where there are more features but their
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Figure 5.10: Precision-recall curves for model trees (a) and random forests (b) ob-

tained for the three separate prediction sets, averaged across the three temporal

snapshots.

prediction performance is more homogeneous. However, investigating the precision-

recall trade-off offers a different insight into the prediction performance. Given the

same level of precision, random forests consistently achieve higher values of recall

than model trees, as described in Figure 5.10. In summary, our prediction framework

offers high effectiveness with both methods, since they are able to leverage the

information contained in our prediction features.

Finally, to understand the extent to which different feature classes contribute to

prediction performance, we focus only on the Place-social prediction set, where all

features are used to build the prediction model, and we test the prediction perfor-

mance that can be achieved by using only one feature class, as compared to the full

model. As described in Table 5.5, social features alone show the worst performance,

while both place and global features achieve AUC values closer to the full model.

Hence, these two latter classes are mainly contributing to the overall performance,

as they exploit information about place check-ins (Place features) and geographic

distance between users (Global features). Again, this provides evidence that includ-

ing data coming from location-based activity in the prediction model leads to better

performance than purely social-based methods.

5.5 Discussion and implications

Our results arise from two main important design choices: focussing link prediction

only on a reduced set of candidate pairs of users and exploiting location-based user

activity to define successful prediction features. These two simple ideas are able to

improve overall performance of link prediction systems; as a consequence, real-world

systems can be deployed, making use of predicted links to suggest friends to users

and engage them more with the service. In addition, recommending to a user others
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Classifier Full model Social Place Global

Model trees 0.953 ± 0.015 0.907 ± 0.021 0.927 ± 0.011 0.925 ± 0.012

Random forests 0.932 ± 0.013 0.881 ± 0.019 0.923 ± 0.009 0.928 ± 0.012

Table 5.5: Average AUC and standard deviation for model trees and random forests

for the Place-social prediction set when the full set of prediction features is used, and

when only a single set of prediction features is used. Results averaged over the three

snapshots and over 20 different random training and test sets for each snapshot.

who check in to the same places may be more important in location-based services,

since users can directly interact with them when checking in to these places.

Our framework enables the prediction of new social ties even for users who do

not yet have any friendship connection, provided that they visit and check in at

places. Standard link prediction methods based on social features are of no use in

this scenario, since it is impossible to compute prediction features for these isolated

users [LCB10]. In some sense, this is a scenario that represents new users of the

service: they have signed up, they have checked in at some places but they are not

engaging with other users. Thus, predicting their future links might be extremely

important to make them more active participants.

5.6 Related work

The link prediction problem in social networks has been under scrutiny for many

years. The seminal work by Liben-Nowell and Kleinberg addresses the problem

from an algorithmic point of view, investigating how different proximity features

can be exploited to predict the occurrence of new ties in a social network [LNK07].

They adopt an unsupervised approach, where scores are computed for all potential

candidates and then ranked to obtain the most likely predictions.

More recently, researchers have advocated supervised approaches to link prediction,

given the possibility of modelling the task as a binary classification problem. In

particular, Lichtenwalter et al. have presented a detailed analysis of challenges

in link prediction systems, discussing imbalance problems and proposing to treat

prediction separately for different classes of potential friends [LLC10]. While we

also adopt a supervised approach, we additionally consider how link prediction can

be performed when information not arising from social ties is available.

A related approach to finding online social ties between mobile users has been pre-

sented by Cranshaw et al. [CTH+10]: they track a small number of mobile users in

the physical world to discover their connections on online social networks. While also

focussing on information-based measures, our approach considers a much larger set
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of users and studies their activity on a location-based service. Eagle et al. have con-

sidered how interactions between people over mobile phones can accurately predict

relations between them [EPL09]. Conversely, we consider neither direct interaction

nor communication between users to predict social links.

Another work by Crandall et al. [CBC+10] shows how temporal and spatial co-

occurrences between people help to infer social ties among them; while their main

goal is to put forward a generative model that explains empirical data, our study has

a different aim, that is, designing a link prediction system to be used on real-world

location-based services. Furthermore, our work deals with a different type of data:

since we exploit check-ins at well-defined venues, we can infer that two individuals

visited exactly the same place without dealing with generic geographic coordinates.

As a consequence, our prediction system achieves higher precision while being more

practical for a real-world deployment.

5.7 Summary

In Section 2.3 we discussed how the availability of online location-sharing services

provides a window on the spatial properties of social behaviour; in addition, and

maybe with more important consequences, such services also highlight the rising

importance that physical places have for the Web. As users can seamlessly generate

and consume information related to the venues they visit, they leave behind them

a trail of digital traces that offers unprecedented opportunities to understand and

model their behaviour and to build and design related systems.

Then, in Chapter 4 we found that geographic proximity appears to be a driving

factor when users establish new social connections; in particular, when users do

not belong to the same social communities, spatial proximity can bring together

otherwise disconnected individuals. The challenge appeared to be how to accurately

build upon spatial proximity to offer precise predictions about potential future social

ties. In this chapter we have shown how the properties of the places that people

visit can solve this problem, accurately predicting when two users that visit the

same places will become connected.

Specifically, we have focussed on one important application that largely benefits

from additional information about where users go: the prediction of new social ties.

We have described and evaluated a link prediction model based on properties of

the places visited by users of a location-based social network. By focussing only

on friends-of-friends and place-friends, and by adopting prediction features based

both on social properties and on the features of the places visited by users, link

prediction systems can achieve high precision in a smaller prediction space than

with exhaustive approaches.
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In this chapter we have seen one practical application scenario where the spatial

properties of online social services can be successfully exploited. In the next chapter

we will present another practical case where such spatial characteristics offer tangible

benefit: understanding where requests for online content arise on a planetary scale,

to optimise the delivery of such content items.
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Kurt Cobain

6
Improving content delivery networks using

geosocial measures

The amount of Internet traffic generated every day by online multimedia streaming

providers has reached unprecedented levels. For instance, there are more than 4

billion videos viewed everyday on YouTube, which has more than 70% of its traffic

coming from outside the USA1. These providers often rely on Content Delivery Net-

works (CDNs) to distribute their content from storage servers to multiple locations

over the planet. CDN servers exchange content in a cooperative way to maximise

the overall efficiency.

Nowadays content diffusion is fostered by weblinks shared on online social networks,

which may often generate floods of requests to the provider through cascading across

a user’s social links. This type of “word-of-mouth spreading” occurring in these ser-

vices is already driving many of the daily requests to content providers. In fact, the

proportion of traffic generated by social spreading is high and increasing. Broxton et

al. [BIVW10] discussed how about 25% of YouTube views are generated via person-

to-person sharing, with a much higher fraction during the first days after a video is

uploaded. A more recent study by Brodersen et al. [BSW12] presents data about

individual videos having, on average, about 37% of views socially generated. Thus,

social sharing represents a crucial source of traffic for content providers. Given the

increasing size of online social platforms, with hundreds of millions of users, they

1YouTube official statistics are available at http://www.youtube.com/t/press_statistics
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generate millions of accesses to YouTube, accounting for a consistent fraction of the

total number of daily requests.

In this chapter we show that geographic information extracted from social cascades

taking place over online social platforms can be exploited to improve the design of

large-scale systems, such as CDNs. We rely on this novel finding: social cascades are

likely to spread over geographically local distances. Users tend to share content over

short-distance social connections, despite the presence of several long-range links;

although many users have these long-distance connections, we have found that about

40% of steps in social cascades involve users that are, on average, less than 1,000

km away from each other.

Our key idea is that content should be kept on servers that are close to interested

users, minimising the impact on network traffic. In other words, since content servers

act as caches of items, we aim to exploit the social and spatial characteristics of the

users that are sharing the content in the design of large-scale systems such as CDNs,

so that we can serve more requests immediately from the closest server rather than

waiting for the content to be transferred to the server from somewhere else.

In order to validate our approach, we analyse a dataset from Twitter containing

geographic location, follower lists and tweets. We have tracked the spreading of

about one million YouTube videos over this social network, analysing a corpus with

more than 334 million messages and extracting about 3 million single messages

with a video link. Finally, we have designed a proof-of-concept model of a planetary

content delivery network using the geographic properties of the commercial platform

once used by YouTube. We show that new cache replacement policies, driven by

one of the geosocial measures presented in Section 3.3, improve the overall system

performance.

Chapter outline In Section 6.1 we describe content delivery networks and their

current problems, discussing the issues that motivate our study. Section 6.2 presents

an analysis of social cascades of YouTube links over Twitter; by taking into account

user geographic information we are able to investigate the extent of these social

cascades and to characterise them over space and time.

In Section 6.3 we describe a model of a content delivery network that exploits the

spatial properties of social cascades to characterise individual spreading items, pri-

oritising their presence across different distributed caches, while Section 6.4 reports

the results of our evaluation, driven by our cascade dataset. Section 6.5 discusses the

implications of our results and Section 6.6 offers a review of related work. Section 6.7

closes the chapter.

128



CHAPTER 6. IMPROVING CONTENT DELIVERY NETWORKS

6.1 Content delivery networks

A Content Delivery Network (CDN) is a system of networked servers holding copies

of data items, placed at different geographic locations. The aim of a CDN is to

deliver content efficiently to clients; each request is served by a geographically close

server, while content is moved between servers to optimise the quality of service

perceived by users. Modern commercial CDNs deploy numerous servers all over

the world, often over multiple backbones and ISPs, and offer their services to other

companies that want to deliver content to users on a planetary scale, such as dynamic

Web pages, software updates, multimedia content, live streams and so on.

6.1.1 Factors impacting performance

CDNs have become progressively more important; the number of users with broad-

band Internet connections is constantly increasing and along with faster connectiv-

ity come greater expectations for better content delivery. Even exploiting additional

resources provided by CDNs, this demand puts considerable pressure on the entire

Internet. This issue becomes even more important if we consider future trends: as

the size of distributed content keeps growing, the distance between server and client

becomes more critical to the overall performance, since longer distances increase

the likelihood of network congestion and packet loss, which result in longer transfer

times [Lei09].

In addition, the geography of the requests influences the performance of CDNs; it

would be extremely useful to understand whether an item becomes popular on a

planetary scale or just in a particular geographic area. Recent research on YouTube

videos confirms that the majority of individual videos tend to exhibit highly lo-

calised geographic patterns of popularity, with views mainly arising from a small set

of regional areas [BSW12]. This has crucial consequences for CDN performance. A

globally popular content item should be replicated at every location, since it experi-

ences many requests from all around the world. On the other hand, when content is

only locally popular, it should be cached only in the locations that will experience

most requests. The key to such a strategy is being able to predict quickly whether

a piece of content will become locally popular, in order to optimise its placement

over the CDN before it undergoes the popularity surge.

6.1.2 Improving performance through social cascades

The popularity of content over the Web can be driven by public media coverage or

through word-of-mouth spreading [CMG09]. The former takes place when content
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is advertised by large information sources, such as search engines, news, and social

aggregator websites (e.g., SlashDot, Reddit, etc.). This type of phenomenon often

results in globally popular items, which should be widely replicated throughout a

CDN, since they are likely to experience requests from all over the world. On the

other hand, content may become popular because people share it and talk about it,

leading to some sort of viral spreading along social connections. These connections

may be real-life contacts or interactions on online social networks, with the latter

becoming increasingly common.

As a result, content may easily spread from a small set of users to a vast audience

through social cascades. The number of content requests generated by these social

cascades is hard to estimate. However, recent findings confirm that about 30% of

Twitter messages contain URL links, and that YouTube is one of the most popular

services present in those URLs [RBC+11]. This suggests that a potentially large

number of content requests might be generated by a cascade. The combined effect

of the popularity of several online services may cause millions of such requests.

Social cascades can be tracked and analysed; online social services can provide all

the information, including user location, to track items shared by users and to under-

stand the properties of a social cascade while it evolves over time. To exploit these

aspects to improve CDN performance, we need to understand the key geographic

properties of social networks. For instance, we need to study and characterise how

social cascades are unrolling over space and analyse whether geography affects the

spreading process. In particular, is it possible to estimate whether cascades will

spread globally or locally just from the geosocial properties of the users participating

in the cascade?

In the rest of this chapter we will answer this question, characterising how social

cascades evolve over space, and then we will exploit our findings to improve CDN

performance.

6.2 Geographic online social cascades

In this section our aim is to extract and study social cascades over a geographic social

network. Since online social services represent a popular way of sharing information,

a piece of information can quickly spread from one user to another as a virus in an

epidemic: somebody shares some new content with their friends, who might share it

again, and so on. Here we define two measures that quantify the spatial spreading

of a social cascade and the extent of its propagation; we then use them to analyse

information spreading over Twitter, focussing on traceable pieces of information:

Web links to YouTube videos contained in tweets.
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6.2.1 Extracting geographic social cascades

A cascade over a social network begins when the first user shares some content and

becomes the initiator of the cascade. After this event, some of his contacts will share

the same content again, with the result that the cascade will recursively spread over

the social links.

In order to estimate the influence of the social network on the information dis-

semination process, we combine the information about social connections with the

temporal information about the posts of each user.

More formally, we say that user B was reached by a social cascade about content c

if and only if:

• there is another user A who posted content c and

• user A posted content c before B posted it and

• there was a social connection from user A to user B when A posted c.

While this does not guarantee the dependency of the posts, in most cases we conjec-

ture that there is a correlation between the two events. If more than one user among

the social connections of B posted c, we say that B was reached by the cascade only

through the user who posted it last. Therefore, we always have only one previous

user in the cascade process. This arbitrary choice will only affect the shape of the

cascade, not its size or its overall geographic properties.

In order to describe these social cascades we exploit the spatial social network model

defined in Section 3.2. This cascade can be represented as a tree over the spatial

network, with the initiator node as the root of the tree. For the same item there

might be more than a single cascade. Moreover, the same user may publish the

same content at different times. In order to take into account these details, we need

to annotate the cascade links with temporal information. Each social cascade is

represented as a tree, where a link from user A to user B indicates that user B has

received some content as a result of a social cascade from user A. A link between

A and B is annotated with the time instants t1 and t2: t2 is the time instant when

B posted content c for the first time and t1 is the time instant of the last time user

A posted content c before B did, so that t2 ≥ t1. We define such a cascade step by

using a time threshold: consecutive steps in a cascade must be within 48 hours of

each other.

In order to investigate the geographic properties of a social cascade we define two

measures:
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Figure 6.1: Number of tweets containing a given video link (a) and number of users

tweeting a given video link (b).

• the geodiversity of a cascade is the geometric mean of the geographic dis-

tances between all the pairs of users in the cascade tree;

• the georange of a cascade is the geometric mean of the geographic distances

between the users and the root user of the cascade tree.

We adopt the geometric mean since geographic distances span several orders of mag-

nitude in our dataset. For a given social cascade these two quantities are correlated,

however they can be used to emphasise different properties of the cascade. The

geodiversity is computed between all the pairs of users in a cascade, regardless of

whether they are connected or not, while the georange is only related to the cascade

initiator. On the other hand, the georange allows us to understand how close the

initiator of a cascade is to the other people involved in it.

6.2.2 Cascades of YouTube links on Twitter

In this chapter we use the social network extracted from the Twitter dataset already

described in Section 3.3. We extract a directed graph from our traces where each

node represents a user with a geographic location and a link from user A to user

B means that user A follows user B. We recall that this graph has N = 409, 093

nodes and K = 182, 986, 353 directed links.

Through the Twitter API used to collect this dataset we had also access to the

3,200 most recent tweets for each user in our geographic Twitter graph. We down-

loaded these tweets for all the users in the graph, obtaining 334,407,185 tweets. The

duration of the data crawling was 12 days, from February 1 to February 11, 2010.

For each tweet we have crawled the author, the time when it was sent and the ac-

tual content of the message. From these tweets we have isolated 570,617 messages

containing a direct link to a YouTube video. We have extracted all the messages

132



CHAPTER 6. IMPROVING CONTENT DELIVERY NETWORKS

100 101 102 103

Cascade size

10−5

10−4

10−3

10−2

10−1

100

C
C

D
F

Figure 6.2: Complementary Cumulative Distribution Function (CCDF) of the size

of social cascades.

containing a URL shortened with URL shortener services, obtaining an additional

2,332,390 messages with a YouTube link.

Thus, after removing invalid YouTube links, we extract a total of 2,903,007 tweets

containing a valid direct link to a YouTube video. These links point to 1,111,586

different YouTube videos, hence some videos are contained in more than a single

tweet. The average number of tweets per YouTube video is 2.61. In Figure 6.1 we

present the popularity distribution for the video links we have extracted: both the

distribution of the number of tweets containing a given video link and the number

of different users tweeting a given video link have heavy tails. Thus, there is a very

small amount of videos that are tweeted more than 4,000 times or by thousands

of different users, while the majority are tweeted only 1 or 2 times by a few users.

Such a popularity distribution can greatly affect content delivery, since popular

items can easily dominate in terms of number of requests. Furthermore, every tweet

is potentially spawning many more actual video requests, since all followers of the

author can view the link and follow it. While difficult to estimate, this portion of

additional traffic might constitute a large fraction of social-driven web traffic.

Then, we use the cascade definition presented earlier to analyse the tweets and

extract 84,337 social cascades for 63,798 different videos. Each cascade involves

the initiator and at least one another user. Unfortunately, we have no information

about when a user started to follow another one, so we assume that all the social

relationships that we have in our social graph were in place when the tweet was sent.
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Figure 6.3: Cumulative Distribution Function (CDF) of time delay between two

consecutive tweets and total cascade duration (from the first to the last tweet).

Cascade duration is shown only for cascades with at least two users in addition to

the initiator.

6.2.3 Analysis of social cascades

We define the size of the cascade as the number of users involved in it, including

the initiator. In Figure 6.2 we report the distribution of the cascade size: we notice

again a long tail, with more than 60,000 cascades involving only two nodes and a few

cascades reaching up to hundreds of users. This measure of popularity demonstrates

that it is rare to have large cascades, but when they do take place they can become

extremely large. Again, it is worth noting that social cascades include only users

who have tweeted a certain video link; however, each tweet can be viewed by all the

followers of the author, thus the potential audience that a YouTube video may reach

by means of a social cascade is much larger, even if only a few users are involved.

In Figure 6.3 we illustrate the distribution of the time delay between two consecutive

tweets in a cascade. About 40% of the tweets in cascades have a delay of about 15

minutes from the previous message, with around 10% having a delay of around 2

minutes. This result shows that YouTube links can spread on Twitter on a time

scale of some minutes, even though further spreading does happen even after some

hours. This indicates that links to videos can quickly spread over the social network,

potentially leading to many views in a short period of time. In Figure 6.3 we show

the distribution of cascade duration from the first tweet to the last tweet for each

cascade with at least 2 users in addition to the initiator: about 80% of the cascades

end within 24 hours, with 40% ending in under 3 hours.

In Figure 6.4 we show the distribution of the geographic distance between authors

of two consecutive tweets in a social cascade. Around 10% of cascade steps are less
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Figure 6.4: Cumulative Distribution Function (CDF) of cascade step distance and

of social connection distance: social cascades take place over short-range social

connections. Logarithmic binning has been adopted to estimate the number of

samples in each range of values.

than 1 km, with 20% of them shorter than 100 km and more than 30% shorter than

1,000 km. This result is in slight contrast with the distribution of link lengths of

the Twitter network, already presented in Figure 3.9 and again shown in Figure 6.4

to aid comparison: even if fewer than 5% of the social connections are shorter than

100 km, within cascade steps this fraction increases up to 20%. Content spreading

through social cascades is more likely than expected to travel over geographically

short-range social connections rather than over the more numerous long-distance

links.

In Figure 6.5 we show the distribution of geodiversity and georange for all the social

cascades that involve at least two users in addition to the initiator. About 40% of

these cascades have geodiversity lower than 1,000 km, with around 20% of geodi-

versity values lower than 300 km. Thus, even though many cascades reach a broad

audience, some of them remain geographically limited. On the other hand, about

90% of georange values are smaller than 1,000 km, with about 30% of values smaller

than 100 km. This is an indication that a cascade may take place in a broad region

but with each user still close to the initiator.

6.2.4 Geosocial measures and social cascades

Finally, we are interested in properties of a social cascade that may help us predict

its geographic spreading from the very first messages that are tracked. Towards

this aim, we use one of the two geosocial measures introduced in Section 3.3: node

locality. Recall that this measure indicates whether a user has social connections
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Figure 6.5: Cumulative Distribution Function (CDF) of geodiversity and georange

for social cascades with at least 2 users after the initiator. Logarithmic binning has

been adopted to estimate the number of samples in each range of values.
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Figure 6.6: Average geodiversity of a social cascade as a function of the average

locality of the first nodes in the cascade: locality of the first node (a) and of the

first two nodes (b). Error bars show standard deviation around the average.

mainly over short-range distances, with a node locality close to 1, or over longer

distances, with a value closer to 0. The node locality of a user offers an indication

about the potential geographic spread of the information passing through the user.

We investigate whether the node locality of the first users who participate in a

social cascade is related to the final geodiversity and georange values. We report in

Figure 6.6 the average cascade geodiversity as a function of the average locality of

the first users involved in the cascade. We observe that even the initial locality of

the first user is correlated with the geographic spreading of the cascade and with

a reduction in the variance of this spreading. Moreover, by including the locality

of the second user we get a stronger relationship. A similar result can be seen in

Figure 6.7 for the georange: in this case the correlation is clearer, with less variance
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Figure 6.7: Average georange of a social cascade as a function of the average locality

of the first nodes in the cascade: locality of the first node (a) and of the first two

nodes (b). Error bars show standard deviation around the average.

especially for high locality values. It is important to consider both the correlation

with the average value and with the reduction of the variance, denoting a more

indicative estimation for higher values of node locality.

Thus, the final properties of a cascade can be estimated even from the users involved

in the initial stages. Also, even the geographic and social properties of the initiator

are sufficient to understand whether a cascade will spread locally or globally, and by

taking into account a few more steps we are able to give a more accurate estimate

of the final outcome.

Given the importance of social cascades and their geographic properties, being able

to correlate their properties with the geographic range they will reach makes it pos-

sible to exploit these findings to improve the design of cache replacement strategies

for CDNs.

6.3 Distribution of content using geosocial mea-

sures

We have described the geographic properties of social cascades. In this section we

exploit these findings in the design of a proof-of-concept CDN that adopts geosocial

measures to improve caching performance.

6.3.1 Assumptions and model

We envisage a single entity able to access information about content shared by users

on social networks and control the CDN which delivers the content that users are

sharing. This can be mapped to reality in various ways: i) assuming that CDNs will
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have access to information from online social services about the cascade dynamics,

which is reasonable as they are providing the content sharing service or ii) assuming

that, plausibly, in future online social networks and content providers might merge

into single entities or cooperate (e.g., companies like Facebook and Google already

offer social networking features and serve online content).

We model our system as a collection of server clusters placed around the planet.

Each cluster contains a certain number of servers: we assume that all servers within

the CDN have identical properties. The only difference between clusters is the

number of deployed servers. We assume that there is a central catalogue of content

items: clients from all over the world request content items from the CDN and they

are redirected to the geographically closest server. If the server already contains

the requested item, it is immediately served. Otherwise, the item is retrieved from

another portion of the CDN and served.

We assume that, as observed in real systems [Lei09], different clusters are intercon-

nected by a dedicated network. Then, we assume that it is faster to move content

between servers to bring an item as close as possible to the client, than to redirect

the request to another server further away that already holds a copy. This seems

plausible, even if geographic distance may not always be the only factor influencing

performance.

Server clusters act as caches: they keep copies of already requested items for future

requests, but they have finite storage. A cache replacement strategy is used to

remove an item from the cache when it is full. We also assume that the servers

within a cluster coordinate to act as a single large cache. Therefore, every server

can host up to k items and if there areN servers in a cluster, that cluster is equivalent

to a single cache able to host kN different items. This simplifies the definition of

the model but still captures the heterogeneity of cluster sizes around the planet. We

do not model file size: we assume that the size of a file does not vary much across

the items, as we have observed in our specific dataset of YouTube videos.

6.3.2 Model parameters

In order to ground our model in reality we have parametrised it with the real prop-

erties of Limelight, the commercial CDN once used by YouTube to deliver content

to users, as measured by Huang et al. [HWLR08]2. Limelight has clusters of servers

deployed at 19 different locations around the world and each cluster has a different

number of servers. In Table 6.1 we report the details of each server cluster: Lime-

light deploys 2,830 out of its 4,147 servers in the United States, where there are 10

2This paper has been withdrawn by Microsoft due to some criticisms about the system per-

formance results presented. However, we only use information about server locations from this

work.
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Location Country Servers Location Country Servers

Washington USA 552 Frankfurt Germany 314

Los Angeles USA 523 London UK 300

New York USA 438 Amsterdam Netherlands 199

Chicago USA 374 Tokyo Japan 126

San Jose USA 372 Toronto Canada 121

Dallas USA 195 Paris France 120

Seattle USA 151 Hong Kong Hong Kong 83

Atlanta USA 111 Changi Singapore 53

Miami USA 111 Sydney Australia 1

Phoenix USA 3

Table 6.1: Geographic distribution of the server clusters in the Limelight network.

clusters. Europe and Asia are served only by seven clusters in total and Australia

only by one, while the rest of the world does not contain any cluster.

In our model, cache size should be interpreted with respect to the total number of

items present in the system and not as an absolute number, since we do not have

access to the whole YouTube item catalogue. Hence, we will also express cache size

as a percentage of the total data catalogue. As an example, since we have about 1

million videos in our dataset, a cache size of 100 items is comparable to a cache that

can host about 0.01% of a real catalogue; in the case of YouTube, with hundreds of

thousands of videos added every day, there are more than 100 million videos, hence

this would represent a cache size with more than 10,000 different videos.

6.3.3 Content caching policies

We now define the caching policies adopted by our model to store and replace content

within the servers. A server cluster adopts a cache replacement strategy to remove

an item when the cache is full and a new request arrives. Each strategy assigns

priorities to the items in memory and, when a deletion is needed because the cache

is full, the item with the lowest priority is removed. The priority of an item might

be updated whenever a request for that item is issued.

Our approach is to use standard caching policies and then augment them with

geosocial information. Each policy assigns a priority P (v) to a video v and, when

a video has to be removed, that with the lowest priority is chosen for deletion. A

random choice is made when more than one video has the lowest priority. We adopt

three different caching policies: Least-Recently-Used (LRU), Least-Frequently-Used

(LFU) and Mixed.
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In LRU the priority of a video v is given by P (v) = clock, where clock is an internal

counter incremented by one whenever a new item is requested. This policy provides

a simple aging effect: when an item is not requested for a long time, it is eventually

removed. However, it does not take into account item popularity. In LFU the

priority of a video v is given by P (v) = Freq(v), where Freq(v) is the number

of times video v has been requested since it was stored in the cache for the last

time. LFU favours popular content: if an item receives a large number of requests

it will stay in the cache for a long time. However, LFU is less flexible: an item

that was popular in the past tends to stay in the cache even if it is not requested

anymore. The Mixed policy combines both LRU and LFU features and the priority

of video v is given by P (v) = clock + Freq(v), in order to balance both temporal

and popularity effects [Che98]. In this case clock starts at 0 and it is updated for

each replacement with the priority value of the removed file. Thus, a video increases

its priority when it is requested many times, but, if there are no more requests, it

will eventually be removed from the cache.

Then, we define two priority weights for each video v, based on the geosocial charac-

teristics of users participating in the social cascades involving this video, measured

using node locality:

• Geosocial: the weight of video v is given by the sum of the node locality

values of all the users who have posted a message about it, even if they are

not involved in a social cascade;

• Geocascade: the weight of video v is given by the sum of the node locality

values of all the users participating in the item’s social cascade (or cascades,

if an item happens to be posted on more than one cascade).

These weights are used to capture the idea that if a video is tweeted many times

by users with high node locality values, then it is likely that it is spreading in a

local region, thus future requests will hit the same content server. While the first

weight takes into account all the messages regarding a particular content item, the

second one only uses the messages caused by a social cascade. By using two different

weights based on geosocial information, we want to investigate the contribution of

social cascades with respect to using only geographic information of social ties.

The weight of every tweet with a link to a video is updated according to whether

that tweet is or is not in a cascade. For every request, content servers get also the

video weight and multiply it with the priority of the underlying cache replacement

policy. Hence, we have three versions of every cache replacement policy: with no

weight, with a Geosocial weight and with a Geocascade weight.
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Figure 6.8: Fraction of video requests handled by each cluster and fraction of servers

contained in each cluster. Different workloads do not significantly change the dis-

tributions of requests.

6.4 Evaluation

In this section we test our idea that information extracted from geographic social

cascades can effectively be exploited to improve the performance of CDNs. We have

investigated through simulation how different cache replacement policies impact the

performance of the system. Our results show that global system performance can

be improved with respect to standard policies, which means potentially avoiding

millions of video file transfers per day.

6.4.1 Simulation strategy

In our simulation we create a sequence of content requests to the CDN directly from

the Twitter messages within our dataset. We assume that every video contained in a

Twitter message is requested by each follower of the author with a certain probability

p and with a random temporal delay modelled with the same distribution of delay

between cascade steps. This assumption is simple and can be far from reality, as the

real load is likely to be a function of the particular user and the particular content
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Figure 6.9: Percentage of total hits with respect to the infinite cache case as a

function of cache size for the LRU cache polity and different weights: no weight

(a), Geosocial weight (b) and Geocascade weight (c). Cache size is expressed as a

fraction of the entire data catalogue. Every simulation is run 20 times with randomly

generated workloads and the average is presented (standard deviation is negligible

and not shown).

item: nonetheless, we do not have precise information about real traffic requests

spawned by Twitter messages. However, our simulation results show performance

improvements for any value of p we adopted. We generate 5 different workloads,

corresponding to the values of p = 0.001, 0.002, . . . , 0.005, and we run every workload

20 times, averaging the results.

We always route a request to the server cluster closest to the user. However, the

geographic distribution of the requests does not change for p, since it is only influ-

enced by the geographic distribution of Twitter users, which does not change for

different workloads. As shown in Fig. 6.8, some servers receive much more traffic

than others: as an example, the cluster in Dallas accounts for more than 11% of

global requests. Additionally, some locations receive a large fraction of traffic even

though they contain only a small number of servers. These properties may impact

the performance of the cache replacement strategies for different locations.
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Figure 6.10: Percentage of total hits with respect to the infinite cache case as a

function of cache size for the LFU cache polity and different weights: no weight

(a), Geosocial weight (b) and Geocascade weight (c). Cache size is expressed as a

fraction of the entire data catalogue. Every simulation is run 20 times with randomly

generated workloads and the average is presented (standard deviation is negligible

and not shown).

6.4.2 Global performance

First we investigate the performance of different policies with respect to the case of

infinite cache size, i.e., in conditions where no item is ever removed from the cache.

The number of hits in this case is the maximum achievable, both on each cluster

and globally.

As a global performance metric for our system we consider all the hits on all the

clusters; every request is directed to the closest server and there it may result in a hit

or a miss. For each cache replacement strategy and for each different workload, we

compute the total number of hits obtained and we take the ratio between this value

and the performance with infinite cache. This metric shows how different policies

react when some parameters of the system are changed, but it does not emphasise

differences in their performance.

In Figures 6.9-6.11 we show the change in system performance as a function of cache
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Figure 6.11: Percentage of total hits with respect to the infinite cache case as a

function of cache size for the Mixed cache polity and different weights: no weight

(a), Geosocial weight (b) and Geocascade weight (c). Cache size is expressed as a

fraction of the entire data catalogue. Every simulation is run 20 times with randomly

generated workloads and the average is presented (standard deviation is negligible

and not shown).

size and for different workloads; when the size increases, every policy steadily im-

proves its performance. Larger workloads have worse performance, but differences

between them disappear at larger cache sizes. Moreover, as the cache size grows

larger, all workloads reach a plateau, since increasing the cache size beyond a cer-

tain limit provides a diminishing performance increment. This is due to the fact

that there is a portion of content that is requested only a few times and for which

caching policies can hardly offer advantages. In addition, we observe that while

using no weights results in the lowest hit ratio, by adopting instead the Geosocial

and Geocascade weights we achieve noticeable improvements, because the servers

are now able to identify geographically popular items and keep them in memory

for future local requests. However, we need a direct comparison to appreciate the

difference in performance achieved by using these weights.
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Figure 6.12: Increment (%) of average performance with respect to the case without

weight as a function of the cache size and for different workloads when the LRU

strategy is used with Geosocial weight (a) and with Geocascade weight (b).
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Figure 6.13: Increment (%) of average performance with respect to the case without

weight as a function of the cache size and for different workloads when the LFU

strategy is used with Geosocial weight (a) and with Geocascade weight (b).

6.4.3 Policy comparison

In order to understand which policy provides better results, we evaluate the relative

performance improvements between the weighted policies and the other strategies.

We illustrate in Fig. 6.12 the performance increment when we augment the LRU

strategy with geosocial information. Geosocial-LRU reaches a maximum 55% per-

formance increment, while increasing the cache size results in a smaller increment.

Instead, Geocascade-LRU achieves more than a 70% increment over LRU for smaller

cache sizes, while the benefit decreases as cache size increases. In Fig. 6.13 we in-

vestigate how the use of priority weights improves LFU. Geosocial-LFU achieves a

top increment of about 50% against LRU with small cache sizes, with the increment

going down as the size increases. However, the improvement is larger in the case of

the Geocascade weight, with a maximum increment of 70% and a smaller decrement

with cache size. Finally, in Fig. 6.14 we investigate the difference between the Geo-
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Figure 6.14: Increment (%) of average performance with respect to the case without

weight as a function of the cache size and for different workloads when the Mixed

strategy is used with Geosocial weight (a) and with Geocascade weight (b).

cascade and the Geosocial weight for the Mixed cache policy. Again, the Geosocial

weight gives a maximum improvement of 50%, while the Geocascade one improves

the baseline performance by up to 65%.

Both weights improve cache performance, since they recognise content that is more

likely to become popular only locally and to result in many requests to the same

local servers. Indeed, items that are popular on a global scale may be requested from

different servers around the planet and may not trigger cache prioritisation in single

CDN clusters. Furthermore, including information about the spreading of social

cascades appears to be a better predictor of local popularity, since the Geocascade

weight gives higher performance than Geosocial. It is also important to note that the

performance improvement is smaller when the cache becomes larger. Indeed, with

a cache so large that it can host 0.1% of the entire data corpus, it becomes easier to

accommodate more items and performance easily reaches a saturation point, as seen

in Figures 6.9-6.11. For a given cache size larger workloads have a larger relative

improvement, since their absolute performance is lower.

6.5 Discussion and implications

The main result presented in this chapter is that locality information from social

cascades can be extracted and used to improve large-scale system design. We see

a great potential in exploiting geographic properties of online user communication.

Geographic locality of online interactions can be exploited to do pre-fetching of Web

content, caching of normal HTTP traffic, datacentre design and placement and even

to devise security mechanisms [WPD+10, BSM10, THT+12].

In addition, our approach can be generalised to be used on a number of different so-

cial platforms. The information needed can be efficiently exposed by an anonymised
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API, which could provide only the aggregated geosocial measures corresponding to a

given cascade of a certain shared item. Moreover, information coming through pub-

lic Twitter feeds, private Facebook posts and emails can be anonymised and exposed

in order to classify items according to their geographic popularity and feed this in-

formation into CDNs. As with any other anonymisation procedure, this approach

would anyway present associated risks.

In the specific example we have discussed, improvement largely depends on cache

size: when it is possible to cache a considerable portion of the whole item catalogue,

cache policies matter less and the improvement obtained by social information is

smaller. However, if cache size is not sufficient to store that portion, because it

is too small with respect to item size or because the catalogue contains too many

items, geosocial properties can make a difference. Moreover, if in the future social

cascades can be tracked on a larger scale, the advantage given by geosocial measures

may impact not only CDN caching policies but other large-scale systems in general.

As already mentioned, our results are obtained using a sample from a single service.

Although it is generally unknown which portion of the traffic directed to CDNs

is coming from online social networks, it is not inconceivable that this traffic may

become considerable; the fraction of messages containing content in our dataset is

already appreciable and the number of users of social services is still increasing.

An improvement in the number of cache hits for requests coming from these services,

as observed in our simulation, would mean that millions of video daily requests could

be served locally instead of being transferred over the network. In addition, videos

are getting larger, with higher quality demanded by users, meaning bulkier files.

Caches need to grow larger and larger to cope with this trend or, alternatively, need

to cache fewer items. This is impacting (and will impact increasingly more) on the

running costs of modern CDNs. For instance, Limelight runs a global private fibre-

optic network that avoids sending files over costly public Internet connections. As

a result, any reduction in the number of files sent across the network would reduce

the investments needed in network infrastructure, which account for a considerable

part of the total expenditure of a CDN [QWB+09].

6.6 Related work

Two research areas are related to this discussion: the analysis of online social cas-

cades and the design of large-scale CDNs.

Social Cascades Social cascades have been studied in sociology, economics and

marketing for more than 60 years; an eminent example is the threshold model pro-

posed by Granovetter [Gra87]. Recently, thanks to the availability of large datasets,
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many other studies have been presented. In [AA05] Adar and Adamic analyse the

diffusion of information in blogs by applying epidemic models of information spread-

ing. Similarly, a characterisation of cascades using data from Flickr, a photo-sharing

website, is illustrated in [CMG09].

Finding ways of harnessing the potential of information constantly generated by

users is a key and promising research area for the networking community and it is still

largely unexplored. An initial proposal was presented by Sastry et al. [SYC09]: their

suggestion is to place replicas of items already posted by a user closer to the location

of friends, anticipating future requests. Our proposal is a different example that uses

information extracted from social cascades to effectively improve the performance

of large-scale networked systems, and, more specifically, of CDNs. In addition, we

present a large-scale study of geographic social cascades that supports our claims.

Content Distribution Networks Given the success and economic importance

of CDNs, many solutions to improve the performance of this class of systems have

been proposed with respect to the location-aware selection of servers. Key examples

of experimental systems in this area are Meridian [WSS05], a node selection mech-

anism based on network locality, and OASIS [FLM06], an overlay anycast service

infrastructure. WhyHigh is a system to redirect queries based on the measurements

of the latency of the Google’s CDN [KMS+09]. This system is not only based on

geographic proximity but also on measurements of client latencies across all CDN

nodes, in order to identify the prefixes with inflated latencies.

While these systems have used some knowledge of the geographic properties of traffic

load to improve performance, we have also taken advantage of information from

online user interaction to enhance the content placement decision process.

6.7 Summary

Taking into account how online social services are affected by spatial distance could

improve system design, as we argued in Section 2.4.3. Already in Chapter 5 we

have demonstrated that the additional layer of spatial information about user be-

haviour can greatly benefit applications based on data mining. Furthermore, spatial

properties of online platforms become important when services are deployed on dis-

tributed architectures that span and serve the entire planet. Since content storage

and content delivery must happen on a global scale, because online platforms serve

hundreds of millions of users all around the world, spatial constraints affecting user

interactions are of vital importance to improve resource usage.

In this chapter we have shown how geosocial properties of users participating in on-

line social cascades can be exploited to improve the efficiency of caching in CDNs.
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We have studied cascades on Twitter, finding that users preferentially share content

over short-range links, despite the significant presence of long-distance connections.

Using one new geosocial measure introduced in Section 3.3, we have taken advan-

tage of these findings to design content caching policies that prioritise content that

experiences geographically local popularity, validating our design through model

simulation. While our study is limited in scope by the choice of online social net-

work and dataset, our results are more generally applicable and the impact of the

approach could be high for large-scale systems whose traffic is driven by online social

services.
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The feeling is less like an ending than just another

starting point.

Chuck Palahniuk

7
Reflections and outlook

The general public as well as academic scholars believed that the Internet, as many

other historical breakthroughs in human communication technology, would turn the

entire planet into a “Global Village”, where space is irrelevant and geographic dis-

tances do no longer matter. This thesis is inspired by an important and contrasting

idea: individuals are affected by spatial proximity and geographic factors in their

online social interactions.

This dissertation has supported this thesis with a body of work largely made pos-

sible by two increasingly important trends: the advent of the mobile Web and the

popularity of online social networks. As users access online services through location-

sensing devices, service providers gather data about where individuals are located

and where they go, together with information about their social interactions. This

exposes the spatial properties of the social connections arising on the Web, gener-

ating possibilities for study and analysis; also, this opens the door for a wide new

range of systems and application.

This dissertation has explored both these threads: we first focussed on studying and

understanding how spatial and social properties of online social services are related

to each other. We then proposed new ways of taking advantage of spatial data to

provide, respectively, better link prediction engines and better caching of content in

planetary delivery networks.
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7.1 Summary of contributions

When considering the effect that geographic constraints could have on online social

services, the properties of their social graphs need to be reconsidered taking into

account the metric space where individuals are embedded. Thus, in Chapter 3 we

adopted a methodology that treats the social graph as a spatial network, associating

a geographic distance to every social connection. We observed that users with more

connections appear less constrained by geographic distance and, using two different

randomised null models, we assessed how the observed properties could not arise

from social or spatial factors alone: both dimensions ought to be jointly considered.

These findings were revisited in Chapter 4, where we analysed the temporal growth

of an online social network with respect to its spatial properties. We found evidence

that the creation of new links can be reproduced by a gravitational attachment

model, where new connections are created with nodes that are either already well

connected or spatially close. This mechanism combines together a purely social

property, the number of connections a user already has, with a purely spatial mea-

sure, the geographic distance between users. To our surprise, we found that only

social factors seem to drive triadic closure, which appears largely unaffected by dis-

tance. We combined these observations to define a new model of network growth

that reproduces the spatial and social properties observed in real data.

The study of the spatial properties of online social services has offered new insights

about user behaviour, inspiring new systems and applications. Hence, we have

covered and discussed two practical cases where spatial properties of online social

networks are explicitly used, respectively, to enhance friend suggestion engines and

to improve caching policies used in distributed content delivery networks.

In Chapter 5 we described how friend prediction systems can rely on the places that

users visit to find suitable candidate for predictions, reducing the overall prediction

space and still covering a large fraction of future connections. We have shown that

the properties of the places that two users share can be used to build prediction

features; we have proposed and evaluated a supervised learning approach which

achieves high performance.

We discussed a different application in Chapter 6: adopting caching policies in

content delivery networks to serve items over the planet. Our key idea is that

content consumption is fostered by users sharing items over online social networks:

as their social connections are constrained by space, we can understand which items

are popular on a geographically local scale by tracking their spreading by means of

social cascades. Again, we have shown how exploiting the spatial properties of online

social interactions can effectively improve delivery performance, using a trace-driven

simulation of global content requests.
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Returning to our initial thesis, we feel that geography and space affect online social

interaction in a strong and straightforward way: users will want to connect to other

individuals who are “popular”, regardless of where those users are located, or to

other individuals who are “close”, even though they might be relatively unheard

of. In other words, the mere fact of being spatially close to someone else greatly

increases how interesting, or socially attractive, that individual is. At the same

time, other factors such as homophily and transitivity appear less affected by space;

instead, they might be influenced by properties such as similarity, user preferences

and other measures of like-mindedness. Overall, it seems that being in proximity,

either in the geographic sense or by sharing common interests, is what brings new

social connections to life.

In summary, we believe that the three main spatial properties that online social ser-

vices exhibit are the likelihood of friendship connection that decreases as an inverse

power of spatial distance, strong correlations between spatial properties and node

degree, and the lack of spatial constraints on social triads. These properties may

hold for other social systems embedded in space and are likely to strongly influ-

ence other characteristics commonly observed in social graphs, such as community

structure and the properties of navigable network paths.

7.2 Future directions

From these considerations, geographic proximity arises as yet another factor that

brings individuals to connect to each other. This simple observation also suggests

many possibilities for future work.

First, a key question is whether the effect of spatial distance can be introduced

beyond the gravitational attachment process. Even though our new model repro-

duces some social and spatial properties observed in the real graphs, it may fail to

replicate many other characteristics such as community structure, transitivity and

small-world behaviour that are observed in online services. Thus, two different but

related threads of work need to be carried out: the analysis of the spatial proper-

ties of these phenomena, in order to understand how geographic distance influences

different facets of social networks, and the extension of the network growth model

to take into account these new findings.

In fact, another property of online social networks likely to be strongly influenced

by distance is community structure. The existence of social groups is as important

as the effect of spatial distance to fully understand how individuals establish social

ties. Since geographic proximity fosters connections, large and dense communities

might be more likely to arise between individuals close to each other rather than far

apart. Recent results on mobile phone interactions confirm that communities are
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constrained by geography and only groups with more than 30 members gradually

lose these spatial limitations, spanning wider areas [OAG+11]. In Chapter 4 we

jointly considered social and spatial factors to reproduce the properties observed

in real online social networks: this study could be further extended to understand

whether our model reproduces the communities present in real scenarios and, if it

fails, what modifications would be needed to capture how real social communities

are created over space.

Then, on a broader scope, the close relationship between how users create new

friendship ties and how users move across places has to be explored. As discussed in

Chapter 5, the places visited by users can reveal which new social connections are

likely to arise in the future. This relationship can be reversed with equally promising

results, as users can be influenced by their friends when choosing which new places

to visit. By simultaneously considering these two influences, from places to social

connections and from social connections to places, there is the potential to expand

our understanding of each of these two processes. More importantly, this might

allow us to define joint models that describe how mobile users behave from both a

social and spatial point of view.

The close inter-dependence between user mobility and social connections becomes

even more compelling when considering long-range social connections, spanning large

distances even across continents. One could posit that such ties were created when

users were in direct spatial proximity at some point in the past; then, one of the two

parties migrated somewhere else, effectively creating a long-range social connection.

This would imply that a more meaningful explanation of the geographic patterns

of social interaction could lie in individual migration patterns, spanning short and

long distances and ranging from daily movements to long-term relocation shifts.

A recent study by Levy discusses how such migration patterns exhibit statistical

regularities that could explain the observed effect of geographic distance on social

connections [Lev10]. More data and more studies in this direction could help shed

more light on this initial insight.

7.3 Outlook

The importance that spatial proximity holds in connecting people together has been

recently exploited by a new generation of mobile applications that use location-

sensing technology available in modern devices to continuously acquire data about

other users nearby. Mobile applications such as Highlight1, Banjo2, Sonar3 and

1http://highlig.ht
2http://ban.jo
3http://www.sonar.me

154

http://highlig.ht
http://ban.jo
http://www.sonar.me


CHAPTER 7. REFLECTIONS AND OUTLOOK

Glancee4 help users discover new friends by matching geographically close users

according to their shared interests and personal profiles. These new services seem

to pave the way for a broader trend: location data will be increasingly available on

online services and ingrained in the features they offer. As powerful mobile devices

become mainstream, the potential audience of location-based services could easily

grow as online social services did over the last years, changing the Web yet again.

Overall, this dissertation has made a step in addressing how the spatial properties

of online social networks can be used effectively to understand and model their

structure and to design and deploy related systems. As location-based data will

be increasingly more available, our findings and results open the door to a vast

range of future possibilities. Our results are relevant both to researchers and to

practitioners: the former would benefit from these insights when studying online

social services, while the latter could be aware of these additional possibilities when

building systems and applications related to online social platforms.

Despite the clear effect that space and geography have on online users, we imagine

that taking advantage of the spatial properties of social services in real scenarios

would still present interesting design challenges. Facing these challenges requires

inventive thinking and technical knowledge that stem from the particular domain

of interest: our hope is that this work and its results can facilitate and inspire such

creative process, by offering a new perspective on online social services.

4http://www.glancee.com
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sequence of a scale-free random graph process, Random Structures &

Algorithms 18 (2001), no. 3, 279–290.

[BSH07] P. Bonhard, M. A. Sasse, and C. Harries, “The devil you know knows

best”: how online recommendations can benefit from social network-

ing, Proceedings of the 21st British HCI Group Annual Conference

on People and Computers (BCS-HCI 2007) (Swinton, UK), British

Computer Society, 2007, pp. 77–86.

[BSM10] L. Backstrom, E. Sun, and C. Marlow, Find me if you can: improving

geographical prediction with social and spatial proximity, Proceedings

of the 19th World Wide Web Conference (WWW 2010) (Raleigh,

North Carolina, USA), 2010, pp. 61–70.

[BSW12] A. Brodersen, S. Scellato, and M. Wattenhofer, YouTube Around the

World: Geographic Popularity of Videos, Proceedings of the 21st

World Wide Web Conference (WWW 2012) (Lyon, Paris), 2012.

[But03] C. T. Butts, Predictability of large-scale spatially embedded networks,

Dynamic Social Network Modeling and Analysis: Workshop Sum-

mary and Papers (2003), 313–323.

159



BIBLIOGRAPHY BIBLIOGRAPHY

[Cai01] F. Cairncross, The Death of Distance: How the Communications Rev-

olution Is Changing our Lives, Harvard Business School Press, 2001.

[Car56] V. Carrothers, A Historical Review of the Gravity and Potential Con-

cepts of Human Interaction, Journal of the American Institute of

Planners 22 (1956), 94–102.

[Car89] J. W. Carey, Communication as Culture: Essays on Media and Soci-

ety, Routledge, January 1989.

[CBC+10] D. J. Crandall, L. Backstrom, D. Cosley, S. Suri, D. Huttenlocher,

and J. Kleinberg, Inferring social ties from geographic coincidences,

Proceedings of the National Academy of Sciences 107 (2010), no. 52,

22436–22441.

[CCH+08] D. Crandall, D. Cosley, D. Huttenlocher, J. Kleinberg, and S. Suri,

Feedback effects between similarity and social influence in online com-

munities, Proceedings of the 14th ACM SIGKDD International Con-

ference on Knowledge Discovery and Data mining (KDD 2008) (Las

Vegas, Nevada, USA), ACM, 2008, pp. 160–168.

[CFL09] C. Castellano, S. Fortunato, and V. Loreto, Statistical physics of so-

cial dynamics, Reviews of Modern Physics 81 (2009), no. 2, 591–646.

[CHBG10] M. Cha, H. Haddadi, F. Benevenuto, and K. Gummadi, Measuring

User Influence in Twitter: The Million Follower Fallacy, Proceedings

of the Fourth International AAAI Conference on Weblogs and Social

Media (ICWSM 2010) (Washington, DC, USA), 2010.

[Che98] L. Cherkasova, Improving WWW Proxies Performance with Greedy-

Dual-Size-Frequency Caching Policy, Tech. report, HP, 1998.

[CKR+09] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, Analyz-

ing the video popularity characteristics of large-scale user generated

content systems, ACM Transactions on Networking 17 (2009), 1357–

1370.

[CLP06] P. Crucitti, V. Latora, and S. Porta, Centrality measures in spatial

networks of urban streets, Physical Review E 73 (2006), 036125.

[CMG09] M. Cha, A. Mislove, and K. Gummadi, A measurement-driven analy-

160



BIBLIOGRAPHY BIBLIOGRAPHY

sis of information propagation in the Flickr social network, Proceed-

ings of the 18th World Wide Web Conference (WWW 2009) (Madrid,

Spain), ACM, 2009, pp. 721–730.

[Col64] J. S. Coleman, An introduction to mathematical sociology, Collier-

Macmillan, London, UK, 1964.

[Coo94] C. H. Cooley, The Theory of Transportation, Publications of the

American Economic Association 9 (1894), no. 3, 71–73.

[CS08] R. Crane and D. Sornette, Robust dynamic classes revealed by mea-

suring the response function of a social system, Proceedings of the

National Academy of Sciences 105 (2008), no. 41, 15649–15653.

[CSBR11] F. Calabrese, Z. Smoreda, V. D. Blondel, and C. Ratti, Interplay be-

tween telecommunications and face-to-face interactions: a study using

mobile phone data, PLoS ONE 6 (2011), no. 7, e20814.

[CSLP06] A. Cardillo, S. Scellato, V. Latora, and S. Porta, Structural proper-

ties of planar graphs of urban street patterns, Physical Review E 73

(2006), 066107.

[CTH+10] J. Cranshaw, E. Toch, J. Hong, A. Kittur, and N. Sadeh, Bridging the

gap between physical location and online social networks, Proceedings

of the 12th ACM International Conference on Ubiquitous Computing

(UbiComp 2011) (Copenhagen, Denmark), 2010, pp. 119–128.

[CW08] J. Caverlee and S. Webb, A Large-Scale study of MySpace: Observa-

tions and implications for online social networks, Proceedings from

the second AAAI International Conference on Weblogs and Social

Media (ICWSM 2008) (Seattle, Washington, USA), 2008.

[Db04] J. Donath and d. boyd, Public Displays of Connection, BT Technol-

ogy Journal 22 (2004), no. 4, 71–82.

[DDADG05] L. Danon, J. Duch, A. Arenas, and A. Dı̀az-Guilera, Comparing

community structure identification, Journal of Statistical Mechanics:

Theory and Experiment (2005), P9008.

[DGP07] Y. Dourisboure, F. Geraci, and M. Pellegrini, Extraction and clas-

sification of dense communities in the web, Proceedings of the 16th

161



BIBLIOGRAPHY BIBLIOGRAPHY

World Wide Web conference (WWW 2007) (Banff, Alberta, Canada),

ACM, 2007, pp. 461–470.

[DMW03] P. S. Dodds, R. Muhamad, and D. J. Watts, An experimental study

of search in global social networks, Science 301 (2003), no. 5634, 827–

829.

[EC08] B. M. Evans and E. H. Chi, Towards a model of understanding so-

cial search, Proceedings of the 11th ACM Conference on Computer

Supported Cooperative Work (CSCW 2008) (San Diego, California,

USA), ACM, 2008, pp. 485–494.

[EEBL11] P. Expert, T. S. Evans, V. D. Blondel, and R. Lambiotte, Uncovering

space-independent communities in spatial networks, Proceedings of

the National Academy of Sciences 108 (2011), 7663–7668.

[EMB02] H. Ebel, L.-I. Mielsch, and S. Bornholdt, Scale-free topology of e-mail

networks, Physical Review E 66 (2002), 035103.

[EP05] N. Eagle and A. Pentland, Social serendipity: Mobilizing social soft-

ware, IEEE Pervasive Computing 4 (2005), no. 2, 28–34.

[EPL09] N. Eagle, A. S. Pentland, and D. Lazer, Inferring friendship network

structure by using mobile phone data, Proceedings of the National

Academy of Sciences 106 (2009), no. 36, 15274–15278.

[ES90] S. Erlander and F. S. Stewart, The Gravity Model in Transporta-

tion Analysis: Theory and Extensions, Brill Academic Publishers,

Utrecht, Netherlands, 1990.

[Fac12] Facebook statistics, https://www.facebook.com/press/info.php?

statistics, 2012, Last accessed in January 2012.

[FBA11] F. Figueiredo, F. Benevenuto, and J. M. Almeida, The tube over time:

characterizing popularity growth of YouTube videos, Proceedings of

the fourth ACM International Conference on Web Search and Data

Mining (WSDM 2011) (Hong Kong, PRC), ACM, 2011, pp. 745–754.

[Fel81] S. L. Feld, The Focused Organization of Social Ties, American Jour-

nal of Sociology 86 (1981), no. 5, 1015–1035.

162

https://www.facebook.com/press/info.php?statistics
https://www.facebook.com/press/info.php?statistics


BIBLIOGRAPHY BIBLIOGRAPHY

[FFF99] M. Faloutsos, P. Faloutsos, and C. Faloutsos, On power-law relation-

ships of the Internet topology, Proceedings of the fifth International

Conference on Computer and Data Communication Networks (SIG-

COMM 1999) (Cambridge, Massachusetts, United States), ACM,

1999, pp. 251–262.

[FLGC02] G.W. Flake, S. Lawrence, C.L. Giles, and F.M. Coetzee, Self-

organization and identification of Web communities, IEEE Computer

35 (2002), no. 3, 66 –70.

[FLM06] M. J. Freedman, K. Lakshminarayanan, and D. Mazières, OASIS:

Anycast for any Service, Proceedings of the third Symposium on Net-

worked Systems Design and Implementation (NSDI ’06) (San Jose,

CA), USENIX, 2006.

[FMNW03] D. Fetterly, M. Manasse, M. Najork, and J. Wiener, A large-scale

study of the evolution of Web pages, Proceedings of the 14th World

Wide Web Conference (WWW 2003) (Budapest, Hungary), ACM,

2003, pp. 669–678.

[For10] S. Fortunato, Community detection in graphs, Physics Reports 486

(2010), 75–174.

[FSB63] L. Festinger, S. Schachter, and K. Back, Social pressures in informal

groups: A study of human factors in housing, Stanford University

Press, 1963.

[FWI+98] E. Frank, Y. Wang, S. Inglis, G. Holmes, and I. H. Witten, Using

model trees for classification, Machine Learning 32 (1998), 63–76.

[Gal10] G. Gale, Location vs. place vs. poi, http://www.vicchi.org/2010/

11/16/location-vs-place-vs-poi/, November 2010, Last accessed

in February 2012.

[GGCM08] M. Gashler, C. Giraud-Carrier, and T. Martinez, Decision Tree En-

semble: Small Heterogeneous Is Better Than Large Homogeneous,

Proceedings of the seventh International Conference on Machine

Learning and Applications (ICMLA2008) (San Diego, CA), IEEE,

December 2008, pp. 900–905.

[GGLNT04] D. Gruhl, R. Guha, D. Liben-Nowell, and A. Tomkins, Information

163

http://www.vicchi.org/2010/11/16/location-vs-place-vs-poi/
http://www.vicchi.org/2010/11/16/location-vs-place-vs-poi/


BIBLIOGRAPHY BIBLIOGRAPHY

diffusion through blogspace, Proceedings of the 13th World Wide Web

conference (WWW 2004) (New York, New York, USA), ACM, 2004,

pp. 491–501.

[GGM+09] T. Gupta, S. Garg, A. Mahanti, N. Carlsson, and M. Arlitt, Charac-

terization of FriendFeed - A Web-based Social Aggregation Service.

[GKF+06] S. Garriss, M. Kaminsky, M. J. Freedman, B. Karp, D. Mazières,

and H. Yu, RE: Reliable Email, Proceedings of the third Symposium

on Networked Systems Design and Implementation (NSDI ’06), May

2006, pp. 297–310.

[GL04] D. Garlaschelli and I. Loffredo, Patterns of link reciprocity in directed

networks, Physical Review Letters 93 (2004), no. 26.

[GN02] M. Girvan and M. E. J. Newman, Community structure in social and

biological networks, Proceedings of the National Academy of Sciences

99 (2002), no. 12, 7821–7826.

[GN06] M. T. Gastner and M. E. J. Newman, The spatial structure of net-

works, European Physical Journal B 49 (2006), no. 2, 247–252.

[Gol08] J. Golbeck, Weaving a web of trust, Science 321 (2008), no. 5896,

1640–1641.

[Gra73] M. S. Granovetter, The strength of weak ties, American Journal of

Sociology 78 (1973), no. 6, 1360–1380.

[Gra87] Mark. S. Granovetter, Threshold Models of Collective Behavior,

American Journal of Sociology 83 (1987), no. 6, 1420–1443.

[Gra98] S. Graham, The end of geography or the explosion of place? Concep-

tualizing space, place and information technology, Progress in human

geography 22 (1998), no. 2, 165–185.

[Gua90] J. Guare, Six degrees of separation: a play, Random House, 1990.

[GWH07] S. A. Golder, D. M. Wilkinson, and B. A. Huberman, Rhythms of So-

cial Interaction: Messaging Within a Massive Online Network, Pro-

ceedings of the third International Conference on Communities and

Technologies, Springer London, 2007, pp. 41–66.

164



BIBLIOGRAPHY BIBLIOGRAPHY

[HA99] B. A. Huberman and L. A. Adamic, Growth dynamics of the World-

Wide Web, Nature 401 (1999), no. 6749, 131–131.

[Hay08] B. Hayes, Cloud computing, Communications of the ACM 51 (2008),

9–11.

[Hei46] F. Heider, Attitudes and cognitive organization, Journal of Psychology

21 (1946), 107–112.

[HHSC11] B. Hecht, L. Hong, B. Suh, and E. H Chi, Tweets from Justin Bieber’s

Heart: The Dynamics of the “Location” Field in User Profiles, Pro-

ceedings of the 30th Conference on Human Factors in Computing

Systems (CHI 2011) (Vancouver, British Columbia, Canada), May

2011.

[HK02] P. Holme and B. J. Kim, Growing scale-free networks with tunable

clustering., Physical Review E 65 (2002), no. 2 Pt 2, 026107+.

[HK10] D. Horowitz and S. D. Kamvar, The Anatomy of a Large-Scale Social

Search Engine, Proceedings of the 19th World Wide Web Conference

(WWW 2010) (Raleigh, North Carolina (USA)), ACM, 2010.

[Hum07] L. Humphreys, Mobile Social Networks and Social Practice: A Case

Study of Dodgeball, Journal of Computer-Mediated Communication

13 (2007), no. 1.

[HW01] K. Hampton and B. Wellman, Long Distance Community in the Net-

work Society, American Behavioral Scientist 45 (2001), no. 3, 476–

495.

[HWL+11] Y. Hu, Y. Wang, D. Li, S. Havlin, and Z. Di, Possible Origin of

Efficient Navigation in Small Worlds, Physical Review Letters 106

(2011), no. 10, 108701.

[HWLR08] C. Huang, A. Wang, J. Li, and K. W. Ross, Measuring and Evaluating

Large-scale CDNs , Proceedings of the eighth Internet Measurement

Conference (IMC 2008) (Vouliagmeni, Greece), ACM, 2008.

[HZ09] Y. Hu and D. Zhu, Empirical analysis of the worldwide maritime

transportation network, Physica A 388 (2009), no. 10, 2061–2071.

165



BIBLIOGRAPHY BIBLIOGRAPHY

[IKK+00] C. L. Isbell, M. J. Kearns, D. Kormann, S. P. Singh, and P. Stone,

Cobot in LambdaMOO: A Social Statistics Agent, Proceedings of the

National Conference on Artificial Intelligence, 2000, pp. 36–41.

[JIB07] A. Jøsang, R. Ismail, and C. Boyd, A survey of trust and reputation

systems for online service provision, Decision Support Systems 43

(2007), 618–644.

[JSFT07] A. Java, X. Song, T. Finin, and B. Tseng, Why we twitter: under-

standing microblogging usage and communities, Proceedings of the

ninth WebKDD and 1st SNA-KDD 2007 workshop on Web mining

and social network analysis (WebKDD/SNA-KDD 2007) (San Jose,

California), ACM, 2007, pp. 56–65.

[JWS08] W.-S. Jung, F. Wang, and H. E. Stanley, Gravity model in the Korean

highway, Europhysics Letters 81 (2008), no. 4, 48005+.

[KB78] P. Killworth and H. Bernard, Reverse small world experiment, Social

Networks 1 (1978), 159–192.

[KCRB09] G. Krings, F. Calabrese, C. Ratti, and V. D. Blondel, Urban Gravity:

a Model for Intercity Telecommunication Flows, Journal of Statistical

Mechanics: Theory and Experiment (2009), no. L07003.

[KGA08] B. Krishnamurthy, P. Gill, and M. Arlitt, A few chirps about Twitter,

Proceedings of the first Workshop on Online Social Networks (WOSN

2008) (Seattle, Washington, USA), ACM, 2008, pp. 19–24.

[KGNR10] T. Karagiannis, C. Gkantsidis, D. Narayanan, and A. Rowstron, Her-

mes: clustering users in large-scale e-mail services, Proceedings of the

first ACM Symposium on Cloud computing (SoCC 2010) (Indianapo-

lis, Indiana, USA), ACM, 2010, pp. 89–100.

[KH04] M. Kaiser and C. C. Hilgetag, Spatial growth of real-world networks,

Physical Review E 69 (2004), 036103.

[KH06] D. Krackhardt and M. S. Handcock, Heider vs Simmel: emergent

features in dynamic structures, Proceedings of the 23rd International

Conference on Machine Learning (ICML 2006) (Pittsburgh, Pennsyl-

vania, USA), Springer-Verlag, 2006, pp. 14–27.

166



BIBLIOGRAPHY BIBLIOGRAPHY

[Kle00] J. M. Kleinberg, Navigation in a small world, Nature 406 (2000),

845.

[KLPM10] H. Kwak, C. Lee, H. Park, and S. Moon, What is Twitter, a social

network or a news media?, Proceedings of the 19th World Wide Web

Conference (WWW 2010) (Raleigh, North Carolina (USA)), ACM,

2010.

[KMS+09] R. Krishnan, H. V. Madhyastha, S. Srinivasan, S. Jain, A. Krishna-

murthy, T. Anderson, and J. Gao, Moving beyond End-to-end Path

Information to Optimize CDN Performance, Proceedings of the sev-

enth ACM/USENIX Internet Measurement Conference (IMC 2009)

(Chicago, Illinois, USA), ACM, 2009.

[KNT06] R. Kumar, J. Novak, and A. Tomkins, Structure and evolution of

online social networks, Proceedings of the 12th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data mining (KDD

2006) (Philadelphia, Pennsylvania, USA), 2006, pp. 611–617.

[KSS97] H. Kautz, B. Selman, and M. Shah, Referral Web: combining social

networks and collaborative filtering, Communications of the ACM 40

(1997), 63–65.

[KT06] M. Kurant and P. Thiran, Extraction and analysis of traffic and

topologies of transportation networks, Physical Review E 74 (2006),

036114.

[KW06] G. Kossinets and D. J. Watts, Empirical analysis of an evolving social

network, Science 311 (2006), no. 5757, 88–90.

[LAH07] J. Leskovec, L. A. Adamic, and B. A. Huberman, The dynamics of

viral marketing, ACM Transactions on the Web 1 (2007).

[LBD+08] R. Lambiotte, V. D. Blondel, C. Dekerchove, E. Huens, C. Prieur,

Z. Smoreda, and P. Vandooren, Geographical dispersal of mobile com-

munication networks, Physica A 387 (2008), no. 21, 5317–5325.

[LBKT08] J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins, Microscopic

evolution of social networks, Proceedings of the 14th ACM SIGKDD

International Conference on Knowledge Discovery and Data mining

(KDD 2008) (Las Vegas, Nevada, USA), 2008, pp. 462–470.

167



BIBLIOGRAPHY BIBLIOGRAPHY

[LC09a] N. Li and G. Chen, Analysis of a location-based social network, Pro-

ceedings of the 12th International Conference on Computational Sci-

ence and Engineering (CSE 2009) (Vancouver, British Columbia,

Canada), vol. 4, IEEE Computer Society, 2009, pp. 263–270.

[LC09b] , Multi-Layered Friendship Modeling for Location-Based Mo-

bile Social Networks, Proceedings of the sixth International Con-

ference on Mobile and Ubiquitous Systems (Mobiquitous 2009)

(Toronto, Ontario, Canada), 2009.

[LCB10] V. Leroy, B. B. Cambazoglu, and F. Bonchi, Cold start link prediction,

Proceedings of the 16th ACM SIGKDD International Conference on

Knowledge Discovery and Data mining (KDD 2010) (Washington,

DC, USA), ACM, 2010, pp. 393–402.

[Lei09] T. Leighton, Improving Performance on the Internet, Communica-

tions of the ACM 52 (2009), 44–51.

[Lev10] M. Levy, Scale-free human migration and the geography of social net-

works, Physica A 389 (2010), no. 21, 4913–4917.

[LH08] J. Leskovec and E. Horvitz, Planetary-scale views on a large instant-

messaging network, Proceedings of the 17th World Wide Web Con-

ference (WWW 2008) (Beijing, PRC), 2008, pp. 915–924.

[Lin12] LinkedIn: About Us, http://press.linkedin.com/about, 2012,

Last accessed in January 2012.

[LKF05] J. Leskovec, J. Kleinberg, and C. Faloutsos, Graphs over time: den-

sification laws, shrinking diameters and possible explanations, Pro-

ceedings of the 11th ACM SIGKDD International Conference on

Knowledge Discovery and Data mining (KDD 2005) (Chicago, Illi-

nois, USA), ACM, 2005, pp. 177–187.

[LLC10] R. N. Lichtenwalter, J. T. Lussier, and N. V. Chawla, New perspec-

tives and methods in link prediction, Proceedings of the 16th ACM

SIGKDD International Conference on Knowledge Discovery and Data

mining (KDD 2010) (Washington, DC, USA), ACM, 2010, pp. 243–

252.

[LM02] V. Latora and M. Marchiori, Is the Boston subway a small-world

168

http://press.linkedin.com/about


BIBLIOGRAPHY BIBLIOGRAPHY

network?, Physica A 314 (2002), no. 1-4, 109–113.

[LNK07] D. Liben-Nowell and J. Kleinberg, The link prediction problem for

social networks, Journal of the American Society for Information Sci-

ence and Technology 58 (2007), 1019–1031.

[LNNK+05] D. Liben-Nowell, J. Novak, R. Kumar, P. Raghavan, and A. Tomkins,

Geographic routing in social networks, Proceedings of the National

Academy of Sciences 102 (2005), no. 33, 11623–11628.

[Lon11] A. Long, A brief history of social networking 1930-

2011, http://www.slideshare.net/peoplebrowsr/

a-brief-cartoon-history-of-social-networking-19302011,

March 2011, Last accessed in January 2012.

[Mas10] C. Mascolo, The power of mobile computing in a social era, Internet

Computing 14 (2010), no. 6, 76 –79.

[McL62] M. McLuhan, The Gutenberg Galaxy: the making of typographic man,

University of Toronto Press, 1962.

[ME95] D. Maltz and K. Ehrlich, Pointing the way: active collaborative filter-

ing, Proceedings of the 14th Conference on Human Factors in Com-

puting Systems (CHI 1995) (Denver, Colorado, United States), ACM

Press/Addison-Wesley Publishing Co., 1995, pp. 202–209.

[ML76] B. Mayhew and R. Levinger, Size and the density of interaction in

human aggregates, American Journal of Sociology 82 (1976), no. 1,

86–110.

[MMG+07] A. Mislove, M. Marcon, K. Gummadi, P. Druschel, and B. Bhat-

tacharjee, Measurement and Analysis of Online Social Networks, Pro-

ceedings of the fifth ACM/USENIX Internet Measurement Confer-

ence (IMC 2007) (San Diego, CA), October 2007.

[Mor10] J. B. Morris, The privacy implication of commercial

location-based services., https://www.cdt.org/files/pdfs/

CDT-MorrisLocationTestimony.pdf, 2010, Last accessed in May

2012.

[MSLC01] M. McPherson, L. Smith-Lovin, and J. M Cook, Birds of a Feather:

169

http://www.slideshare.net/peoplebrowsr/a-brief-cartoon-history-of-social-networking-19302011
http://www.slideshare.net/peoplebrowsr/a-brief-cartoon-history-of-social-networking-19302011
https://www.cdt.org/files/pdfs/CDT-MorrisLocationTestimony.pdf
https://www.cdt.org/files/pdfs/CDT-MorrisLocationTestimony.pdf


BIBLIOGRAPHY BIBLIOGRAPHY

Homophily in Social Networks, Annual Review of Sociology 27

(2001), 415–444.

[MW07] D. Mok and B. Wellman, Did distance matter before the internet?

interpersonal contact and support in the 1970s, Social Networks 29

(2007), no. 3, 430–461.

[MW09] , Does distance still matter in the age of the Internet?’, Urban

Studies 46 (2009).

[MZL+11] H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King, Recommender

systems with social regularization, Proceedings of the fourth ACM

International Conference on Web Search and Data Mining (WSDM

2011) (Hong Kong, PRC), ACM, 2011, pp. 287–296.

[New02] M. E. J. Newman, Assortative mixing in networks, Phys. Rev. Lett.

89 (2002), 208701.

[New04] , Detecting community structure in networks, European Phys-

ical Journal B 38 (2004), no. 2, 321–330.

[NG04] M. E. J. Newman and M. Girvan, Finding and evaluating community

structure in networks, Physical Review E 69 (2004), no. 2, 026113.

[Nic09] C. Nickson, The History of Social Network-

ing, http://www.digitaltrends.com/features/

the-history-of-social-networking/, January 2009, Last

accessed in January 2012.

[NL75] L. Nahemow and M. Lawton, Similarity and propinquity in friendship

formation, Journal of Personality and Social Psychology 32 (1975),

no. 2, 205–213.

[NP03] M. E. J. Newman and Juyong Park, Why social networks are different

from other types of networks, Physical Review E 68 (2003), no. 3,

036122.

[NWS02] M. E. J. Newman, D. J. Watts, and S. H. Strogatz, Random graph

models of social networks, Proceedings of the National Academy of

Sciences 99 (2002), no. Suppl. 1, 2566–2572.

170

http://www.digitaltrends.com/features/the-history-of-social-networking/
http://www.digitaltrends.com/features/the-history-of-social-networking/


BIBLIOGRAPHY BIBLIOGRAPHY

[OAG+11] J.-P. Onnela, S. Arbesman, M. C. González, A.-L. Barabási, and
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