
Heterogeneous resource mobile sensing: computational
offloading, scheduling and algorithm optimisation

Petko Georgiev

Corpus Christi College

University of Cambridge

January 2017

This dissertation is submitted for
the degree of Doctor of Philosophy

Declaration

This dissertation is the result of my own work and includes nothing which is the outcome
of work done in collaboration except where specifically indicated in the text.

This dissertation does not exceed the regulation length of 60 000 words, including tables
and footnotes.

Heterogeneous resource mobile sensing: computational offloading,
scheduling and algorithm optimisation

Petko Georgiev

Summary

Important mobile apps such as digital assistants (Google Now, Apple Siri) rely on sensor
data and require low-overhead accurate inferences. Although many sensor types are found
in devices, the microphone with its high sampling rates arguably poses one of the greatest
sensor-related mobile resource utilisation challenges and has similar generic problems faced
by all sensors – e.g., efficient background operation, or obtaining accurate inferences in real
time. Resource-heavy inference algorithms often employed by audio sensing apps, and the
growing number of simultaneously running on-device audio background services, result in
app deployments that routinely struggle to reach a day worth of operation alongside other
existing services with a single battery charge. In this dissertation we address the challenges
presented by emerging audio workloads on smartphone and wearable devices – we enable
accurate and efficient multi-app microphone sensing by carefully managing the full range
of heterogeneous processors available to high-end mobile platforms.

We devise three general classes of resource optimisation techniques to empower micro-
phone sensing apps with continuous, accurate, and more energy efficient operation. First,
we demonstrate how to best leverage the mobile processor hierarchy (CPU and low-power
co-processors) in two multi-tier processor offloading scenarios that run multiple continuous
audio sensing apps. We show that by smartly partitioning and filtering the sensor pro-
cessing we can maximise the exposure of these sensor apps to the more power efficient co-
processor units and achieve 24 hours of continuous accurate coverage of encountered sound
events with a single battery charge. Second, we revisit the typical structure of microphone
apps and re-purpose their algorithm implementation to match the hardware constraints of
heterogeneous resources – we adopt data parallel versions for the GPU or small-footprint
deep learning algorithms to leverage an ultra low-power Digital Signal Processor (DSP)
with limited memory and reduced clock frequency. This results in implementations that
are not only an order of magnitude faster or more energy efficient than typical CPU al-
ternatives, but also in the case of deep learning are more accurate. Third, we introduce a
novel scheduling framework that maximises energy efficiency by dynamically partitioning
and distributing concurrent sensor processing tasks across the full range of heterogeneous
resources available to modern System-on-Chips (CPU, low-power DSP, GPU, and cloud).
The framework pushes the frontiers of sensor processing offloading – it needs only a frac-
tion of the energy required by general-purpose offloaders to build a schedule, and still
the schedules it produces have higher power efficiency, and comply with the application
deadlines; all the while still preserving inference accuracy.

The insights drawn and the techniques developed in this dissertation can help towards the
growth of next-generation context-aware mobile audio apps, able to operate uninterrupted
and concurrently without noticeably affecting the device battery lifetime.

Acknowledgments

First of all I would like to Thank my supervisor, Cecilia Mascolo. She has been mentoring
and guiding me throughout my PhD, providing me with invaluable advice not only research-
wise. It is thanks to her and the freedom I was given to pursue what I felt passionate about,
that I have come to discover unprecedented opportunities for career and personal growth.
A heartfelt “Thank you” also goes to Nic Lane, who has become a second adviser to me
and whose creativity has been continuously inspiring me throughout my PhD. I can never
thank him enough for all the constructive feedback he has been giving me. I know that
without both of you, none of my academic and professional achievements would have been
possible.

I am grateful to have had plentiful opportunities to collaborate with many talented people
during my time at Cambridge. I am eternally indebted to Anastasios Noulas for infecting
me with a passion for research during my masters while he was co-supervising my projects.
I would also like to thank Kiran Rachuri, David Chu, Sourav Bhattacharya, Fahim Kawsar,
Sharad Agarwal, Eduardo Cuervo, Stefan Saroiu, Lenin Ravindranath, Victor Bahl, and
Alec Wolman who I was lucky enough to collaborate with during my PhD. I am grateful
to Alistair Beresford and Andy Hopper for offering me insightful feedback on my work
through the years, and also to Andy Rice for helping me truly appreciate teaching through
his courses. My sincere thanks to Puneet Jain for helping me co-organise my first work-
shop. I thank Lise Gough, Helen Scarborough, and Carol Nightingale for helping me with
administrative issues throughout my PhD.

My social life as a PhD student has been largely enabled by the friends I made at the lab:
Alessandro, Lorena, David, Sandra, Desi, Sarfraz, Chloe, Xiao, Andrea, Vinicius, Miles,
Krittika, Dionysis, Sarah, Neal, Denzil, Ella, Zhao, and others. I am delighted to have had
the chance to meet all of them, and I am confident that with many of them I will keep being
regularly in touch for years to come. I would also like to thank my closest friends at Corpus:
Vreeti, Kerstin, Karl, and Rafe, for their social support has been a refreshment from the
Computer Science-heavy environment I have been surrounding myself with. Special thanks
go to my friends in Bulgaria: Joro, Mateva, Viki, Deni, Eli, Kosta, Svetla, Ivka. Their
remote support and encouragement has been an invaluable constant source of energy. They
have always been there for me and I will forever remember the times they believed in me
even when I doubted myself. Last but not least, I would like to express my gratitude for
getting to know my friends during my internship at Microsoft Research: Shubham, Matt,
and Lalith. They have truly made my time in Redmond an experience I would love to
repeat.

This dissertation has been devoted to my parents. Their sacrifices, support and uncondi-
tional love have fuelled my determination to succeed. Always.

Contents

1 Introduction 7
1.1 The mobile sensing revolution . 7
1.2 Energy issues . 8
1.3 The rise of heterogeneous processors . 8
1.4 Mobile audio sensing challenges . 10
1.5 Thesis and its substantiation . 13
1.6 Contributions and chapter outline . 14
1.7 List of publications . 16

2 Mobile sensing in the heterogeneous resource era 19
2.1 Mobile sensor apps: operation and workloads 19
2.2 Audio sensing algorithms . 22
2.3 Mobile heterogeneous processors . 30
2.4 Limits of sensor app support . 35
2.5 Design principles . 37
2.6 Present dissertation and future outlook . 37

3 Multi-tier processor offloading 39
3.1 Introduction . 39
3.2 Smartphone system overview . 41
3.3 Smartphone system implementation . 43
3.4 Smartphone system evaluation . 49
3.5 Wearable system workload analysis . 61
3.6 Discussion and limitations . 67
3.7 Related work . 68
3.8 Conclusions . 70

4 DSP-optimised deep audio sensing 71
4.1 Introduction . 71
4.2 Study design . 73
4.3 Deep engine prototype implementation . 74
4.4 Inference accuracy and resource efficiency 76

5

4.5 Multi-task audio DNNs with shared hidden layers 82
4.6 Related work . 90
4.7 Conclusions . 91

5 GPU sensing offloading 93
5.1 Introduction . 93
5.2 GPU execution model and challenges . 95
5.3 Optimisation engine overview . 96
5.4 Parallel control-flow optimisation . 98
5.5 Implementation . 104
5.6 Evaluation . 104
5.7 Discussion and limitations . 112
5.8 Related work . 113
5.9 Conclusions . 115

6 Scheduling sensor processing 117
6.1 Introduction . 117
6.2 Scheduling framework overview . 118
6.3 Framework design components . 121
6.4 Framework implementation . 126
6.5 Prototype evaluation . 130
6.6 Discussion and limitations . 139
6.7 Related work . 140
6.8 Conclusions . 141

7 Reflections and future work 143
7.1 Summary of contributions . 144
7.2 Future directions . 145

6

Chapter 1

Introduction

1.1 The mobile sensing revolution

With the proliferation of high-tech gadgets such as smartphones, smartwatches, and head
mounted displays, mobile device adoption rates are soaring. Predictions are already in
place that soon for many users, a smartphone might be the only computer they use [56].
Smart Internet-connected devices are revolutionising multiple aspects of our daily living –
from the way we search for information via voice commands on the smartphone or smart-
watch, to how we track our fitness goals via wristbands, and how we interact with our
environment via virtual reality. Services integrated in these mobile devices are evolving
from being predominantly simple digital assistants and sources of entertainment to becom-
ing productivity boosters and integral parts of our lives.

A key enabler for the rich array of services provided by mobile apps on these devices is
extracting user behaviour and ambient context from sensor data. Smartphone sensors such
as accelerometer and microphone are used to track the user’s mental and physical well-
being [163], whereas using the camera for image sensing in virtual reality headsets is a
core building block for tracking the user’s surrounding conditions [169]. Further, hands-
free control via voice commands is widely adopted by digital assistants found in virtually
every type of mobile device (smartwatches, smartphones, head mounted displays): Google
Now [22], Microsoft Cortana [33], and Apple’s Siri [11] are among the most ubiquitously
used audio sensing apps. Allowing for such functionality requires continuously monitoring
the ambient environment via the microphone for the detection and recognition of speech.
Fitness tracking apps [28, 32, 1], on the other hand, analyse data extracted from motion
sensors (accelerometer, gyroscope) to tag activities such as walking, running, cycling, and
more. Even though sensor systems and apps are extremely diverse, a unifying element is
their need to infer user context and activities from sensors accurately and efficiently.

7

8 1.2. ENERGY ISSUES

Mobile Device Type Weight Lifetime Battery Inferences Made

Microsoft Band [32] smartwatch 60g 48 hr 200 mAh Heart Rate; Sleep; Exercise Routine;
Jogging; Hiking; Cycling

Jawbone Up3 [28] wristband 29g 168 hr 38 mAh Heart Rate; Sleep; Running; Steps; Calories;
Automated Fitness Activity Recognition

LG G Watch R [29] smartwatch 62g 23 hr [8] 410 mAh Heart Rate; Sleep, Physical Activity;
Running; Steps; Voice Commands; Calories

Google Glass [136] VR headset 36g 6 hr 570 mAh Augmented Reality; OCR; Voice Commands

Table 1.1.1: Comparison of recent and/or popular wearables available commercially.

1.2 Energy issues

Despite the proliferation of wearable consumer electronics and ubiquity of smartphones,
battery issues are still prominent among mobile users. In Table 1.1.1 we survey the battery
form factor and range of inferences for some of the popular wearables shipped in recent
years. The LG G Watch, for example, barely manages a day’s worth of operation with reg-
ular light application usage. The lifetime numbers reported for this and the other wearables
here are examples of predominantly light application usage or standby, unfortunately. For
power users, or any more complicated scenarios that rely on inferences from higher data
rate sensors such as the microphone or camera, the depletion of the battery reserves would
be significantly faster. For instance, using the Google Glass for face detection or video
capture completely drains the battery in just under 45 minutes [136].

The tracking of one’s activities in mobile sensing application scenarios requires a fairly con-
tinuous stream of information being recorded. Among mobile devices, most smartphones
already boast a quad-core or octa-core processor, therefore, computation is increasingly
less of a constraint on these commonly used devices. However, the biggest limiting fac-
tor for mobile apps that depend on sensor data is still the inadequate battery capacity
of phones and wearables. This problem is exacerbated in the case of sensors such as the
microphone or camera, due to their high data rates and complexity of sensor processing
algorithms. Further, as more of these sensing apps become deployed on a single device,
the high computational requirements of simultaneously running complex sensor processing
algorithms add to the energy burden. As a result, duty cycling strategies are commonly
adopted, but the side effect is a reduced coverage of captured sensor events, thus often
impacting inference accuracy.

1.3 The rise of heterogeneous processors

Recently, a new architecture has been adopted by many mobile SoC manufacturers whereby
an additional low-power processor, typically referred to as a co-processor, is added alongside
the more powerful primary processor. The aim of this additional low-power processor is to
offload computational tasks such as sensor sampling and processing (microphone, camera,
accelerometer). For example, the Apple iPhone 7 is equipped with an M10 motion co-

CHAPTER 1. INTRODUCTION 9

processor [9] that collects and processes data from the accelerometer and gyroscope even
when the primary processor is in sleep mode. Similarly, the Motorola Moto X [36] is
equipped with a “contextual computing processor” for always-on microphone sensing but
is limited to recognising only a narrow set of spoken voice commands.

As the SoCs in mobile devices evolve they are squeezing in an increasingly wide range of
different computational units: Graphics Processing Units (GPUs), low-power CPU cores,
multi-core CPUs. Even the Android-based LG G Watch R [29] includes a Snapdragon
400 [45] that contains a pairing of a Digital Signal Processor (DSP) and a GPU in addition
to the dual-core CPU. Each processor has its own resource profile when performing different
types of computation. This creates different trade-offs for them to execute portions of
mobile sensing algorithms, depending on their complexity, frequency of execution, exposure
to data parallelism or other characteristics. This high processor diversity is relatively recent
for mobile devices. A key challenge in leveraging such a heterogeneity of processor units
is effectively managing their computational resources to support the workload of a broad
range of sensing apps and inference types.

Existing use of these alternative processors in mobile apps is mostly exploratory [175, 160]
or limited to narrow use cases [140]. Apart from the relative recency of this heterogeneous
hardware revolution, another major deterrent towards the more ubiquitous adoption of
such units in apps so far is redesigning the software stack of algorithms to match the
hardware characteristics of these units. A co-processor such as the Qualcomm Hexagon
DSP [43], for instance, delivers ultra low-power operation with an architectural design
based on VLIW (very long instruction word) – execution on this highly power efficient
unit is partially constrained by a fairly limited amount of runtime memory and reduced
clock frequency. To make the most out of the DSP, algorithms need to be either redesigned
or carefully partitioned so that lighter always-on stages of the sensor processing remain on
the DSP.

Mobile GPUs, on the other hand, have traditionally been used in graphics applications that
perform image processing, but their desktop counterparts have proven immensely useful
in a big variety of scientific computations including the training stages of many machine
learning algorithms. Taking advantage of this resource on modern mobile hardware for
sensing scenarios would entail building data-parallel programs which requires a shift from
conventional thinking to effectively employ a different programming paradigm. Using het-
erogeneous hardware often leads to a fragmented algorithm execution, with some parts
executed on the GPU, while others run on the CPU or DSP, which brings additional com-
plexity in code maintenance. There is a growing demand for unifying frameworks that 1)
allow a single algorithm implementation to be compiled for or deployed across different
types of units; 2) understand both sensor algorithm semantics and hardware characteris-
tics to provide specialised heterogeneous implementations that maximise resource efficiency.
APIs and frameworks so far remain narrow and inflexible.

To sum up, we are witnessing unprecedented advances in mobile processor technology,
and increased quantity and complexity of context-aware apps relying on sensor data, but

10 1.4. MOBILE AUDIO SENSING CHALLENGES

battery capacities still remain comparatively limited. To guarantee rewarding mobile user
experiences with minimal downtime due to energy drains, there are several core issues
that need to be tackled in this mobile context. How do we efficiently support a wide
range of concurrent sensing services? Can we guarantee application response time will
be sufficiently low without overburdening the battery? How can we use the heterogeneous
processors in the quest for lowering the energy barrier of sensing apps? The work presented
in this dissertation is a step towards addressing these concerns.

1.4 Mobile audio sensing challenges

The apps enabled by the microphone have attracted increasing attention in the mobile land-
scape as audio data allows a wide variety of deep inferences regarding user behaviour. Ex-
amples are song recognition [13], speaker identification [140], emotion recognition [166, 141],
gender estimation [81], speaker counting [189], conversation analysis [130], voice commands
[70], ambient sound analysis [142, 143]. Natural language interfaces are possibly the most
popular class of microphone-enabled services deployed on mobile devices – they are adopted
by digital assistants such as Google Now, Apple Siri, Microsoft Cortana, and Amazon
Echo [4]. In this dissertation we primarily focus on optimising resource use for this rich
class of sensing apps, but also explore their interaction with other sensing services as a
secondary goal in some of our example systems.

1.4.1 Microphone vs. other sensing modalities

There are several reasons why we primarily focus on audio sensing and only occasionally
explore other modalities such as the accelerometer and gyroscope in our work. First,
we are more mature in our understanding of how to process microphone data compared
to other sensors. This is evidenced by the rich variety of consumer-ready microphone
sensing apps that we referred to earlier in this section. Second, the microphone already
has the diversity of workloads and characteristics that we expect to eventually appear in
other modalities. For example, activity [142] and emotion recognition [166] sourced from
audio data have long been present as cornerstone user behaviour inferences the accuracy
of which has improved over time. Similar types of inferences obtained from alternative
sensors such as WiFi [87, 198] are only recently beginning to appear, and with accuracy
that may not yet be sufficient to warrant a widespread adoption among mobile users. The
microphone thus serves as a good example modality that will allow us to address many
generic problems in the mobile sensing domain: e.g., continuous background processing,
obtaining inferences in real time, sharing computational resources among multiple sensor
apps. Third, the microphone sampling rates are higher than the ones of other sensors
such as the accelerometer, gyroscope, GPS and WiFi. This leads to sensing workloads

CHAPTER 1. INTRODUCTION 11

that require more demanding algorithms to process the data which additionally challenges
mobile resource use on battery-powered devices.

1.4.2 List of challenges

Microphone-based apps strain battery reserves in the following ways:

Continuous sensor monitoring. Detecting sounds or speech in the environment often
means that the microphone sensor stream needs to be sampled continuously. For exam-
ple, recognising hotphrases entails the timely detection of certain keywords (e.g., “Ok
Google” [41]): continuous monitoring of speech events is necessary for high precision and
low response time. Any duty cycling schemes introduced may undermine the user ex-
perience by missing relevant sensor events when the microphone is not being sampled.
However, continuous processing is energy heavy because it needs to keep a SoC component
constantly in an active state. The CPU has often been approached as the primary source
of computation but its active state has a high energy cost. As discussed, more recently
low-power co-processors have emerged as the ideal sensor hubs capable of low-cost always-
on sensor sampling. But their reduced clock frequency and limited memory constrains the
complexity of the types of apps that can be deployed for continuous execution there, often
restricting the processing to computations as simple as binary filters [160] (e.g., silence vs.
noise, speech vs. ambience).

Higher algorithmic complexity. State-of-the-art classification models used in many
audio apps (not only mobile) rely on complex algorithms for higher inference accuracy.
Hidden Markov Models (HMMs) [164], Gaussian Mixture Models (GMMs) [61], and lately
variants on large multilayer Deep/Convolution Neural Networks (DNNs/CNNs) [82] are of-
ten adopted in sound and speech recognition use cases, since they provide superior accuracy
performance as evidenced by their numerous wins in audio dataset challenges. However,
the most accurate models contain thousands or millions of parameters the evaluation of
which easily overwhelms mobile device computational resources [166, 129]. While the lat-
est multi-core CPU varieties may be powerful enough to do processing entirely locally,
energy-wise they would incur a high overhead, especially if the classification/inference step
needs to be performed repeatedly in order to label different parts of the audio stream. As
a result, developers are often forced to sacrifice privacy for energy with cloud offloading, or
compromise accuracy by downsizing the models. As for the low-power co-processors, the
extent to which they can handle more complex algorithms is a promising area of research
but there is much work to be done.

Real-time app response. Many of the microphone services mobile users rely on today
(e.g., voice commands, song recognition) require real-time sensor processing in order to
provide accurate and timely responses. The higher algorithmic complexity of the more
accurate audio classification models and low runtime requirements are at odds with the
capabilities of local resources that also need to serve the workload of other actively running

12 1.4. MOBILE AUDIO SENSING CHALLENGES

Existing Embedded Related Audio
or Mobile System Analysis Tasks

Amazon Echo [4] Sound-type Recognition
Google Home [20] Keyword Spotting

Speech Recognition

Auto Shazam [13] Sound-type Recognition
Song Recognition

EmotionSense [166] Emotion Recognition
Speaker Identification

SocialWeaver [144] Speaker Identification
Conversation Analysis

Text-dependent Speaker Identification
Speaker Verification [182] Keyword Spotting

Table 1.4.1: Example embedded audio processing systems each requiring multiple related
audio analysis tasks.

apps. As a result, higher inference accuracy is often a first property to be traded off; with
this realised though a simpler audio model that has fewer parameters and lower runtime.

Multiple related inference tasks. Audio apps supported by modern embedded devices
commonly require multiple types of related perception tasks to be performed, as shown
in Table 1.4.1. For example, the Amazon Echo device responds to simple home user
requests (such as, turn on a light [3]) which requires it to perform multiple learning tasks
against a continuously processed audio stream, including: (i) recognise if spoken words are
present (and not any other type of sound); (ii) perform spoken keyword spotting (as all
commands are begun with the same starting word); and, (iii) speech recognition, along
with additional dialogue system analysis that allows it to understand and react to the
command. If several of those apps are deployed on the mobile device, they will compete
for memory and compute resources, leading to a faster battery depletion. Unfortunately, so
far the go-to approach has been to apply optimisations for each app separately despite the
fact that mobile resources are shared. Apps are predominantly built with the unrealistic
assumption that they will be the only one occupying low-power co-processor resources.
Interference among these apps when deployed to operate concurrently leads to increased
energy consumption at best, and delayed app responsiveness or malfunctioning at worst.

Interference with other non-audio services. Mobile platforms are inherently multi-
app, with audio sensing apps not being the sole service running on the device. A smooth
mobile user experience is largely perceived through the use of interactive applications, and
more computational resources would ideally be allocated to such apps. Sensor apps often
provide auxiliary utility services (e.g., voice commands), and they cannot be expected to
be given a large fraction of battery life and resources. Hard problems are 1) devising
optimisations that allow sensor apps such as background microphone services to operate
within limited memory and runtime, and 2) ensuring that other apps remain fully functional

CHAPTER 1. INTRODUCTION 13

in the presence of these mixed sensor and non-sensor workloads.

To summarise, the workload generated by audio sensing apps challenges mobile resources
with frequent processing, high algorithmic complexity, and lack of cooperation when shared
resources are tapped into. We need new optimisation mechanisms that promote coopera-
tion in using shared heterogeneous mobile processors, and that can be applied to multiple
concurrently running apps to meet the demands of emerging audio sensing services.

1.5 Thesis and its substantiation

In the previous sections we discussed the rising adoption of mobile sensing apps, the en-
ergy issues that accompany them, and the recently observed rich heterogeneity in mobile
processor technology. We also presented the resource consumption challenges imposed by
the concurrent operation of high complexity audio apps, the increasingly popular class of
mobile sensing that relies on microphone data to capture user behaviour and context.

Our thesis is that to meet the workload demands of next-generation audio sensing apps
and go beyond incremental energy savings we need to consider optimisation techniques that
facilitate concurrent operation of audio algorithm chains and that maximise the shared use
of the full range of mobile heterogeneous processors.

We substantiate this statement by building example audio sensing systems with which
we demonstrate the benefits of cross-app optimisation1, careful management of shared
processor resources, and redesigning inference and feature algorithm implementations for
improved mobile processor utilisation. In particular, we address the following three research
challenges in support of our thesis:

• Research Question 1. How can we enable the energy efficient concurrent and
continuous operation of multiple mobile audio sensing apps with a high algorithm
complexity?

• Research Question 2. What type of audio sensor inference algorithm specialisation
do we need to perform in order to draw benefits from available heterogeneous mobile
hardware?

• Research Question 3. How can we automate the process of maximising resource
utilisation from multiple concurrent audio sensing apps without compromising app
accuracy and responsiveness?

To answer these questions we prototype the design and implementation of audio sensing
systems that interleave the execution of multiple concurrent deep-inference pipelines. We
introduce optimisations to efficiently leverage the shared use of co-processor and GPU

1When we refer to sensor app optimisations we typically imply sensor pipeline optimisations, we use
the two terms interchangeably.

14 1.6. CONTRIBUTIONS AND CHAPTER OUTLINE

resources. To validate the generalisability of our designs we deploy and evaluate these
systems on hardware platforms found in off-the-shelf smartphones and wearables. At times
we also deploy audio sensing apps together with non-audio algorithms. The next section
details our contributions and shows how they answer the research questions raised here.

1.6 Contributions and chapter outline

This dissertation explores the use of heterogeneous mobile processors to lower the energy
barrier for adopting state-of-the-art audio sensing apps that operate continuously and
concurrently on the device. It addresses the three major research problems outlined in the
previous section, and offers three main contributions that map to the various chapters as
follows:

Contribution 1: Multi-tier processor offloading

In Chapter 3 we study how to leverage low-power co-processor (LPU) resources in a mobile
processor hierarchy (CPU, LPU) to reduce the energy consumption of continuous sensing
systems with complex concurrent sensor apps capable of obtaining deep inferences about
user behaviour. Our major contribution is the design and implementation of a cloudless
integrated audio sensing system, DSP.Ear, that extracts emotions from voice, estimates the
number of people in a room, identifies the speakers, and detects commonly found ambient
sounds, while critically incurring little overhead to the device battery. This is achieved
through a series of pipeline optimisations that allow the computation to remain largely on a
DSP found in commodity mobile hardware: admission filters, behaviour locality detectors,
cross-pipeline optimisations and selective CPU offloading. Through detailed evaluation of
our prototype we show that, by exploiting a smartphone’s co-processor, DSP.Ear achieves
a 3 to 7 times increase in the battery lifetime compared to a solution that uses only the
phone’s main processor. In addition, DSP.Ear is 2 to 3 times more power efficient than
naive DSP solutions without optimisations.

To validate the importance of this class of co-processor oriented optimisations at scale,
we prototype a second proof-of-concept rich-inference sensing system, ZOE, and deploy it
on a wearable device. It incorporates the latest innovations in SoC technology together
with a custom daughter-board to realise a three-tier low-power processor hierarchy. ZOE
performs multiple deep sensor inferences about key aspects of everyday life on continuously
sensed data and crucially, achieves this without cloud or smartphone support. We analyse
our multi-tier processor design to demonstrate that ZOE remains energy efficient (with a
typical lifespan of 30 hours), despite its high sensing workload and small form-factor.

CHAPTER 1. INTRODUCTION 15

Contribution 2: Processor specialised implementations

In Chapters 4 and 5 we study the energy and runtime trade-offs of adopting sensor algo-
rithm implementations that are purpose-built for the alternative mobile processors GPU
and DSP, and that target deep audio inference tasks such as spoken keyword spotting and
speaker identification.

First, in Chapter 4 we build and evaluate a deep learning inference engine for the DSP
and modify the classification stage of the audio sensing pipelines to use lighter-weight
deep neural network (DNN) models that comply with DSP memory constraints. We show
DNN use is feasible on the DSP and has a low energy and runtime overhead allowing
complex tasks such as emotion detection or speaker identification to be performed in real
time while preserving or improving the accuracy. In addition, the DNN-based pipelines
gracefully scale to larger numbers of inference classes and can be flexibly partitioned across
mobile and remote resources. Last, we develop a multi-task learning framework that builds
resource-efficient DNN models with shared hidden layers – these models can obtain infer-
ences simultaneously from multiple audio tasks with no accuracy loss. Most importantly,
on average, this approach provides almost a 2.1 times reduction in runtime, energy, and
memory for four separate tasks assuming a variety of task combinations.

Second, in Chapter 5 we describe the implementation of a novel GPU optimisation en-
gine that leverages a series of structural and memory access optimisation techniques to
allow audio algorithm performance to be automatically tuned as a function of GPU device
specifications and model semantics. The techniques we develop eliminate memory access
bottlenecks by exploiting the faster but smaller in size GPU caches, and also increase the
inherent data parallelism of audio processing tasks by decomposing the algorithms into a
series of granular computations. We show that parameter optimised audio routines obtain
inferences an order of magnitude faster than sequential CPU implementations, and up to
6.5 times faster than cloud offloading with good connectivity, while critically consuming
3-4 times less energy than the CPU. Unless the network has a throughput of at least
20Mbps (RTT is 25 ms or less), with only about 10 to 20 seconds of buffering audio data
for batched execution, the optimised GPU audio sensing apps begin to consume less energy
than both cloud offloading and low-power DSP implementations; in addition to the GPU
always winning on lower latency.

Contribution 3: Scheduling sensor processing

In Chapter 6 we detail the design and evaluation of a novel sensing algorithm scheduler
(LEO) that specifically targets the workloads produced by representative sensor apps re-
lying on microphone (and accelerometer) data. The scheduler maximises the performance
for both continuous and intermittent mobile sensor apps without changing their inference
accuracy by partitioning the sensing algorithm execution across the full range of hetero-
geneous resources of high-end phones: CPU, DSP, GPU and the cloud. We build a rich

16 1.7. LIST OF PUBLICATIONS

library of sensing algorithms and exploit sensor semantics to pre-define the pipeline par-
titioning points that LEO uses in the scheduling process to maximise energy gains. LEO
runs as a service on the DSP and adopts a fast heuristic scheduling algorithm with a low
overhead (<0.5% of the battery daily) that allows sensor processing offloading to be re-
active and so frequently performed. Depending on the workload and network conditions,
LEO is between 1.6 and 3 times more energy efficient than conventional cloud offloading
with CPU-bound sensor sampling. In addition, even if a general-purpose scheduler is op-
timised directly to leverage a DSP, we find LEO still uses only a fraction (< 1/7) of the
energy overhead for scheduling and is up to 19% more energy efficient for medium to heavy
workloads.

Contribution 1 is intended to answer Research Question 1, Contribution 2 addresses Re-
search Question 2, and Contribution 3 answers Research Question 3. To conclude, we
reflect on the insights provided by this dissertation and explore directions for further re-
search in Chapter 7.

1.7 List of publications

During my PhD I have had the opportunity to work on a variety of projects through
fruitful collaborations. This led to publications including workshop and conference papers
as well as works under submission, not all of which are directly related to the dissertation.
In particular, Chapter 3 is based on Georgiev et al. [92] and Lane et al. [126], Chapter 4
draws from Lane et al. [125, 127], and Georgiev et al. [90], Chapter 5 builds on Georgiev
et al. [91], whereas Chapter 6 is based on Georgiev et al. [93].

Works related to this dissertation

• [92] P. Georgiev, N. D. Lane, K. K. Rachuri, and C. Mascolo. DSP.Ear: Leveraging
co-processor support for continuous audio sensing on smartphones. In Proceedings of
the 12th ACM Conference on Embedded Network Sensor Systems, SenSys ’14, pages
295–309, New York, NY, USA, 2014. ACM

• [125] N. D. Lane and P. Georgiev. Can deep learning revolutionize mobile sensing?
In Proceedings of the 16th International Workshop on Mobile Computing Systems
and Applications, HotMobile ’15, pages 117–122, New York, NY, USA, 2015. ACM

• [126] N. D. Lane, P. Georgiev, C. Mascolo, and Y. Gao. ZOE: A cloud-less dialog-
enabled continuous sensing wearable exploiting heterogeneous computation. In Pro-
ceedings of the 13th Annual International Conference on Mobile Systems, Applica-
tions, and Services, MobiSys ’15, pages 273–286, New York, NY, USA, 2015. ACM

• [127] N. D. Lane, P. Georgiev, and L. Qendro. DeepEar: Robust smartphone audio
sensing in unconstrained acoustic environments using deep learning. In Proceedings

CHAPTER 1. INTRODUCTION 17

of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Com-
puting, UbiComp ’15, pages 283–294, New York, NY, USA, 2015. ACM [Best Paper
Award]

• [93] P. Georgiev, N. D. Lane, K. K. Rachuri, and C. Mascolo. LEO: Scheduling sensor
inference algorithms across heterogeneous mobile processors and network resources.
In Proceedings of the 22Nd Annual International Conference on Mobile Computing
and Networking, MobiCom ’16, pages 320–333, New York, NY, USA, 2016. ACM

• [91] P. Georgiev, N. D. Lane, C. Mascolo, and D. Chu. Accelerating mobile audio
sensing algorithms through on-chip gpu offloading. In Proceedings of the 15th Annual
International Conference on Mobile Systems, Applications, and Services, MobiSys
’17, pages 306–318, New York, NY, USA, 2017. ACM

• [90] P. Georgiev, S. Bhattacharya, N. D. Lane, and C. Mascolo. Low-resource multi-
task audio sensing for mobile and embedded devices via shared deep neural network
representations. In Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies (IMWUT), 2017

Other works

• [94] P. Georgiev, A. Noulas, and C. Mascolo. The call of the crowd: Event partici-
pation in location-based social services. CoRR, abs/1403.7657, 2014

• [95] P. Georgiev, A. Noulas, and C. Mascolo. Where businesses thrive: Predicting
the impact of the Olympic Games on local retailers through location-based services
data. CoRR, abs/1403.7654, 2014

• [123] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, and F. Kawsar. An early
resource characterization of deep learning on wearables, smartphones and internet-
of-things devices. In Proceedings of the 2015 International Workshop on Internet of
Things Towards Applications, IoT-App ’15, pages 7–12, New York, NY, USA, 2015.
ACM

• [122] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro, and
F. Kawsar. DeepX: A software accelerator for low-power deep learning inference on
mobile devices. In 15th ACM/IEEE International Conference on Information Pro-
cessing in Sensor Networks, IPSN 2016, Vienna, Austria, April 11-14, 2016, pages
1–12, 2016

18 1.7. LIST OF PUBLICATIONS

Chapter 2

Mobile sensing in the heterogeneous
resource era

The previous chapter highlighted the importance of mobile sensing apps and argued how
they have evolved into sophisticated services. It also hinted at the energy issues accom-
panying their deployment on smartphones and wearables. In this chapter we delve into
the operational semantics of sensor apps, and survey key challenges in the efficient utili-
sation of heterogeneous processors as a way to reduce the energy footprint of such apps.
We argue that we need new mechanisms and algorithms that make a better shared use of
the various resources available to mobile platforms (low-power co-processors, CPU cores,
GPUs, and wireless connectivity). Here we outline some key limitations in existing OS and
API support for sensor apps.

Chapter outline. Section 2.1 introduces the typical operation of sensor apps and classi-
fies the types of workloads generated by them. Section 2.2 focuses on the specifics of audio
sensing apps and describes the most popular algorithmic primitives used to build the mi-
crophone sensing pipelines. Next it presents concrete examples of audio apps that have
been recently put forward by the mobile sensing literature and that we will use in the sys-
tems presented in this dissertation. Section 2.3 gives a background on the latest processor
technology outlining the limitations and challenges in using these new types of resources.
In Section 2.4 we broadly discuss the limits of the current sensor app support, and shed
light on the current role of cloud offloading and co-processors as a tool for computationally
offloading sensor algorithm execution. Last, we summarise the chapter in Section 2.6.

2.1 Mobile sensor apps: operation and workloads

The systems developed in this dissertation exclusively target sensor apps that are charac-
terised by their need to sample and interpret sensors present in mobile devices. Here, we

19

20 2.1. MOBILE SENSOR APPS: OPERATION AND WORKLOADS

Applications Sensor Purpose

RunKeeper [48]
Accel activity tracking

Accupedo Pedometer [1]

Shake Gesture Library [50] Accel gesture commands

Hot Keyword Spotting [70] Mic voice activated services

Shazam [13] Mic song recognition

SocioPhone [130]
Mic conversation contextSpeakerSense [140]

Crowd++ [94], SocialWeaver [144]

EmotionSense [166]
Mic emotion recognition

StressSense [141], MoodScope [135]

Siri [11], Cortana [33] Mic digital assistants

Waze [55], Moovit [35] GPS traffic monitoring

Table 2.1.1: Example Sensing Apps.

describe key varieties of sensor apps and overview typical sensing operations. Table 2.1.1
details examples that are either research prototypes or commercially available.

Anatomy of a sensor app. Every sensor app includes specialised code responsible
for sensor data sampling and processing, distinctly different from the app specific logic.
Irrespective of purpose, the data flow of sensor processing within these apps share many
similarities. Processing begins with the sampling of sensors (e.g., microphone, accelerome-
ter). Feature extraction algorithms are then used to summarise collected data (as a vector
of values), the aim is for these features to describe the differences between targeted be-
haviour (e.g., sleep, or running) or context. Identifying which activity or context is present
(i.e., to make an inference) in the sensor data requires the use of a classification model.
Models are usually built offline prior to writing a sensor app based on examples of differ-
ent activities. Although inference is the most fundamental sensor operation performed in
sensor apps, considerable post-inference analysis is often needed, such as mining sleep or
commute patterns.

Sensor app workloads. Just like conventional apps, different combinations of sensor
apps are continuously executed. There are two dominant usage models, continuous sensing
and triggered sensing, each with differing user expectations of responsiveness and exerting
differing types of energy strain.

Continuous sensing. Most apps of this type are “life-logging” [89] and are commonly
used to quantify daily user routines. They aim to capture data from the phone throughout
the day: this demands their sensing sampling and processing algorithms to be extremely
energy efficient. In contrast, because of the focus on long-run behaviour they can often
tolerate large processing delays; for example, users may review data at the end of the day
and the analysis is indifferent to events from the last few minutes.

Triggered sensing. This category includes sensor apps that are initiated either explicitly by

CHAPTER 2. MOBILE SENSING IN THE HETEROGENEOUS RESOURCE ERA 21

inference
window

audio signal
(sampling)

audio signal
(sampling)

framing

FE FE FE FE FE FE FE FE FE FE
feature

extraction

classification

classification/
inference

Figure 2.2.1: Audio pipeline structure.

the user or by an event. Examples are apps started by the user to monitor a meeting (Social
Weaver [144]) or a workout (Run Keeper [48]). Users often need sensing to be completed
during the event in near real-time (e.g., to gauge their effort during an exercise routine
to determine if more effort is required). Sensing apps can also be started in response to
an event. For instance, a smartphone may need to determine the current ambient context
in response to an incoming call to decide if it should be sent straight to voice mail as
the user might be driving. These types of sensing apps have a much higher need to be
responsive than continuous sensing ones; but as they are often comparatively short lived,
energy restrictions may be relaxed to achieve processing deadlines.

A known approach to reduce the high energy coming from the continuous trigger logic
evaluation is to instrument apps to use a sensor hub where irrelevant readings are filtered
automatically [176]. Companies such as Intel [25], and Apple [27] are embedding a low
power micro-controller called a sensor hub in their smartphones. The sensor hub continu-
ously collects sensor data keeping the higher power main processor idle. Subsection 2.3.1
details the operation of this emerging type of low power co-processor and the challenges it
presents for use in custom user scenarios.

A key unanswered challenge today is how to maximise the resource efficiency for this diverse
and dynamic sensing app workload, while maintaining other mobile device services, e.g.,
email, music and games, functioning.

22 2.2. AUDIO SENSING ALGORITHMS

2.2 Audio sensing algorithms

Audio sensing primer. Audio sensing apps have the typical sense-transform-classify
structure of other sensor apps that categorise human behaviour and activities. We illustrate
a common data flow of microphone processing in Figure 2.2.1. The execution begins with
the sampling of the microphone where raw data is typically accumulated over a short time
window (hundreds of milliseconds up to a few seconds) sufficient to capture distinctive
characteristics of sounds and utterances. A typical sampling rate adopted in audio sensing
is 8kHz, or the rate of telephone speech, which has proven to be high enough for many app
scenarios [143, 142, 140]. At the same time, compared to higher sampling rates, it is less
demanding on the device battery.

The next step is subdividing the audio signal into much shorter (e.g., 30ms) segments
called frames which are subject to preprocessing and feature extraction. Preprocessing
is used to accentuate audio signal properties needed by the later stages, and often at
this step frame admission control is performed that decides whether further processing is
needed. Again, the aim of the features is to summarise the collected data in a way that
describes the differences between targeted behaviour or context (e.g., sounds, words, or
speaker identity). Identifying the sound class observed in the sensor data in the analysed
time window involves the use of classification models. Often the model evaluation applied
to the whole window of stacked frame feature data is among the most time consuming
stages [143, 142, 140], and as such is a bottleneck of the audio pipeline.

Common features used in audio sensing. In audio processing extracted features
are based on either the time or frequency domain. Time-domain features are computed by
extracting statistics from the raw audio signal, whereas the frequency alternatives are com-
puted after applying a Fast Fourier Transform (FFT) [64] over the input signal sequence.
Features insensitive to volume are preferred in audio processing because they capture
acoustic properties that can distinguish between sounds regardless of how loud they are in
the environment. Frequency-domain features are typically volume-insensitive which is why
they usually dominate the audio algorithm landscape. The two most popular categories
of frequency-domain features are Mel Frequency Cepstral Coefficients (MFCC) [88] and
Perceptual Linear Predictive (PLP) coefficients [105]. These coefficients are designed to
capture properties of human hearing such as vowel perception [105]. MFCCs and PLPs
are sufficiently expressive and often are the only type of extracted features in many audio
sensing scenarios, most notably speech recognition. Another reason why these coefficients
are so ubiquitously used is because they are relatively efficient to compute with an algo-
rithmic complexity of O(nlogn) where n is the number of amplitude values or samples in
a frame (e.g., a 30 ms frame with a sampling rate of 8 KHz has 240 samples).

Audio sensing apps characterisation. The apps can be broadly categorised based
on the classification model they use for analysis of frame features. By far the two most
widely used classification models in the audio sensing domain are Gaussian Mixture Models
(GMMs) and Deep Neural Networks (DNNs). Table 2.2.1 gives concrete instances from the

CHAPTER 2. MOBILE SENSING IN THE HETEROGENEOUS RESOURCE ERA 23

Classifier Apps

GMM emotion recognition [166], speaker identification [166, 140], am-
bient sound classification [143], stress detection [141]

DNN keyword spotting [70], emotion recognition [100], speech recog-
nition [106], sound event classification [147]

Table 2.2.1: Categorisation of audio sensing apps based on classification model.

audio processing literature (both mobile and general) of their near ubiquitous usage. Most
of the extracted features in the pipelines of these apps can be computed relatively quickly,
often with latencies that are of the order of tens up to several hundreds of milliseconds, and,
as such, are not a serious bottleneck. Undoubtedly optimising all algorithms involved in the
pipeline execution is beneficial – yet, for our representative audio sensing app examples
larger performance gains can be obtained by targeting the heavier classification stages.
Their overhead comes from evaluating the many parameters used in the models for higher
accuracy, as well as the poor scaling with the increase in number of classes for the prevailing
GMMs. In what follows we detail the operation of these classifiers as some of our key
optimisations would be restructuring their execution for higher efficiency.

2.2.1 Gaussian mixture models

The GMM evaluates the probability that certain observations are attributed to the model.
In audio sensing the observations are the features extracted from the frames in a window.
The GMMs are typically trained offline with one model representing a sound type, an
activity class or behavioural category (e.g., a speaker, an emotion, an ambient sound).
The stacked frame features are subsequently matched against each model, and the class
corresponding to the highest probability is the output of the classification stage. This is a
simplified direct application of the Bayes decision rule in the case that the prior probabilities
associated with each activity/behaviour class are equal.

More formally, a GMM is a probabilistic model that represents mixtures of probability
distributions, it is a weighted sum of M component Gaussian densities. The complete
GMM is parametrised by the mean vectors, covariance matrices and mixture weights from
all component densities. GMMs are often used in biometric systems, most notably in
speaker recognition systems, due to their capability of representing a large class of sample
distributions. This use may also be motivated by the intuitive notion that the individual
component densities may model some underlying set of hidden classes. For instance, in
speaker recognition, these classes can be the speakers broad phonetic events, such as vowels,
nasals or fricatives. These acoustic classes reflect some general speaker dependent vocal
tract configurations that are useful for characterising the speaker’s identity.

It is worth noting that because the component Gaussians are acting together to model the
overall feature density, full covariance matrices are not necessary even if the features are

24 2.2. AUDIO SENSING ALGORITHMS

Figure 2.2.2: Example phases of building a Deep Neural Network with 3 hidden layers (h1,
h2, and h3), input layer x and output layer y. Shown are the pre-training, fine-tuning and
classification phases of a DNN variant called a Deep Belief Network.

not statistically independent [171]. The linear combination of diagonal covariance basis
Gaussians is capable of modelling the correlations between feature vector elements. In
audio sensing, using diagonal covariance matrices is often preferred in order to reduce the
number of parameters [143].

Existing mobile use of GMMs. Until recently GMMs have largely dominated the
mobile audio sensing classification landscape [143, 140, 141, 166, 156]. Their effectiveness
has been proven in a wide range of sensing scenarios from ambient sound detection [143,
156] through emotion recognition [166], the detection of stressed speech [141] to speaker
identification [140, 166]. Often, however, to make local computation on the mobile device
feasible and energy friendly, researchers significantly reduce the number of parameters used
in the models [140]. Accuracy is usually the first one to be sacrificed through the adoption
of smaller models so as to ensure the pipeline execution will not overburden local resources.

2.2.2 Deep learning

Modelling data with neural networks is nothing new, with the underlying technique being
in use since the 1940s [146]. Yet this approach, in combination with a series of radical
advances (e.g., Hinton et al. [107]) in how such networks can be utilised and trained, forms
the foundation of deep learning [83]; a new area in machine learning that has recently
revolutionised many domains of signal and information processing – not only speech and
object recognition but also computer vision, natural language processing, and information
retrieval.

Deep Neural Network primer. Many forms of deep learning have been developed
with example techniques including Boltzmann Machines, Deep Belief Networks, and Deep

CHAPTER 2. MOBILE SENSING IN THE HETEROGENEOUS RESOURCE ERA 25

Autoencoders (each detailed in Deng and Yu [83]). Figure 2.2.2 illustrates a common
example of deep learning; specifically a Deep Neural Network (or DNN). A DNN is a
feed-forward neural network (i.e., the network does not form a cycle) that maps provided
inputs (e.g., audio or accelerometer data or features derived from them) to required outputs
(e.g., categories of behaviour or context). The network consists of nodes organised into a
series of fully connected layers; in-between the input and output layers the DNN contains
additional bridging layers (called “hidden” layers). Each node uses an activation function
to transform the data/state in the prior layer that in turn is exposed to the next layer.
Commonly used node activation functions are drawn from the sigmoid family. A logistic
sigmoid y = 1

1+e−x , for instance, has the property of returning values in the range (0, 1)
making it suitable for representing probabilities. Output nodes are an exception, these
typically use a softmax function in which the final inference is determined by the node
with the largest value (i.e., the conditional probability). See Deng and Yu [83] for more.

A DNN is trained usually in two stages. First, an unsupervised process referred to as
“pre-training” is applied to bootstrap hidden node and edge parameters. This stage was
a significant breakthrough in deep learning, when it was discovered that this can be effec-
tively done in a greedy layer-wise fashion without labelled data – simplifying the learning
when multiple hidden layers are present. This stage, however, may well be skipped when a
sufficiently large labelled dataset is available to train the network entirely in a supervised
manner. Second, a supervised process occurs, referred to as “fine-tuning”, that uses back-
propagation algorithms to adjust the parameter values initialised in the previous stage.
Parameters are adjusted to minimise a loss function that captures the difference between
network inferences and ground-truth labelled data.

Of course, many variations on this training process have been proposed; and similarly
DNNs themselves can be utilised in various ways to perform inference. Not only are they
used simply as classifiers in isolation (as we do in our study) but they are also chained
together to interpret data of differing modalities (e.g., Kahou et al. [117]) , or combined
with other types of models (e.g., HMMs, GMMs) to form hybrids (e.g., Han et al. [100])
or act as front-end feature selection phase (e.g., Plötz et al. [159]). Similarly, beyond a
basic DNN is a rich family of approaches and machinery such as (the aforementioned) Deep
Belief Networks and Boltzmann Machines or others like Convolutional Neural Networks.
However, we limit this work to a relatively simple form of deep learning (single DNNs),
leaving the exploration of additional techniques for future study.

Existing mobile use of deep learning. As previously described, there are some exam-
ples of deep learning being applied in mobile settings. For instance, the speech recognition
models used by phones today exploit deep learning techniques (e.g., Deng et al. [57]). Un-
til recently most of these models operated predominantly off-device, in the cloud. Local
and hybrid models are now gaining popularity. Some existing application domains of deep
learning (such as emotion recognition [100] and others related to audio) are very similar
to requirements of mobile sensing and should be able to be adapted for sensor app pur-
poses. Other important sensing tasks like activity recognition are largely unexplored in

26 2.2. AUDIO SENSING ALGORITHMS

Application Main Features Inference Model Frame Window

Emotion Recognition [166] PLP [105] 14 GMMs [61] 30ms 5s
Speaker Identification [166] PLP 22 GMMs 30ms 5s

Stress Detection [141] MFCC [88], TEO-CB [199] 2 GMMs 32ms 1.28s
Speaker Count [189] MFCC, pitch [81] Clustering 32ms 3s

Gender Estimation [189] pitch Thresholding 32ms 3s
Ambient Sound [143] MFCC, Time Domain Features GMMs 64ms 1.28s

Keyword Spotting [70] Filterbanks DNN [106] 25ms 1s

Table 2.2.2: Example audio sensing apps and their properties.

terms of deep learning, with only isolated examples being available (such as for feature
selection [159] or non-mobile activity recognition in controlled or instrumented environ-
ments [114]). These inference tasks will require more fundamental study as they lack clear
analogues in the deep learning literature. Moreover, significant systems research is required
to understand how the full range of deep learning techniques can be used locally on mobile
devices while respecting energy and latency constraints. For example, mobile OS resource
control algorithms aware of how to regulate the execution of one or more instances of deep
learning inference are currently missing; as are new deep learning inference algorithms
tailored to mobile SoC components like GPUs and DSPs.

2.2.3 Example audio apps

In what follows we detail the operation of representative audio sensing apps outlined in
Table 2.2.2 that we implement and use throughout the dissertation as examples. Various
combinations of these apps will serve as workload generators for concurrent sensor process-
ing requests. Apart from Speaker Count and Gender Estimation, all other apps use either
GMMs or DNNs.

Emotion Recognition. Emotions are an integral part of a user’s everyday life. An
end-to-end recognition pipeline was proposed by Rachuri et al. [166]. The original ver-
sion of the app is based on GMMs with diagonal covariance matrices. Each of 14 narrow
emotions (Table 2.2.3) is represented by an emotion-specific GMM classifier built by per-
forming Maximum a Posteriori (MAP) adaptation of a 128-component background GMM
representative of all emotional speech.

The observations used as input to the GMMs in this app are PLP coefficients [105] extracted
from frames over 5 seconds of recorded audio. The audio signal is segmented into 30ms
frames with a 20-ms overlap and 32 PLP features are computed from each frame (16
coefficients with their deltas). At runtime, the likelihood of the recorded audio sequence is
calculated given each emotion class model and the emotion corresponding to the highest
likelihood is assigned. As described by the authors [166], the narrow emotions are grouped
together into 5 broad categories that capture sadness, happiness, fear, anger and neutral
speech. The final result of the recognition process is thus the broad category to which the
classified narrow emotion belongs.

CHAPTER 2. MOBILE SENSING IN THE HETEROGENEOUS RESOURCE ERA 27

Broad Emotion Narrow Emotions

Anger Disgust, Dominant, Hot Anger

Fear Panic

Happiness Elation, Interest, Happiness

Neutral Boredom, Neutral Distant, Neutral Conversation, Neutral Normal,
Neutral Tete, Passive

Sadness Sadness

Table 2.2.3: Emotion categories (adopted from Rachuri et al. [166]).

Speaker Identification. A speaker identification pipeline aims to recognise the current
speaker in a room. This app has been adopted by several systems [166, 140] all of which
rely on GMMs as the classifier model. The pipeline designed by Rachuri et al. [166] reuses
the algorithmic elements introduced in the emotion classification. A 128-component back-
ground GMM representative of all available speakers during training is built and MAP
adaptation is performed on PLP features from speaker specific utterances to obtain the
speaker-dependent models. At runtime, the speaker-specific model that produces the high-
est likelihood given the audio sequence is identified as the speaker of the audio sample.

Stress Detection. A stress detection app bears resemblance to its emotion recognition
cousin with the difference that it is specialised to distinguish between stressed speech and
neutral one. A dedicated stress detection algorithm was put forward by Lu et al. in their
StressSense app [141]. The input audio signal is divided into non-overlapping 32ms frames
and features (Table 2.2.4) are extracted from each frame over a window of 40 frames. Stress
inference is thus performed based on acoustic observations from a 1.28-second audio sample.
A universal model is built by training two 16-component GMMs representative of stressed
and non-stressed speech respectively. At runtime, the probability of the recorded audio
sequence given the two models is computed and stress is inferred when the corresponding
GMM produces the higher score.

Gender Estimation. Determining the gender of the current speaker is an example audio
sensing pipeline that can aid in speaker identification or speaker counting. Previous studies
[58] have demonstrated that the most distinctive trait between male and female voices is
their fundamental frequency, also known as pitch. Xu et al. [189], for instance, adopt
Yin’s algorithm [81] to determine the pitch from a 32-ms frame. They compute a series
of pitch values from 50% overlapping frames in a 3-second long window and use the mean
as a summary statistic over the whole utterance. Gender inferences are made based on
the findings of Baken [58] that the average pitch for men typically falls between 100 and
146Hz, whereas for women it is usually between 188 and 221Hz. The algorithm infers a
male voice for the whole utterance if the pitch is below 160Hz, reports a female voice if
the pitch is above 190Hz and is uncertain in the cases where the value falls between these
thresholds.

Speaker Count. An unsupervised counting algorithm to efficiently estimate the occu-

28 2.2. AUDIO SENSING ALGORITHMS

Feature set Application

pitch [81] Speaker Count, Gender, Stress

MFCC [88] Speaker Count, Ambient, Stress

PLP (16 static and 16 delta) [105] Emotions, Speaker Id

Filterbanks Keyword

TEO-CB-AutoEnv Stress

Low Energy Frame Rate [174], Zero Crossing Rate [173],
Spectral Flux [174], Spectral Rolloff [131], Spectral Centroid
[131], Bandwidth [131], Relative Spectral Entropy [142],
Normalised Weighted Phase Deviation [85]

Ambient

Table 2.2.4: Acoustic features.

pancy in a room (i.e., number of speakers) without identifying each speaker separately
was proposed by Xu et al. [189] in their Crowd++ app. The algorithm has 2 phases:
feature extraction and speaker counting. In the first phase, speech is segmented into 3-
second long windows and 20-dimensional MFCC features are extracted from the 32-ms
frames with 50% overlap. The speaker counting phase is triggered infrequently and when
the conversation is over. A forward pass stage, linear in the number of segments, merges
neighbouring segments into clusters represented by the mean values of the MFCC features.
Two segments are merged together if the cosine angle between the representative feature
vectors of the segments falls below an experimentally identified threshold (e.g., 15◦). Thus
clusters correspond to audio sequences during which the same speaker is talking. Once this
is done, the final stage of the algorithm compares clusters against each other and merges
them based on their cosine similarity and the inferred gender of the speaker represented
by the cluster. The total number of identified clusters in this final stage is the inferred
number of speakers in the conversation.

Ambient Sound Classification. The detection of various ambient sounds in the envi-
ronment so far has typically been approached with GMM classifiers (e.g., [143, 157]), where
each sound category is represented by a separate GMM. The Jigsaw [143] pipeline divides
the audio signal into 32-ms non-overlapping frames and extracts features (Table 2.2.4) from
each frame in a window of 40 frames. The audio sample length of 1.28 seconds is small
enough to account for short-duration sounds, while at the same time being wide enough
to capture distinctive acoustic characteristics. The series of frame features in the window
constitute the acoustic observations which are then evaluated against the GMM models.
The GMMs are usually trained with a standard expectation maximisation (EM) algorithm.
This app can be customised to recognise a variety of different sounds depending on the
dataset used for analysis.

Keyword Spotting. A small-footprint keyword spotting algorithm was designed by Chen
et al. [70], and its aim is to detect a hot phrase spoken by a nearby speaker. The example
app is trained to detect an ”Ok, Google” command. The audio analysis is performed
by segmenting the input signal into frames of length 25ms with an offset of 10ms, i.e.

CHAPTER 2. MOBILE SENSING IN THE HETEROGENEOUS RESOURCE ERA 29

the frames overlap. Filterbank energies (40 coefficients) are extracted from each frame
and accumulated into a group of 40 frames. The features from these frames serve as the
input layer to a DNN with as many output layer nodes as there are target keywords (plus
an additional sink node to capture other words). The DNN is fully connected and has 3
hidden layers with 128 nodes each. The output of the DNN is raw posterior probabilities of
encountering each of the keywords over the last second of data. The DNN feed forwarding
is performed in a sliding window with every new frame, resulting in 100 propagations per
second (once every 10 ms). After the probabilities are obtained, a post-processing step is
applied which smooths the extracted values over a 1-second window. A keyword is detected
if the smoothed probability over the audio window exceeds a threshold value.

2.2.4 Datasets

Before moving on we briefly introduce our default datasets used to train the apps above.
Throughout the dissertation these will be our primary source of reference, and we will
explicitly specify the cases where we change the used dataset.

Emotion Recognition. Similarly to EmotionSense [166] training and testing data can
be sourced from the Emotional Prosody Speech and Transcripts library [134]. The dataset
consists of voiced recordings from professional actors delivering a set of 14 narrow emotions
grouped into 5 broad categories (happiness, sadness, fear, anger and neutral).

Stress Detection. We use a 1-hour dataset of stressed and neutral speech which is a
subset of the above mentioned emotions dataset. We regroup the anxiety, panic, fear, cold
anger and hot anger narrow emotions into a more general class of stressed speech. The
rest of the emotions are flagged as non-stressed speech.

Speaker Identification. 10-minute speech samples are recorded for a total of 22 speakers
working in our research group in January 2010.

Gender Estimation and Speaker Count. We extract 24 minutes worth of conversa-
tional speech in various contexts from online radio programs. 12 male and 12 female voices
are captured in natural turn-taking situations with occasional pauses.

Ambient Sound Classification. The default dataset consists of 40 minutes of various
sounds equally split into the 4 categories music, traffic, water and other. We select these
sound categories as some examples of commonly encountered types of sounds in everyday
settings. The music audio clips are a subset of the GTZAN genre collection [132]; the
traffic samples were downloaded from an online provider of free sound effects [16]; the
water samples were obtained from the British Library of Sounds [14]; the rest of the
sounds were crawled from a subset of the SFX dataset [69].

Speech vs. ambient noise. A common audio sensing use case is having a simple pipeline
that makes a binary decision between detected speech or ambient sounds. To train this
app, we assemble a dataset that consists of 12 minutes of conversations from online radio

30 2.3. MOBILE HETEROGENEOUS PROCESSORS

programs and 12 minutes of various ambient sounds including street noise, traffic, water,
weather effects, animal pet sounds, machinery, typing, and more. The sources of the
ambient noise are as described in the previous paragraph.

Keyword Spotting. The dataset used for this app is the TIMIT continuous speech cor-
pus [129]. It contains recordings of transcribed utterances and sentences from 630 speakers.
The samples in this dataset serve as negative examples (non-keyword); we augment the
dataset with keyword utterances as positive examples collected from 5 speakers working in
our department at the time of collection. The collected keywords vary depending on both
where the app is deployed and how it is being used.

Note that for the purposes of our research we are mostly trying to advance mobile resource
utilisation and the sample apps we study serve as workload examples. For this reason,
we evaluate application accuracy on these datasets for correctness, this gives us a sanity
check on our implementation ensuring the app can be used in deployments to fulfil its
intended behaviour. Apart from Chapter 4, our concern is being able to replicate the
accuracy reported in the mobile sensing literature. Whenever we can we stick to the
datasets introduced by the research papers where the original app’s design is introduced.
In Chapter 4 when we pursue claims on accuracy improvement in addition to runtime and
energy performance gains, we employ more comprehensive versions of the datasets with
significantly more diverse samples. This allows us to be more confident about how our
claims generalise to the studied domains and do not remain within the confines of narrow
use cases.

2.3 Mobile heterogeneous processors

As discussed in Chapter 1, mobile hardware has witnessed an unprecedented growth in
the variety of heterogeneous processors – many-core CPUs, low-power DSPs, and GPUs.
Each of these offers a distinct resource profile that can be taken advantage of by different
stages in the execution of an app. Here we highlight the core challenges in leveraging the
two most ubiquitously found alternative mobile processors: co-processors and GPUs.

2.3.1 Low-power co-processors

Low-power co-processors for mobile devices are usually narrowly specialised to perform
dedicated tasks in an energy friendly manner [140]. Such processing units prove especially
handy for continuous sensing where the sensor sampling power consumption costs [160] are
several orders of magnitude lower than CPU-driven sensing designs that maintain a wake
lock on the main CPU. However, co-processor use often introduces slower computation
(due to the units being low-power and generally more limited in capabilities).

CHAPTER 2. MOBILE SENSING IN THE HETEROGENEOUS RESOURCE ERA 31

Low-power co-processor types

Mobile devices are exposed to a large variety of workloads, from high performance gaming
through casual web browsing to background sensing. The realisation that this workload
variety is not efficiently serviced by identical general-purpose processor cores resulted in
embedded manufacturers introducing specialised low-power cores and co-processors that
operate at a reduced clock frequency. Their main purpose is handling lighter computational
loads that do not require peak performance such as those found in continuous microphone
sensing. An example is the NVidia Tegra 4 SoC family [39] that features a battery saving
companion core in addition to the main four CPU cores. This core operates transparently
to mobile apps and is used to reduce power consumption when processing load is minimal.
ARM’s big.LITTLE SoC technology [12], on the other hand, consists of a paring of higher
(big) and lower (little) frequency cores. The big.LITTLE software integrated with the
mobile OS automatically and seamlessly moves workloads to the appropriate CPU core
based on performance needs and the history of a thread’s execution. The effect of this load
distribution is reportedly 75% reduction in CPU energy for low to moderate performance
scenarios [12].

Two very popular co-processor units made available in high-end off-the-shelf smartphone
models are iPhone’s M10 motion co-processor [9] and Qualcomm’s Hexagon QDSP6 [43]
of the Snapdragon 800 processor platform. Whereas the former is specialised solely to
efficiently offload collection and processing of motion sensing through accelerometer, gy-
roscope, and compass, the latter excels at low-power multimedia processing. An impor-
tant distinguishing feature between the two is that, unlike iPhone’s M10, the Hexagon
QDSP6 supports custom programmability. This is achieved through the publicly released
C/assembly-based Hexagon SDK [44] which, to date, has been used for multimedia apps
but has yet to be used for sensing. Our main focus of investgation in this dissertation
are this type of low-power co-processors (e.g., Qualcomm DSP) that are not transpar-
ently managed by the OS software (unlike the Tegra’s companion cores and big.LITTLE
architecture).

Challenges in using co-processors for sensing

Supporting multiple concurrently running audio inference pipelines on a co-processor such
as the Qualcomm DSP is particularly challenging because of the following design space
limitations.

Memory Restrictions. The current DSP runtime memory constraints restrict the
amount of in-memory data reserved to sensing apps. The Qualcomm Hexagon DSP from
the Snapdragon 800 SoC, for instance, has 8MB of runtime memory. Examples of sensing-
related data kept in memory are classification model parameters, accumulated inferences
or features extracted for further processing. The lack of direct file system support for the
DSP imposes the interaction with the CPU which will either save the inferences or perform

32 2.3. MOBILE HETEROGENEOUS PROCESSORS

additional processing on DSP-computed features. This easily turns into a major design
bottleneck if the DSP memory is low, the data generated by multiple sensing apps grows
fast, and the power-hungry CPU needs to be woken up from its low-power standby mode
specifically to address the memory transfers. Even if memory size increases, limitations
will still apply given that multiple apps will most likely need to use it, and given that
larger more accurate models are expected to be deployed.

Code Footprint. The DSP restricts the size of the shared object file deployed with app
code. The Qualcomm Hexagon DSP, for example, puts a 2MB limit on the compiled binary
file size. Deployment issues arise when machine learning models with a large number of
parameters need to be initialised but these parameters cannot be read from the file system
and instead are provided directly in code which exhausts program space. Sensing inferences
performed on the DSP become restricted to the ones the models of which successfully fit
under the code size limit.

Performance. The DSP has different performance characteristics. While ultra low-
power is a defining feature of the DSP, many legacy algorithms which have not been
specifically optimised for the co-processor hardware architecture will run slower. Com-
putations that are performed in real time on the CPU may not be able to preserve this
property when deployed on the DSP. The DSP generally supports floating point operations
via a 32-bit FP multiply-add (FMA) unit, but some of the basic operations such as divi-
sion and square root are implemented in software which potentially introduces increased
latency in some of the algorithms.

Programmability. The DSP supports only a subset of the symbols commonly found
in C programming environments. This limits the range of already developed C/C++
libraries that can be ported to the DSP without modifications such as eliminating file
system calls (e.g., printf), replacing memory allocation calls (e.g., new with malloc), or
providing explicit software implementations for maths functions (e.g., sine).

2.3.2 GPUs

GPUs are one of the signature heterogeneous processors available in modern SoCs. They
are seen not only on the more powerful smartphone platforms, but also on smaller form-
factor wearables such as smartwatches based on Snapdragon 400 [45]. Traditionally, mobile
GPUs have been used in graphics applications, whereas in server environments GPUs have
also been used for scientific computations and machine learning. However, little work has
investigated if there will be any energy justified advantages of using them to offload sensor
processing on the mobile device.

CHAPTER 2. MOBILE SENSING IN THE HETEROGENEOUS RESOURCE ERA 33

GPU operation overview

GPUs were originally designed to enable massively parallel computation for image pro-
cessing and graphics. The core programming paradigm revolves around data parallelism
where the same computation primitive (e.g., a sequence of operations) is performed simul-
taneously on different parts of the data. In the graphics domain very often the basic unit
that defines the granularity of the parallelism is a pixel [158] – each GPU thread works
independently on a separate pixel. It was later discovered that the GPU architecture does
not preclude other data parallel computations not necessarily related to graphics from be-
ing performed by the GPU. As a result, more generic APIs were designed such as NVidia
CUDA [37] and OpenCL [42] that allow a more flexible control over the GPU’s resources.
A typical GPU program consists of host and device code – the CPU (host) initiates com-
mands submitted to a command queue residing on the GPU (device). Instead the device
code contains instructions that will be performed simultaneously by the GPU cores on dif-
ferent parts of some input data. Structurally, a general-purpose GPU program resembles
a cascade of commands, some of which prepare data for processing, others submit paral-
lel tasks that will be executed by the GPU, and third read the results from the parallel
computation. In the desktop environment, GPU computing has reached a solid level of
maturity in terms of accelerating many machine learning algorithms both for training and
classification (e.g., Huqqani et al. [112]). Yet, on the mobile side, the GPUs have mostly
been used in graphics computations and games [185, 72, 177].

Challenges in using the GPU for sensing

Some of the key challenges in using the GPU for sensing offloading are:

Energy. A limiting factor in frequently approaching the GPU for computation is the
energy overhead involved in powering on the unit, ramping up the clock speed, and trans-
ferring buffers from the CPU. While mobile hardware manufacturers strive for building
more energy-friendly GPUs, the major design highlight of GPUs is their sheer speed and
massive data parallelism which requires significantly more power than the low-power co-
processors operating at reduced clock frequency. Continuous sensing is one of the most
widespread operational modes found in audio services such as Auto Shazam [13] – GPUs
can certainly accelerate the processing but can we afford the energy cost of continuous
sensing?

Programmability. Similarly to the other alternative processors like DSPs, programma-
bility issues are prominent with the GPU. Building mobile apps that exploit this resource
entails not only redesigning the algorithms to fit the data parallel programming paradigm,
but also using frameworks such as OpenCL or CUDA that require skilled programming.

Compute granularity. To make the most of the parallel computational model, sensor
processing algorithms need to be decomposed at the right level of granularity. The GPU

34 2.3. MOBILE HETEROGENEOUS PROCESSORS

algorithm design should allow for a large number of threads (on the order of thousands or
more) to be able to work on different pieces of the data stream with little dependencies
among them. This typically involves having an in-depth knowledge about the algorithm
semantics to facilitate an efficient program reorganisation.

Memory hierarchy. The GPU features several types of memory that introduce various
access latency vs. size trade-offs. Larger but slower memories will need to be used less
frequently compared to the smaller but faster ones. For maximum benefits, apps that are
deployed on the GPU would need to carefully manage these memories in order to avoid
access bottlenecks.

2.3.3 Mobile CPU operating states

The challenges of achieving high performance while reducing power consumption in mobile
and embedded devices for general computation tasks are typically tackled by allowing the
CPU to switch between different states that offer performance-power trade-offs. Processor
performance states (also known as P-states) and idle states (C-states) are the capability
of a processor to switch between different supported operating frequencies and voltages to
modulate power consumption. The number of states is processor specific. If configured
properly according to system workload, this feature provides power savings. Higher P-
state numbers represent slower processor speeds, and power consumption is usually lower
at higher P-states.

At runtime depending on the workload, the mobile OS will switch between these states to
maximise performance, maintain a thermal balance, and save power. High performance
modes with higher operating frequencies are typically triggered when the display is turned
on, whereas lower frequencies are observed when the display is off with some system pro-
cesses running in the background. The Android OS defines the so called CPU governors
which are strategies that define how the CPU switches between its performance and idle
states. The supported set of governors and how they map to the processor states are
vendor-specific, but a typical mode enabled by default and supported by most systems is
OnDemand which offers balance between performance and energy saving. Tasks that cause
the CPU load to spike will trigger high-frequency mode operation, and if the CPU load
placed by the user abates, the OnDemand governor will step back down through the ker-
nel’s frequency levels until it settles at the lowest possible frequency, or the user executes
another task to demand a ramp.

The main focus of this dissertation is studying the ability of alternative heterogeneous
processors to deliver performance and energy benefits. We do not explore CPU regulation
mechanisms as the CPU is better suited for general computation tasks. With recent hard-
ware advances it will rarely if ever be used for continuous sensing as this prevents the CPU
to enter its low-power idle states. In our experiments, our main concern is the total sens-
ing system energy consumption for which we measure how the various built sensing app

CHAPTER 2. MOBILE SENSING IN THE HETEROGENEOUS RESOURCE ERA 35

Application CPU DSP GPU CPU DSP GPU
Latency Latency Latency Energy Energy Energy

Emotion Rec. (14 GMMs) [166] 2.410 s 8.941 s 0.294 s 4073 mJ 340 mJ 1020 mJ
Speaker Id. (22 GMMs) [166] 3.533 s 12.837 s 0.448 s 6041 mJ 488 mJ 1570 mJ

Keyword Spotting [70] 0.720 s 2.249 s 0.055 s 1152 mJ 113 mJ 390 mJ

Table 2.4.1: Application latency and energy compared on the CPU, DSP and GPU (de-
fault clock frequency). Results are obtained with a Monsoon Power Monitor [34] attached
to a Snapdragon 800 Mobile Development Platform for Smartphones [46]. Measurements
are performed in background mode where the display is off. The numbers show the energy
needed to do the processing on top of the base energy needed to keep the system running.
This is measured as the difference between the average total power when performing com-
putation over 10 runs and average power with only default background system processes
running.

components interact with the two major CPU operating modes: interactive with display
on, and background with display off.

2.4 Limits of sensor app support

Developers of sensor apps today work with black-box APIs that either return raw sensor
data or the results of a limited selection of sensing algorithms [7, 31]. The underlying
resources (e.g., emerging low power co-processors or system services that regulate sensor
sampling rates) that feed these APIs are generally closed and inaccessible to developers.
Critically, because the mobile OS lacks the necessary mechanisms to regulate the energy
and responsiveness trade-offs of sensing algorithms, how these apps share resources, remains
unoptimised. We now describe the limits of co-processors and cloud offloading support of
sensor apps.

Low power co-processor – an underutilised resource. Prior to the advent of
co-processors, the CPU was used for both sensor sampling and data computation. This
resulted in unacceptable energy trade-offs that made many sensing scenarios impractical.

Potential energy savings. To illustrate potential implications for sensing, we perform an
experiment with a special development-open version of the Qualcomm Snapdragon 800
SoC [47], shipping in phones (e.g., Nokia Lumia and Samsung Galaxy [51]). Table 2.4.1
compares the energy and latency of a range of microphone processing algorithms on the
DSP, CPU and GPU of the Qualcomm SoC. With the DSP we observe an overall reduc-
tion of 8 to 15 times in energy consumption to a level at which it becomes feasible for
smartphones to perform various sensing tasks continuously.

However today’s smartphone co-processors cannot fully address the needs of sensor app
workloads because of two critical limitations: (1) APIs remain narrow and inflexible; and
(2) the co-processors are closed.

36 2.4. LIMITS OF SENSOR APP SUPPORT

Limited APIs. Sensor engine APIs similar to the ones provided by Apple [10] and
Nokia [31] enable a variety of location and physical activity related sensor apps. Yet,
the algorithms needed for many other sensor uses such as custom gesture recognition or
fall detection are absent. Unless the developer’s use case is already supported by the APIs,
CPU-based sampling and processing must be used. While APIs supporting more apps are
likely to be offered in future, the closed APIs also prevent stages of sensor processing to be
divided between the co-processor and other units like the CPU. Without this ability only
algorithms simple enough to be run solely on the co-processor can be supported.

Closed to developers. There are two main reasons behind why co-processors are closed.
First, embedded components such as co-processors are easily overwhelmed if not carefully
utilised. Opening the co-processor requires complex new OS support providing, for exam-
ple, a multi-programming environment (i.e., concurrent sensor apps) in addition to isolating
apps so that excessive resource consumption by one app would not compromise others. Sec-
ond, an open co-processor requires developers to engage in embedded programming. This
significantly increases development complexity, requiring code for each computational unit
(DSPs, CPU) and forcing greater hardware awareness.

Cloud offloading alone is not the solution. Although cloud offloading can enable
significant reductions in latency [196, 76, 80, 165], just like existing use of co-processors
it is unable to fully meet the needs of sensor app workloads, for two primary reasons –
sensitivity to network conditions and CPU-bound offloading.

Network conditions. Under good network conditions (e.g., low RTTs, typical 3G/WiFi
speeds) offloading sensor processing, like face recognition, can result in energy and latency
improvements of 2.5 times [80]. But such conditions are not always present. For example, a
survey of more than 12, 000 devices worldwide [184] finds that a sizable 20% of the devices
are not exposed to 3G, LTE or WiFi connectivity at least 45% of the time.

CPU-bound offloading. Conventional offloading applied to mobile sensing (e.g., Nirjon
et al.[156]) must rely on the CPU for local operations. CPU-based sensing algorithms are
highly energy inefficient. As a result, cloud offloading is severely constrained in the variety
of sensor apps to which it can be applied. For example, apps that require continuous
sensing cannot be supported with offloading alone. Even the emergence of co-processor
support in smartphones has not addressed this problem. Because current co-processors
only provide the end result of sensor processing (e.g., an inference), they are unable to act
as the front-end to a chain of operations that includes stages executed remotely.

As we have seen, neither co-processors nor cloud offloading fully address the needs of a
sensor app workload. What is needed are not additional ad-hoc optimisation approaches,
but principled techniques and systems services that support concurrent app operation, that
have visibility of the sensor algorithms being executed in each app, along with access to
the full range of computational units and other resource types available to the device.

CHAPTER 2. MOBILE SENSING IN THE HETEROGENEOUS RESOURCE ERA 37

2.5 Design principles

Given the highlighted current limitations of sensor app support on mobile devices, and
recent trends of increased demand for concurrent audio sensing services, we define 4 primary
design principles we believe are key to the success of any integrated audio sensing solution
built to last. In particular, throughout this dissertation the following principles lie at the
core of our sensing systems:

• Leverage off-the-shelf heterogeneous processor infrastructure to reduce
energy and minimise expensive CPU computation. We exclusively focus on
hardware that is commercially available as opposed to designing customised hardware
components. This ensures our solutions can be deployed for a large user base.

• Jointly optimise resource use for multiple apps simultaneously. As the
number of concurrently running sensor apps grows, it is important we effectively
manage the shared mobile resources among them.

• Exploit domain-specific knowledge and make sensor processing logic visi-
ble to the optimisation algorithms. This allows optimisation to be highly tar-
geted and be able to address specific performance bottleneck operations.

• Do not sacrifice app accuracy. Often when runtime and energy performance are
critical, app accuracy may be allowed to degrade by replacing inference components
with less precise alternatives that are less computationally demanding. Instead,
our goal is to preserve accuracy and maintain user experience expectations high
by targeting algorithm optimisations that do not decrease accuracy.

2.6 Present dissertation and future outlook

This chapter has reviewed the typical structure of sensor apps as well as the most common
algorithmic primitives used in the important subclass of mobile sensing – audio processing
apps. We then overviewed the emerging heterogeneous processors on leading edge mobile
hardware platforms and identified key challenges accompanying their role in computational
offloading scenarios. Last but not least, we discussed the current limitations of sensor app
support, arguing that co-processors have yet to be utilised to their full potential, whereas
cloud offloading alone is not a solution to the energy and performance issues continuous
sensor processing brings up.

The rate at which new mobile user experiences are created based on inferences acquired
from sensor data is higher than the speed with which innovations in hardware come for-
ward to aid computational offloading. Natural user interfaces, activity recognition, context-
aware notifications are being widely adopted as utility services by mobile apps and purpose-
built digital assistants such as Amazon Echo. An ecosystem of sensing modalities, a large

38 2.6. PRESENT DISSERTATION AND FUTURE OUTLOOK

proportion of which target audio data, is emerging straining battery resources in unprece-
dented ways. Mobile platforms are increasingly becoming equipped with heterogeneous
processors but our understanding of how to efficiently utilise them with multiple concur-
rent apps is still in its infancy.

This dissertation is a step towards gaining a better understanding of the issues raised
above. We design three generalisable approaches to computational offloading for sensor
apps primarily relying on microphone data: utilising the mobile processor hierarchy effi-
ciently to support the mixed workload of concurrent sensor apps (Chapter 3); delivering
processor optimised audio routines for the DSP and GPU (Chapters 4 and 5); and dy-
namically scheduling sensor tasks in response to fluctuations in resource availability and
sensing workload (Chapter 6).

Chapter 3

Multi-tier processor offloading

3.1 Introduction

The previous chapter argued that we require new mechanisms and techniques to better
exploit heterogeneous mobile processors for multi-app audio sensing workloads. Here we
begin our exploration of such techniques that leverage low-power co-processors on off-the-
shelf smartphones and wearables – our aim is to overcome the battery issues that plague
mobile devices when performing continuous background sensing. We strive for energy
efficient always-on operation with full accurate coverage of sensing events and avoid duty-
cycling schemes which are susceptible to inaccuracies. We investigate the following related
issues in the context of smartphones and wearables:

1. Continuous sensing of a diverse range of user behaviours and environments. As il-
lustrated in the operation of example audio apps in Chapter 2, increasingly sophisticated
sensing algorithms are being developed that can gather deep user activity insights. An
understanding needs to be developed about how such sensing techniques can be integrated
together into smartphone and wearable-class hardware and run efficiently and simultane-
ously on continuous sensor streams.

2. Cloud-free operation by exploiting heterogeneous local computation. An important gap
in our understanding is precisely how far we can push emerging mobile hardware (e.g.,
big.LITTLE technology, availability of DSPs) to execute sensing and related algorithms
without the assistance of remote computation. Benefits exist for privacy (as data never
leaves the device) and energy with purely device-only solutions.

3. User sensor data analysis with near real-time responsiveness. For many sensed ac-
tivities, near real-time reporting can become pivotal: examples include the calculation of
current levels of stress with respect to other days, or simple queries for memory assis-
tance – when did I last visit this place? Supporting such forms of user experience requires
investigation of how inference and analysis can be provided on-demand.

39

40 3.1. INTRODUCTION

To address these issues we study two integrated sensing systems that serve as proof-of-
concept examples of what can be achieved with off-the-shelf co-processor components under
common mobile form-factors. The first one is a smartphone audio analysis system that
operates within the hardware constraints of low-power co-processors (Qualcomm Hexagon
DSP [43]) to continuously monitor the phone’s microphone and to infer various contextual
cues from the user’s environment at a low energy cost. Most existing work (e.g., [140, 160])
on using a low-power processor for sensing has employed custom hardware: we build our
system using off-the-shelf phones and propose several novel optimisations to substantially
extend battery life. Sensing with commodity co-processor support (e.g., [175, 162]) is still
exploratory, with offloaded execution of pipelines typically seen in isolation or in pairs. We
take these efforts further by studying how the co-processor in off-the-shelf smartphones can
support multiple computationally intensive classification tasks on the captured audio data,
suitable for extracting, for instance, human emotional states [166]. In our design we are
able to support the interleaved execution of five existing deep-inference audio pipelines,
which is done primarily on the DSP itself with only limited assistance from the CPU,
maximising the potential for energy efficiency.

To further diversify the audio sensing user insights and explore the capabilities of wearable-
scale commodity components, we analyse the sensing workload exerted by a novel wear-
able sensor, ZOE. It continuously senses a more comprehensive set of user behaviours
and contexts that span personal, social and place-oriented sensing. Towards this goal,
ZOE incorporates a range of state-of-the-art sensing algorithms designed for devices more
powerful than typical wearable hardware. We demonstrate this workload can be serviced
with a wearable device – without cloud assistance – and still provide acceptable energy
and responsiveness. This is possible through a hardware prototype and a combination of
workload optimisations and resource management algorithms. The prototype for ZOE is
designed around the Intel Edison SoC [24] that includes a dual-core 500 MHz CPU and
100 MHz Micro Controller Unit (MCU). In our design, the Edison is coupled with another
MCU present on a custom designed daughter-board to form a 3-tier computational hier-
archy. Each tier in the hierarchy offers a different computation and energy trade-off that,
when managed efficiently, enables ZOE to meet user experience needs.

Chapter outline. In Section 3.2 we give an overview of our first sensing system, DSP.Ear,
deployed on a smartphone development board. Section 3.3 elaborates on implementation
details including a series of generalisable techniques for optimising interleaved sensing
pipelines. Section 3.4 provides an extensive evaluation of the system battery lifetime
under two modes of operation: standalone and mixed with other smartphone workloads.
Section 3.5 moves on to outline the targeted operation of our proof-of-concept wearable,
and evaluate its sensing workload given a set of optimisation techniques aimed at extending
the battery life. Section 3.6 discusses some of the issues accompanying the two systems.
Section 3.7 compares our systems with existing work, and Section 3.8 concludes the chapter
with a summary of our contributions.

CHAPTER 3. MULTI-TIER PROCESSOR OFFLOADING 41

3.2 Smartphone system overview

In this section, we introduce the main architectural components of our smartphone audio
sensing system, DSP.Ear, as well as a high-level workflow of its operation. The system has
been designed to perform the continuous sensing of a range of user behaviours and contexts,
in near real-time, by leveraging the energy-efficient computation afforded by commodity
DSPs found in a number of recent smartphones. To achieve this design goal we have
addressed two fundamental challenges:

Supporting multiple complex audio-based inference pipelines. To recognise
a broad set of behaviours and contexts we must support a variety of complex inference
pipelines. We have implemented a series of concurrently operating representative audio
pipelines based on published research: ambient noise classification [142], gender recognition
[81], speaker counting [189], speaker identification [140], and emotion recognition [166].
Their detailed operation is presented in Chapter 2.

Operating within commodity co-processor mobile architectural limits. Lever-
aging low-power co-processor capabilities requires our design to cope with a number of
architectural bottlenecks. As discussed in Section 2.3.1 of Chapter 2, the DSP is con-
strained by memory, programmability and processor speed. It can easily be overwhelmed
by the high sampling rates of the microphone and the bursts of computation needed to pro-
cess audio data deep into pipelines, depending on context – for example, when the user is
in conversation requiring a number of inferences (such as emotion, speaker identification).

We overcome these challenges through our system architecture and implementation that
interleaves the execution of five inference pipelines principally across a single standard
DSP – critically our design enables each pipeline to be largely executed directly on the DSP
and minimises the frequency to offload computation to the primary CPU. A key design
feature is a series of pipeline execution optimisations that reduce computation through
cross-pipeline connections in addition to leveraging common behavioural patterns.

Figure 3.2.1 shows the overall system architecture. In DSP.Ear, the phone’s microphone
is continuously sampled (i.e., without any interruption) on the DSP, which applies a series
of admission filters to the sampled audio. Light-weight features are then extracted to
determine the presence of acoustic events. If the sampled audio passes an initial admission
filter that filters out non-sound samples, then volume-insensitive features are extracted.
Further, an additional filter splits the execution into two processing branches – one for
speech, and the other for ambient sounds – depending on the output of a decision tree
classifier. We now briefly describe each of these execution branches.

Speech processing branch. Under this pipeline branch we perform the following
human voice-related inferences.

Gender Estimation. A binary classification is performed to identify the gender of the
speaker. The output of this classifier also assists with subsequent pipeline stages that

42 3.2. SMARTPHONE SYSTEM OVERVIEW

raw audio
data

preprocessing

admission
filters

Framing Preemphasis Hamming
windows

Silence vs.
noise

Speech vs.
ambience

Feature
extraction

Feature
extraction

Feature
extraction

Emotions
similarity

Neutral vs.
other emotions

Emotion
recognition

3s window
32ms frame

1.28s win
32ms frame

5s window
30ms frame

Speaker
similarity

Speaker
identification

Ambient sound
similarity

Ambient sound
classification

Gender
estimation

Speaker
count

CPU CPU

Speech Ambience

Light-weight
features

Figure 3.2.1: DSP.Ear Architecture.

estimate the number of nearby people (Speaker Count) and recognising which person is
speaking (Speaker Identification).

Speaker Count. To find the number of speakers in a conversation, we implement an
adapted version of the Crowd++ unsupervised algorithm [189]. We continuously extract
features from 3-second long utterances and perform on-stream merging of subsequent seg-
ments into the same cluster depending on whether the feature vectors are close enough.
Once we detect that the conversation has stopped after a minute of no talking, we schedule
the final stage of the speaker counting algorithm.

Emotion Recognition. We divide the audio stream into 5-second long samples and on
the DSP extract a different feature set required by the emotion and speaker identification
stages. A light-weight similarity detector computes summary statistics (mean and variance)
over the extracted acoustic features and compares the summary vectors of the previous and
current audio segment. If the features are similar enough, the emotion labels are propagated
from the previous inference.

The emotion classification stage consists of several steps and is mainly performed on the
CPU. The first step is applying an admission filter that accounts for whether the emotion
is neutral or not. It operates faster than running the full pipeline of all emotions and
often saves computation given that neutral emotions dominate in everyday settings [166].
If the emotion is not neutral, the finer category classification continues with determining
the narrow non-neutral emotion such as happiness, sadness or fear.

CHAPTER 3. MULTI-TIER PROCESSOR OFFLOADING 43

Speaker Identification. The speaker identification algorithm uses the same set of fea-
tures required for the emotion recognition task and again makes inferences based on audio
recordings of the same length (5 seconds). An identical similarity detector calibrated with
a different similarity threshold eliminates redundant classifications when the cosine angle
between summary feature vectors of subsequent audio recordings is sufficiently low. In the
classification stage when the likelihood of offline trained speaker models is derived for the
audio recordings, the already estimated genders are cross-correlated with the models to
reduce the number of computed likelihoods to the set of gender-speaker matches.

Ambient sound processing branch. This pipeline branch deals with the detection of
everyday sounds. We train in an offline manner several classifier models that represent
examples of commonly encountered sounds in natural environments (music, water, traffic,
other). The classifiers require the computation of an additional set of summary features
over a commonly adopted 1.28-second window [141, 189]. At runtime, an ambient sound
similarity detector intercepts the classification process and firstly compares the feature vec-
tors of subsequent windows for similarity. If the acoustic fingerprints are sufficiently close
to each other, the same type of sound is inferred which bypasses the expensive classification
process. In the alternative case, the final stage of the ambient processing pipeline consists
of finding the sound model that with the highest probability matches the input sequence
of acoustic observations. This classification step becomes more expensive with the increase
in the number of sounds against which the audio input is being matched.

3.3 Smartphone system implementation

3.3.1 Concurrent inference pipeline support

In what follows, we describe four general categories of audio inference pipeline optimisations
designed to enable each pipeline to operate concurrently within the (largely) hardware limi-
tations of our target prototype platform. These optimisation categories include: admission
filters enabling the early elimination of unnecessary pipeline stages; behavioural locality de-
tection for reducing the frequency of full inference computation; selective CPU offloading
for delegating tasks the DSP is unable to process; and cross-pipeline optimisations.

Admission Filters

We adopt three distinct admission filters based on the combination of implemented audio
inference pipelines.

Silence filtering. A large proportion of the time users are situated in silent environments
where the ambient noise is low. In such cases performing audio processing is a waste of
phone resources. Similarly to Lu et al. [142] we divide the audio stream into a series of

44 3.3. SMARTPHONE SYSTEM IMPLEMENTATION

frames and compute the Root Mean Square (RMS) and spectral entropy which we test
against experimentally determined thresholds to decide whether the frame is silent or not.
We use a shorter frame of 32ms which allows us to increase the precision with which
we detect the onset of sounds. In a manner similar to Lu et al. [140] this stage of the
processing can be delegated to the low-power co-processor and thus eliminate the need for
adopting duty cycling schemes which may miss sound events. Once the frame is determined
to contain some acoustic event, all subsequent frames in a time window are admitted for
further processing. If a time window occurs such that all frames inside are flagged as silent,
frame admission ceases.

Neutral emotion biasing. As reported by Rachuri et al. [166] between 60% and 90%
of the time the emotions encountered in human speech are neutral. This finding implies
that being able to quickly flag an utterance as being neutral or not could provide significant
savings in processing power. In most cases the binary decision would result in the emotion
being classified as neutral which can bypass the time-consuming comparisons against all
emotion class models. We therefore build 2 GMMs, one representative of neutral emotions
and a filler one capturing the rest. When the emotion recognition part ensues we first
perform a classification against these two models and finer emotion recognition proceeds
only if the detected valence is not neutral.

Speech detection. The majority of the application scenarios we consider require the
analysis of human voice which is why ensuring that such processing occurs only when
speech is encountered is mandatory. The coarse category classification of the audio sam-
ples into speech and ambient noise is a frequently performed step that occurs whenever the
environment is not silent. It needs to be fast and efficient while at the same time retain-
ing high accuracy to reduce the false positive rate and avoid unnecessarily triggering the
expensive speech processing pipelines. We adopt a strategy that has been established in
previous works [142, 140] where we use non-overlapping frames in a window from which we
extract features and perform binary classification via a J48 decision tree on the whole audio
window. We use 32ms as the frame length and a window of 40 frames which amounts to
1.28 seconds of audio sampling before deciding whether the sound sample contains speech
or ambient noise. The low energy frame rate [174] as well as the mean and variance over
a window of the features shown in Table 2.2.4 are used.

Leveraging behavioural locality in audio

Many human activities and behaviours, such as taking a shower or being in a specific
emotional state, last much longer than a few seconds. However, conventionally our inference
pipelines perform the entire inference process each time a new audio data segment arrives
from the microphone – even though often the prior user activity or context will be still
on-going. The largest computational waste is the incremental Bayesian process of testing
each GMM model used to represent possible behaviour or sound categories to find the
most likely model given the data segment. Instead, similarly to Lu et al. [143], we adopt a

CHAPTER 3. MULTI-TIER PROCESSOR OFFLOADING 45

scheme that computes the similarity between the current and previous feature vectors and
triggers the full classification step only if the new acoustic signature differs significantly
from the previous one. For Ambient Sound Classification we use summary values (mean and
variance) of the features to build vectors that will be compared from subsequent windows.
We compute the cosine angle between these vectors and if it remains within a threshold
δ we do not run the full classification pipeline and instead propagate the prior category.
For Emotion and Speaker Recognition we compute the mean and variance of the PLP
coefficients in an audio sample and compare subsequent segments for similarity. If these
derived vectors are similar enough we reuse the label of the previous recognised emotion
or speaker. Note that this strategy is reasonable since the emotional state is unlikely to
oscillate violently between subsequent speech utterances.

Selective CPU offloading

With the deep inference multi-app workload of the audio pipelines, the DSP processing
capabilities are challenged in several ways. The limited runtime and shared object file
memory, as discussed in Section 2.3 of Chapter 2, mean that the DSP may not be able
to load the parameters for all classification models. Therefore, even in the cases when we
could afford to opportunistically perform heavy and time-consuming classifications on the
DSP, there will be a limit on the type of inferences we could make. The DSP is also unable
to indefinitely accumulate useful application data such as features and inferences without
approaching the CPU to transfer memory contents. These constraints drive the need for
selectively offloading computation on the main CPU where it could perform the tasks the
DSP is unable to handle.

To accomplish this offloading the DSP needs to interact with the CPU to transfer fea-
ture buffers for further processing. Often the CPU will be in sleep mode at the point of
DSP interaction initiation which means that the DSP needs to wake up the CPU. This
is currently supported on the Snapdragon 800 platform through a mechanism known as
FastRPC that is based on remote procedure calls. The rate at which the CPU is woken
up is critical to the energy profile of the full system as waking the CPU is accompanied
with a power consumption overhead originating from two sources. First, the wake-up itself
consumes power that is an order of magnitude higher than the standby power. Second,
once the buffer transferring is over, the CPU remains idle for some time before going back
to sleep/standby mode. In our experiments with commercial smartphones such as Sam-
sung Galaxy S2 this time can be up to 15 seconds. Therefore, reducing the wake-up rate
proves to be of utmost importance for maintaining a low-energy profile. Note that waking
up the CPU happens within a second, so we do not need to wake it up in advance. Power
overhead remains despite this.

The time between two subsequent buffer transfers from the DSP to the CPU defines the
CPU wake-up rate. This time is dependent on several factors, the most pronounced of
which are the runtime memory limitations of the DSP as well as the frequency of encoun-

46 3.3. SMARTPHONE SYSTEM IMPLEMENTATION

tered sound events. As the DSP can only accumulate a certain amount of data before
waking up the CPU to offload computation, the offloading must work in synergy with the
similarity detectors to reduce the number of transferred acoustic features and increase the
number of inferences made by the DSP. The speech features computed over 5 seconds of
audio recording consume 2 orders of magnitude more memory than the ambient features
which means that the rate at which the CPU is woken up is largely determined by the
proportion of the time speech is detected. We can formalise the time ∆t in seconds between
two DSP-CPU interactions by the following equation:

∆t = γ +
(ML −MM)

MP

× (1 + min(SE, SS))× τ

where,

• γ is the total time in seconds during which silence and ambient sounds interleave the
speech;

• ML is the DSP memory limit;

• MM is the memory consumed by the audio module parameter initialisation, the
pipeline inferences plus the accumulated ambient features;

• MP is the size of the bottleneck features (speech PLP in our case);

• SE and SS are the fractions of similar emotions and speakers identified by the simi-
larity detectors;

• τ is the sampling window in seconds over which speech features are extracted (cur-
rently equal to 5 seconds).

In essence, the formula says that the time during which features are accumulated by the
space-demanding apps ((ML−MM)

MP
× τ) can be increased thanks to the similarity detectors

(×(1 + min(SE, SS)), and that the total time before memory is exhausted depends on it.
Note that we need to take the minimum of SE and SS as the speech features are shared
by the two classification algorithms. To give a perspective on this time ∆t, if we assume
that γ is 0 (no silence/ambience in between the speech), no classifications are saved and
the memory limit is 8MB we easily run out of co-processor space in around 9 minutes. On
the other hand, if we encounter only ambience and no speech we can accumulate ambient
features for well over 9 hours in the absence of silence. To summarise, the frequency with
which a user is involved in conversations is a prime determiner of how often we resort to
selective CPU offloading. Maximising the time between subsequent DSP-CPU interactions
is crucial for maintaining a low-power system profile.

CHAPTER 3. MULTI-TIER PROCESSOR OFFLOADING 47

Cross-pipeline optimisations

Our design leverages the following inter-pipeline links to allow contextual hints extracted
by early simpler pipeline components to benefit later more complex inference phases.

Gender filtering for speaker identification. We make use of the gender estimation pipeline
to reduce the number of GMMs against which we perform speaker identification. If the
gender of the speaker whose GMM is being evaluated does not match the inferred gender
from the audio sequence we do not compute the probability for that model.

Speaker count prior from speaker identification. We boost the accuracy of estimating the
number of nearby people with a prior based on the number of unique speakers found by
Speaker Identification. From Speaker Identification the number of speakers is estimated for
those individuals our system possesses a speaker model. This is used to set a prior on the
likelihood of each Speaker Count category of nearby crowd size. If Speaker Identification
recognises an unknown voice (i.e., a voice too dissimilar from all available speaker models)
then category priors are adjusted to reflect the potential for additional nearby people.

Speech detection activated speaker identification and speaker count. Only if speech is
detected by an admission filter are later complex inferences of Speaker Count and Speaker
Identification made. Otherwise these pipelines of audio analysis are short circuited and
never performed.

3.3.2 Prototype hardware and implementation

In order to show how these ideas can improve performance we implemented the framework
on a Snapdragon 800 Mobile Development Platform for Smartphones (MDP/S) with an
Android Jelly Bean OS [46] (Figure 3.3.1). Versions of this processor platform are present
in a large number of commercial devices (including Google Nexus, Samsung Galaxy, and
Nokia Lumia series) which is critical for validating the feasibility of DSP.Ear at scale.
Access to the low-level co-processor APIs is granted through the C-based Hexagon SDK of
which we use version 1.0.0. The audio processing algorithms are implemented in C through
the Elite firmware framework which is part of the SDK and is designed for the development
of audio modules. We duplicate the C functionality of the audio processing for the Android
OS where we utilise the Native Development Kit (NDK) to interface with the Java code.
This is needed so that we can compare the system performance and efficiency against a
CPU-only implementation. The microphone sampling on the CPU is performed in Java.

The DSP programmability is open to selected development devices such as the MDP/S but
not to commodity smartphones featuring the same Snapdragon 800 processor. Currently
the version of the C programming language supported on the DSP includes only a subset of
the standard libraries commonly found in recent C compiler implementations. This drives
the need for porting and modifying audio processing code from other libraries specifically

48 3.3. SMARTPHONE SYSTEM IMPLEMENTATION

Figure 3.3.1: Snapdragon 800 Mobile Development Platform (MDP) [46] used for the
system development.

for the DSP. We adapt common algorithms such as Fast Fourier Transforms, feature imple-
mentations and GMM classification from the HTK Speech Recognition Toolkit (HTK) [23].
The training of the GMMs for the emotion and speaker recognition models is performed in
an offline manner through the HTK toolkit, while the ambient mixture models are trained
through the scikit-learn Python library [49]. The microphone sampling rate used for all
applications is 8kHz.

The audio module is deployed via a compiled shared object file with the system code.
As already mentioned in Chapter 2 the limit on the maximum allowed size of this file
introduces constraints to the number of classification models that could be kept on the DSP
at runtime. Since the DSP does not have a file system of its own, the model parameters
cannot be loaded from a file but need to be initialised directly through code. The compiled
code for one emotion or ambient model occupies approximately 260KB or 87KB of the
shared object file respectively. This leads to a maximum of 5 emotion or 16 ambient
models that could be used at runtime by the DSP given that the code for the functioning
of the integrated system also requires space. Our prototype keeps loaded on the DSP 2
GMMs for the ”neutral vs. all” emotion admission filter and 4 ambient mixture models
as some examples of commonly found sounds in everyday life (music, traffic, water and a
sink model capturing other sounds).

There are three hardware threads on the DSP of which we effectively use two. The hard-
ware threads are architected to look like a multi-core with communication through shared
memory. Threading is orchestrated via POSIX-style APIs provided by the DSP RTOS
(real-time OS) knows as QuRT [43]. Data is transferred via contiguous ION/RPCMem
memory buffers carved out into Android OS memory and mapped to DSP memory. Cur-
rently, the Speaker Count algorithm is executed on-the-fly in the main processing thread
where the audio buffers become available. The PLP feature extraction required for Emotion
and Speaker Identification, as well as the neutral emotions admission filter, are performed
together in a separate thread as soon as 5 seconds of audio recording are accumulated.
Whereas enabling multi-threading naturally consumes more power in mW than running

CHAPTER 3. MULTI-TIER PROCESSOR OFFLOADING 49

each pipeline individually, the latency is reduced so that the overall energy consumption
in mJ remains roughly equal to the case of running the pipelines sequentially. This ob-
servation confirms a near perfect power scaling for the multi-threaded support of the DSP
and it is a crucial feature for energy efficiency advertised by Qualcomm [43].

3.4 Smartphone system evaluation

In this section we provide an extensive evaluation of the proposed system and its various
components. The main findings can be summarised to the following:

• The only runtime bottlenecks on the DSP are the classification stages of the emotion
and speaker recognition.

• Our design is between 3 and 7 times more power efficient than CPU-only baselines.

• The optimisations are critical for the extended battery lifetime of the system as they
allow the DSP+CPU solution to operate 2 to 3 times longer than otherwise possible.

• Under common smartphone workloads the system is able to run together with other
apps for a full day without recharging the battery in about 80-90% of the daily usage
instances.

In Subsection 3.4.1 the evaluation highlights the accuracy, runtime and power profiles
of the pipelines in isolation. Subsection 3.4.2 details a study on the parameters and
importance of the introduced optimisations. Last, Subsection 3.4.3 gives an evaluation of
the full system energy consumption compared against three baseline models.

3.4.1 Inference pipeline micro-benchmarks

Here we focus on testing the individual audio pipelines with regard to the accuracy, run-
time and power consumption characteristics. All measurements performed on the DSP
are reported for a default clock frequency and a Release version of the deployed code.
We show that among the pipelines the emotion and speaker recognition are a processing
bottleneck for the DSP, whereas the feature extraction stages, ambient classification and
speaker counting can be run efficiently and in near real time on the DSP. Finally, most app
algorithms are an order of magnitude more power efficient when executed on the DSP.

Accuracy. In Table 3.4.1 we show the accuracy of each implemented pipeline is in line with
already published results. We report the performance of the algorithms for correctness,
with the datasets described in Chapter 2 and recorded in relatively clean environments.
Nevertheless, detailed analysis of the algorithmic accuracy under more challenging condi-
tions can be found in the original papers [166, 189, 143].

50 3.4. SMARTPHONE SYSTEM EVALUATION

Application Dataset Accuracy

Speech Detection 24 mins of speech and sounds 91.3%
Ambient Sound Classification 40 mins of ambient sounds 92.9%

Emotion Recognition Emotional Prosody [134] 70.9%
Speaker Identification 22 speakers, 220 mins of speech 95.0%

Gender Estimation 24 mins, 12 male, 12 female speakers 92.8%
Speaker Count 24 mins, 12 male, 12 female speakers 1.1*

Table 3.4.1: Average accuracy of the pipelines. Results are obtained with 5-fold cross vali-
dation. *Average Error Count Distance (AECD) measures the absolute difference between
the actual and reported number of speakers. Results are consistent with the Crowd++ [189]
reported results for private indoor environments.

CPU DSP

Silence 7.82 ms 45.80 ms
Speech 11.20 ms 66.42 ms

Table 3.4.2: Normalised runtime for processing 1 second of audio data for the silence and
speech admission filters.

Latency. The execution of any classification pipeline of the system is preceded by the
admission filters ensuring that no unnecessary additional processing is incurred. Since they
are always applied to the audio input, being capable of running fast and efficiently is of
prime importance. In Table 3.4.2 we demonstrate that although the DSP is between 5 and
7 times slower than the CPU, the admission filters occupy a small 0.045-0.066 fraction of
the audio processing per second.

It is worth pointing out that since Figure 3.4.1 portrays normalised runtimes per one second
of audio sampling, we can easily distinguish between the application scenarios that can be
run in real time on either of the two processing units (CPU and DSP). The quad-core
Krait CPU performs all tasks in real time, while for the DSP the emotion recognition (14
GMMs) and speaker identification (22 GMMs) use cases are bottlenecks. The PLP feature
extraction stage shared by the two application scenarios, however, consumes less than 12%
of the total emotion recognition execution making these features computation real-time on
the DSP. The rest of the apps can easily run all of their stages on both the CPU and the
DSP without introducing delays.

A noticeable difference between the two processing units is that the DSP operates between
1.5 and 12 times slower than the CPU on the various classification scenarios. The vari-
ability in the slow-down factor hints that the DSP treats the computation of the acoustic
features differently from the CPU. This is because although the DSP supports floating
point operations, some of them such as division and square root are implemented in soft-
ware. In contrast, modern processors have dedicated hardware instructions for the same
set of operations. The pitch computation algorithm, for instance, which is quadratic in the

CHAPTER 3. MULTI-TIER PROCESSOR OFFLOADING 51

Ambient
Sound

Speaker
Count

Emotion
Recognition

300
600
900

1200
1500
1800

R
u
n
ti

m
e
 (

m
s)

Features

Full pipeline

(a) CPU

Ambient
Sound

Speaker
Count

Emotion
Recognition

300
600
900

1200
1500
1800

R
u
n
ti

m
e
 (

m
s)

Features

Full pipeline

(b) DSP

Figure 3.4.1: Normalised runtimes per one second of audio sensing for the various apps
when execution happens on (a) the CPU and (b) the co-processor. Note that the Speaker
Identification pipeline (not shown) shares the same algorithmic components as Emotion
Recognition, the results are qualitatively the same modulo the total number of GMMs
used.

number of the samples in a frame, is composed predominantly of additions and multiplica-
tions which favor the co-processor hardware. As we can see from the figure, the DSP is only
1.5 times slower than the CPU on the speaker count feature set where the pitch estimation
dominates the MFCC computation. On the other hand, the ambient features computation
on the DSP takes slightly over 11 times longer than the CPU. The basic operations for
these features include not only floating point division, but also taking the square root and
performing discrete cosine transforms, all of which incur a processing overhead.

Power consumption. In this part, we provide critical insights on the relative efficiency
of the DSP while performing the various algorithmic tasks compared to the CPU. The
measurements have been obtained through a Monsoon Power Monitor [34]. The reported
values account only for the processing required by the algorithms without including the cost
of maintaining the CPU awake and pulling audio data from the microphone sensor. This
is done for this subsection only and so that we can better compare and contrast the energy
overhead incurred by the pipeline stages themselves. The average power consumed by
maintaining a wake lock on the CPU with a screen off on the MDP device is 295mW, while
keeping the microphone on adds around 47mW for a total of 342mW which is consistent
with the reported values by Lu et al. [140]. The sampling of one microphone on the DSP
with 8kHz maintains a current of 0.6 ∼ 0.9mA (2 ∼ 4mW) which is comparable to other
sensors on low-power chips [160]. Since continuously sampling the microphone on the DSP
is not a publicly released functionality yet, we have obtained the exact values for the MDP
board through the Qualcomm support team.

As already mentioned in the previous section, the admission filters are performed always
as a first step in the processing which is why it is also important for them to be energy
efficient. Table 3.4.3 shows this is indeed the case. The DSP is around 7 times more energy

52 3.4. SMARTPHONE SYSTEM EVALUATION

CPU DSP

Silence 12.23 mW 1.84 mW
Speech 17.61 mW 2.54 mW

Table 3.4.3: Normalised average power consumption in mW for the silence and speech
admission filters.

Ambient
Sound

Speaker
Count

Emotion
Recognition

100

101

102

103

P
o
w

e
r

(m
W

)

(a) CPU

Ambient
Sound

Speaker
Count

Emotion
Recognition

100

101

102

103

P
o
w

e
r

(m
W

)

Features

Full pipeline

(b) DSP

Figure 3.4.2: Average power consumed by the various apps when running on (a) the CPU
and (b) the co-processor. Values on the Y axis are in a logarithmic scale.

efficient for both tasks than the CPU. The overhead of continuously checking whether the
environment is silent is negligible on the DSP as the power does not exceed 2mW. In the
non-silent case, the additional energy cost of performing decision tree classification on the
type of sound is very low on the DSP, being merely 0.7mW on top of the first admission
filter.

The stages of the app algorithms, on the other hand, are more compute-heavy and consume
much more power (Figure 3.4.2). Despite this, the DSP is an order of magnitude more
energy efficient than the CPU. The emotion recognition for instance consumes 836mW on
average on the CPU, while this number drops to merely 37mW for the full pipeline on the
co-processor. For the emotion/speaker detection task the DSP is thus more than 22 times
more power efficient than the main processor. Similarly, the full speaker count algorithm
requires an average of 296mW of power on the CPU, whereas on the co-processor the
same execution consumes barely 21mW. To put these numbers into perspective, if we add
the required power for maintaining the audio sensing on the CPU, a standard 2300mAh
battery with 3.8 V would last less than 14 hours if it performs only speaker counting on
the mobile phone and nothing else. If we assume that the CPU drains the battery with
30mW of power in standby state [21], and the DSP microphone sampling consumes 4mW
on average, then adding the 21mW of the DSP for the same speaker counting task means
that the battery would last for more than 154 hours if it only counts speakers on the
co-processor.

CHAPTER 3. MULTI-TIER PROCESSOR OFFLOADING 53

Neutral Non-Neutral

Neutral 77.26% 22.74%
Non-Neutral 24.20% 75.80%

Table 3.4.4: Confusion matrix for neutral vs. emotional speech. Results are obtained via
10-fold cross validation.

0 5 10 15 20 25

Number of speaker models (GMMs)

0
2
4
6
8

10
12
14

La
te

n
cy

 (
se

co
n
d
s) CPU

DSP

Figure 3.4.3: Runtime of the emotion and speaker recognition use cases as a function of
the number of GMMs.

3.4.2 Optimisation benchmarks

In this section we elaborate on several important aspects of the system design related to
the introduced optimisation techniques. We comment on the expected trade-offs between
the accuracy and the savings in the processing.

Admission filters: neutral emotions. Here we discuss the implications of adding an
admission filter that attempts to disambiguate between neutral and other emotions as a
step that intercepts the full emotion recognition pipeline. We recall that the filter uses
2 GMMs, one representative of neutral speech, and another one absorbing the rest of
the emotions. Table 3.4.4 demonstrates that such a model achieves an overall accuracy
of 76.62% and a false negative rate, i.e. neutral emotions predicted as non-neutral, of
around 23%. While false negatives unnecessarily trigger the full pipeline of evaluating
non-neutral narrow emotion models, in practice, the introduction of such an admission
filter early into the pipeline is worthwhile even with this level of inaccuracy because of the
following reasons. First, the figures outperform the overall accuracy of 71% demonstrated
by EmotionSense [166] on the full set of emotions. Second, as discussed by Rachuri et
al. neutral speech occurs between 60% and 90% of the time making the short-circuiting
possible for the majority of use cases even when false negative errors occur.

The importance of the neutral emotion biasing becomes more pronounced when we take
into account the following fact. Due to the DSP memory constraints which prohibit the

54 3.4. SMARTPHONE SYSTEM EVALUATION

0 10 20 30 40 50 60 70 80
Percentage of saved classifications(%)

0
5

10
15
20
25
30

A
cc

u
a
rc

y
 l
o
ss

 (
%

)

basic

full

(a) Ambient sounds

0 10 20 30 40 50 60 70 80
Percentage of saved classifications(%)

0
5

10
15
20
25
30

A
cc

u
ra

cy
 l
o
ss

 (
%

) narrow emotion

broad emotion

speaker

(b) Emotions/Speakers

Figure 3.4.4: The percentage of misclassified sounds/ emotions/ speakers as a function
of the proportion of saved GMM classifications due to engaging the similarity detectors.
The similarity between subsequent sounds is computed based on two cases for the ambient
sounds: the basic (without MFCC) and full set of features (with MFCC).

deployment of more than 5 emotion models on the DSP, the full pipeline needs to be
executed on the power-hungry CPU. However, if the admission filter, which has 2 GMMs,
is deployed and executed fast on the DSP, for more than 60% of the time the emotion will
be flagged as neutral and the processing will remain entirely on the low-power unit. In
Figure 3.4.3 we demonstrate that this scenario can be achieved. We plot the runtime of
the speaker/emotion recognition pipeline as a function of the number of speaker/emotion
models (GMMs) involved in the classification step. As can be seen from the figure, a
pipeline with 2 GMMs, which corresponds to the neutral emotion biasing, can be executed
in less than 5 seconds which is the EmotionSense base audio sampling period. In other
words, this step can be executed in real time on the DSP and the emotion processing can
indeed remain there for the majority of use cases given the dominance of neutral speech in
everyday conversation settings.

Furthermore, when the emotion is flagged as non-neutral the further processing needs to
occur only on the set of narrow models comprising the other broad emotions (happy, sad,
afraid, angry). Thus, the revised full pipeline leads to the evaluation of the likelihood for
a total of 10 GMMs (2 for the admission filter plus 8 for the narrow non-neutral emotions)
as opposed to 14 in the original version of EmotionSense.

Locality of sound classification. In this part of the analysis we shed light on the
consequences of adding similarity detectors to the processing pipelines. We recall that
we exploit behavioural locality so that when acoustic features from neighbouring audio
windows are sufficiently similar, classifications are bypassed and the sound category label
from the previous inference is propagated to the next window. This optimisation introduces
false positive errors when features from subsequent windows are similar but the sound
categories are not the same.

In Figure 3.4.4(a) we plot the proportion of similarity false positives as a function of

CHAPTER 3. MULTI-TIER PROCESSOR OFFLOADING 55

2 4 6 8 10 12 14 16

Memory (MB)

0

5

10

15

20

25

30

T
ra

n
sf

e
r

p
e
ri

o
d
 (

m
in

)

no savings

20% saved

40% saved

Figure 3.4.5: Time in minutes before the CPU is woken up by the DSP as a function of the
runtime memory constraint on the co-processor. The additional gain in time is also given
when the similarity detectors eliminate a percentage of the classifications by propagating
class labels, discarding features and thus freeing space.

the saved GMM classifications when the similarity detector component is introduced into
the ambient processing pipeline. To obtain the figure we vary the similarity distance
threshold between the vectors representing subsequent acoustic fingerprints. The threshold
in the figure is implicitly represented by the number of saved computations where higher
thresholds result in more saved classifications and larger errors. We notice that when
we exploit the full feature set with MFCCs (Table 2.2.4 from Chapter 2) to compute the
similarity between subsequent audio windows we can save around 50% of the classifications
at the expense of a 4.3% penalty in the classification accuracy. Likewise, on the broad
emotion recognition task we are able to save 20% of the classifications at the expense of
an accuracy loss of only 1%.

Selective CPU offloading. As discussed in Section 3.3.1 the DSP is subject to runtime
memory constraints which affects the rate at which the CPU is approached to perform
further processing on accumulated acoustic features. The main sources of space concerns
are the PLP features occupying nearly 64KB when extracted once every 5 seconds and any
ambient features remaining unlabelled because of the unavailability of the full set of sound
models on the DSP. As already discussed the intensity of detected speech is the dominating
factor in how often the CPU is woken up by the DSP. To provide a lower bound on the
amount of time spent before the CPU needs to be interrupted from its sleep mode, we
consider the case when human voice is continuously detected.

In Figure 3.4.5 we plot the time the DSP can be actively processing speech audio data
before running out of space and waking up the CPU to transfer acoustic feature buffers.
In the current mobile development platform the memory limit is 8MB which results in
the CPU being approached for processing by the DSP once every 9 minutes assuming
no emotion/speaker classification savings are allowed and no accuracy losses are incurred.

56 3.4. SMARTPHONE SYSTEM EVALUATION

Involving the similarity detectors into the pipeline leads to propagating a proportion of the
class labels and discarding the corresponding features which frees up space. We can thus
extend the wake-up time to 13 minutes at the expense of a modest 5% loss in accuracy
when 40% of the features are discarded because of class label propagation. Note that
delaying the transfers of the feature buffers to the CPU is desirable energy-wise since the
average power consumed to wake it up is generally high. We measure 383mW on average
on the MDP during the wake-up process which may last several seconds. In addition, the
CPU does not go immediately to low-power standby mode and typically on production
phones the CPU may remain idle for 10-20 seconds (such as Samsung Galaxy S, S2, S4)
after the processing is over which incurs a power consumption overhead.

3.4.3 Full system evaluation

In this subsection we provide an exhaustive evaluation of the full system given various
workload settings and latency requirements.

Assumptions. Based on the analysis performed in the previous sections, we assume de-
fault parameters for several of the system components. We activate the similarity detectors
so that the percentages of saved classifications are 50%, 40% and 20% for ambient sounds,
speakers and emotions respectively. This is done so that we maintain a reasonable accuracy
loss of 4%− 5% for the ambient sounds and speakers and 1% for the emotions. Given the
detailed experiments on the distribution of emotions performed by Rachuri et al. [166],
we expect neutral emotions to be encountered around 60% of the time which is when the
DSP is capable of performing the entire emotion processing. We use the mobile system pa-
rameters of a popular smartphone, Google Nexus 5, featuring the Qualcomm Snapdragon
800 platform and having a battery of capacity 2300mAh. The estimated standby time is
officially reported to be up to 300 hours which translates to an average standby power
of 30mW [21]. Based on measurements we performed on the MDP and other popular
smartphones such as Samsung Galaxy S, S2 and S4 we assume the CPU remains idle for
15 seconds after all processing is over and before going to deep sleep (standby) mode. By
default, we wake up the CPU once every 11.1 minutes when speech is detected as we run
out of space given a runtime memory constraint for the DSP of 8MB. Last but not least,
the cross-pipeline optimisation of tagging the speech features with the detected gender
allows us to reduce the number of speaker models against which we evaluate the likelihood
of the speech features. Our assumption is that the gender detection is able to eliminate
roughly half of the speaker models which leaves us with 11 GMMs given our test dataset
of 22 speakers.

Unconstrained battery usage. Here we give an overview of how the system drains power
given that the full battery capacity is available for use solely by the system. The goal is
to contrast how the system fares against baselines, whereas estimates for realistic battery
drains under common workloads are given in the next section. We compare the model
against three baselines including a CPU-only solution, and two solutions for the CPU and

CHAPTER 3. MULTI-TIER PROCESSOR OFFLOADING 57

CPU-only w/o

CPU-only

DSP+CPU w/o

DSP+CPU

2 4 6 8 10 12

Hours of talking in a day

20

40

60

80

100
Li

fe
ti

m
e
 (

h
o
u
rs

)

Figure 3.4.6: Lifetime in hours of the system running on the CPU only or the DSP+CPU
as a function of the proportion of detected speech during a 24-hour day. Two versions of
the system are provided: without (w/o) and with optimisations.

DSP respectively without the introduced improvements of similarity detectors, neutral
emotions admission filter and cross-pipeline optimisations. We vary the distribution of
sound types a user encounters in everyday settings to demonstrate the level of dependence
of the system on the type of processing performed (voice/ambient cases). We fix the
proportion of silence in a day to 1/3 of all types of sounds which corresponds to roughly 8
hours of a night’s sleep.

In Figure 3.4.6 we vary the amount of detected speech during the day as the voice processing
has the most pronounced effect on the battery given that the execution there relies on
the heavier pipelines of the system. A first observation is that the DSP solution with
optimisations is between 3 and 7 times more power-efficient than the CPU-only solutions.
With unconstrained battery usage and 4.5 hours of talking per day the integrated system
with optimisations is able to last almost 60 hours exceeding considerably the 14.4 hours
reached by a CPU-only solution with the same optimisations. Note that the targeted 4.5
value is an average number of hours spent in conversations in a day as found by Lee et
al. [130]. As we increase the amount of detected speech from 4.5 to 12 hours per day, the
system longevity significantly decreases where we witness a 58% drop in the total hours of
runtime for the DSP case and 41% drop for the CPU-only case.

Another insight is that the optimisations that have been introduced provide a noticeable
improvement in the battery lifetime, especially for the DSP case where for 4.5 hours of
talking the total hours jump from 20 to 60. The optimisations are so crucial that we observe
the following phenomenon: using the DSP without them reaches a point at around 8 hours
of speech where the CPU + co-processor design is less efficient than simply having the
optimisations on the CPU. This is expected since the major energy burden are the emotion

58 3.4. SMARTPHONE SYSTEM EVALUATION

Category Examples of Profiled Applications

Books Amazon Kindle, Bible

Browsing & Email Firefox, Yahoo! Mail

Camera Camera, Panorama 360 Camera

Games Angry Birds, Fruit Ninja

Maps & Navigation Google Maps, Street View

Media & Video Android Video Player, VPlayer

Messaging GO SMS Pro, KakaoTalk

Music & Audio n7player Music Player, Winamp

Photography Adobe Photoshop Express, Photo Editor

Social Facebook, Twitter

Tools & Productivity Advanced Task Killer, Easy Battery Saver

Other Skype, Super Ruler Free

Table 3.4.5: Categories of smartphone apps used in the CPU workload evaluation.

recognition and speaker identification classifications which always run on the CPU. In this
case, running the optimisation procedures on the DSP is critical for enabling the truly
continuous sensing of the microphone. The battery is able to last 2 to 3 times more if the
mentioned optimisations are added to the DSP+CPU solution.

CPU workload analysis. In this final subsection we study the implications of running
DSP.Ear together with other common workloads generated by smartphone users. For this
purpose, we use a dataset provided by the authors of AppJoy [192]. It consists of traces
of hourly application usage from 1320 Android users, and is collected between February—
September 2011 as part of a public release on the Android marketplace. The number of
apps found in the user traces exceeds 11K which renders the energy and CPU workload
profiling of all apps impractical. Therefore, we group the apps with similar workload
characteristics into categories, as shown in Table 3.4.5, and profile several typical examples
from each category. To obtain measurements we run 1-2 minute interactive sessions (open-
run-close) with each app using the Trepn Profiler [54] for the CPU load and the Power
Monitor [34] for the power consumption.

A primary consideration when analysing how the continuous audio sensing workloads in-
curred by our system interact with the smartphone usage patterns is the energy and CPU
overhead of running the CPU speech processing together with other active apps on the
phone. A major burden is the interactive usage when the screen is on [67], where the
display energy overhead is attributed to the LCD panel, touchscreen, graphics accelerator,
and backlight. The Android OS maintains one foreground app activity at a time [192],
making the app currently facing the user and the screen the main sources of energy con-
sumption. When running the audio pipelines on the Snapdragon MDP device, we observe
that the power consumption is additive as long as the normalised CPU load (across cores)
remains below 80%. The apps from the various categories as shown in Figure 3.4.7(a) rarely
push the CPU beyond 25% in interactive mode. The additional CPU load of performing

CHAPTER 3. MULTI-TIER PROCESSOR OFFLOADING 59

0 10 20 30
CPU load (%)

Other
Tools & Productivity

Social
Photography

Music & Audio
Messaging

Media & Video
Maps & Navigation

Games
Camera

Browsing & Email
Books

(a) CPU load (%)

0 1000 2000 3000
Average power (mW)

Other
Tools & Productivity

Social
Photography

Music & Audio
Messaging

Media & Video
Maps & Navigation

Games
Camera

Browsing & Email
Books

(b) Power (mW)

Figure 3.4.7: The average (a) CPU load and (b) power of interactively (screen on) running
apps from the given categories.

101 102 103

Fraction of battery capacity (%)

10-5

10-4

10-3

10-2

10-1

100

C
C

D
F

Figure 3.4.8: Complementary cumulative distribution function (CCDF) of the percentage
of battery capacity drained in 24 hours of smartphone usage. It shows the proportion of
time users will exhaust battery at least the percentage shown on the x axis during the day.
Percentages greater than 100% mean that the mobile user needs to recharge the battery
at least once during the day.

the speaker/emotion identification is 15% for a total of 40% cumulative utilisation. This
remains below the threshold beyond which the energy consumption stops being additive
and outgrows the value under normal workloads.

To evaluate the overhead of running our system together with other smartphone usage
workloads, we replay the app traces from the AppJoy dataset with measurements per-
formed on the Snapdragon MDP device. In Figure 3.4.8 we plot the percentage of the
battery capacity (2300mAh) expended in 24 hours of operation. Since the dataset does
not provide explicit information for background app usage when the screen is off, the figure
accounts for the interactive usage of the phone, our system running in the background and
the CPU standby power draw. This is a best case scenario for our system where third-

60 3.4. SMARTPHONE SYSTEM EVALUATION

Facebook
Twitter

Yahoo! Mail

Winamp (40 min)
0

1

2

3

4

E
ne

rg
y

bu
dg

et
 (

%
)

Apps Background Load

Facebook 232KB per 1 hour
Twitter 54.5KB per 15 min
Yahoo! Mail 513 KB, 7 e-mails
Winamp 40 min of playback

Figure 3.4.9: Energy budget as percentage of the battery capacity expended in a day
by the background services of 4 popular mobile apps. Measurements are obtained with
the Snapdragon MDP where server data from Facebook, Twitter and Yahoo! Mail is
downloaded via WiFi.

party background services are disabled, and periodic server data synchronisation and push
notifications are off. In this scenario, in 90% of the days the battery is able to sustain
at least a full day of smartphone usage without charging. This is encouraging news, since
for the significant proportion of daily usage instances, users need not worry about their
everyday charging habits.

The next scenario focuses on adding the overhead of running typical background services
such as the ones started from social networking apps, mail clients, news feeds, and music
playback. In the AppJoy dataset popular services of this category are Facebook (50% of
users), Gmail or Yahoo! Mail (69% of users), Twitter (10% of users), Pandora radio or
Winamp (15% of users); most of them sync user timelines periodically in the background,
or adopt push notifications. In Figure 3.4.9 we present the energy budget required by
4 representative background services to run over a day with default sync settings. The
measurements account for the worst case when the CPU needs to be woken up on every
occasion any of the services needs an update. Given this and an extrapolated 40 minutes
of background music playback per day, the total energy budget remains below 10%. If
we aggressively add this workload to all daily traces, we find that in more than 84% of
the instances, the users will not need to charge their phone before the full day expires.
This is again encouraging, since even when users have several popular apps running in the
background, they can, in a considerable proportion of the cases, engage in uninterrupted
audio life logging.

CHAPTER 3. MULTI-TIER PROCESSOR OFFLOADING 61

3.5 Wearable system workload analysis

In the sections so far we have presented the design and comprehensive evaluation of an
audio sensing system that exerts a heavy cloud-free sensor processing workload. We have in-
troduced a series of generalisable pipeline optimisation techniques and have demonstrated
their importance in enabling the continuous energy efficient operation of multiple apps.
In this section we continue our investigation on the benefits of multi-tier processor of-
floading by addressing the challenges posed by the workload of another proof-of-concept
rich-inference sensing system, ZOE. Its key design goals are:

• Unlike DSP.Ear, ZOE is intended to be deployed on a dedicated wearable, but sim-
ilarly to DSP.Ear, it should primarily exploit off-the-shelf capabilities (such as the
resources of an Intel Edison board).

• ZOE supports a richer set of behavioural inferences adding additional types of recog-
nised activities (accelerometer, WiFi) to a set of heavier-to-process audio inferences.

Our most important finding from the analysis reinstates DSP.Ear’s insights, namely that
the careful distribution of sensing algorithm stages across heterogeneous processors can
drastically reduce the system energy profile compared to naive deployments. We will now
briefly describe the targeted usage scenarios of ZOE, present the intended sensing workload
and evaluate the energy efficiency of the system in light of a series of performance control
design choices. We rely on variants of the tuning techniques for concurrent pipeline support
presented earlier in this chapter: specifically we adopt admission filters, cross-pipeline
optimisations, and triggered sensing (an analogue of selective CPU offloading). Thus,
ZOE serves as another example of the techniques and design choices that allow us to push
the boundaries of modern mobile hardware platforms to provide rich user experiences via
sensing.

3.5.1 Targeted user experiences and sensing workload

Targeted operation. With the dimensions defined by an Intel Edison board, ZOE is
designed to be worn constantly during everyday activities. ZOE aims to capture a broad
set of user actions and ambient conditions that capture a diverse set of inferences from three
main areas of life (viz. personal, social, place sensing). This data can be accessed through
a dialogue subsystem with supporting functionality built for convenience to facilitate the
interaction with ZOE. Users are able to spontaneously ask spoken questions regarding their
data (see Table 3.5.1). Significantly, ZOE can provide all of its functionality without cloud
support or offloading computation to the user’s smartphone. This addresses some aspects
of user privacy concerns by allowing all data to remain on the device rather than data
leaking to the cloud for analysis. We envision many scenarios of potential use for ZOE
including mHealth, life-logging, cognitive assistance, persuasive systems, productivity, and

62 3.5. WEARABLE SYSTEM WORKLOAD ANALYSIS

How much time did I spend driving over the last week?
How many different places did I visit in the last four days?
Compared to the previous time I was here am I more stressed?
What fraction of my time do I spend listening to music?

Table 3.5.1: Representative sentences supported by the dialogue subsystem of ZOE

Category Subtype Inferences Algorithms

Personal Transportation {motorised,non-motorised} Transportation Mode [104]
Phy. Activities {walk, stationary, run, other} Activity Recognition [143]

Stress Detection {stressed,neutral} StressSense [141]
Social Social Interaction {conversation, other} Speech Detection [142]

Conversation Analysis estimators: dominance, turns SpeakerID [166]
Place Place Recognition {home,work, other} WiFi Fingerprinting [120]

Place Context occupancy estimation Speaker Count [189]
estimators: music, noise, chatter Ambient Sound [143]

Table 3.5.2: Sensor inference capabilities of ZOE

time accounting in which users want to optimise their activities by maximising what they
can accomplish each day.

Sensing algorithms workload. We integrate into ZOE a broad set of microphone-based
algorithms together with accelerometer and WiFi example apps that infer user behaviours
and ambient contexts. Table 3.5.2 summarises the specific inferences made by ZOE contin-
uously throughout the day. Inferences are selected to provide well-rounded sensing coverage
across key areas of the user’s life (personal, social and place). The stream of inferences
generated by this component are organised into a local User Knowledge Store designed to
support dialogue queries. Using a few relatively simple inference processing mechanisms
even single inferences generate multiple knowledge base entries. For example, as the user
is detected to arrive home by ZOE, many behavioural data points are created, including:
the duration of the commute, the distance, and a simple carbon footprint estimate. By
storing this information in structured storage, supporting a diverse set of user inquiries is
simplified.

Overall, the data-flow of each individual algorithm within our sensing module is, at a
high-level, very similar. All sensors are continuously sampled with this data feeding into
pre-processing stages that perform operations like applying a low-pass filter or estimating
the direction of gravity. Domain specific features are then extracted and classification
models applied to obtain inferences (e.g., does the collected data correspond to the user
driving or not driving).

Accelerometer and gyroscope processing algorithms (transportation mode and activity in-
ferences) share pre-processing techniques and have a number of overlapping common fea-
tures. Furthermore, both utilise the same classifier design and combine a static classifier
with simple temporal smoothing. WiFi-radio processing is very simple in comparison and
is not shared with any other algorithm. By far the most complex is audio processing. The

CHAPTER 3. MULTI-TIER PROCESSOR OFFLOADING 63

Processor Operation

Quark MCU Silence Filtering

Daughter-board MCU Stationary Filtering, Mizell Calibration
Physical Activities Classifier
Transportation Classifier
Shared Inertial Features
Transportation Features

Edison CPU Shared Audio Features, Stress Detector
User Noise Detector, WiFi Similarity
Conversation Analysis, SpeakerID
Stress Features

Table 3.5.3: Allocation of ZOE workload to hardware components

initial stages of microphone data processing share many similarities with DSP.Ear. Again
we encode two pipeline branches, one for human speech and one for background ambient
sound. Shared pre-processing includes silence detection and coarse category classification
{music, voicing, other}. In contrast, DSP.Ear employed a simpler 2-class speech detection
classifier that separates voicing from other ambient sounds. Deep processing occurs along
the voicing branch with stages including binary user-oriented Speaker Identification and
Stress Detection, while ambient audio is mined for various characteristics of the place (e.g.,
number of nearby people, noise levels). Sharing features is common in the voicing branch
as are models in some cases (such as GMMs). Furthermore, social interaction metrics such
as turns and dominance (that are somewhat distinct from the other classifiers included
in the module) reuse whole components together – for example, conversation is detected
using coarse classification, the presence of silence periods along with Speaker Identification
to recognise that a user is actually involved in the conversation and simply not just nearby.

3.5.2 Performance control

In this subsection we detail our main architectural and performance optimisation consid-
erations that aim to enable the continuous and efficient logging of sensed user activities.
The heart of our prototype is the Intel Edison [24] SoC that is paired with a custom
daughter-board containing a programmable micro-controller, wireless charger, speaker and
sensors (viz. gyroscope, accelerometer and microphone). The Edison itself has a further
two processing units, the primary one being a dual-core 500 MHz Atom processor which
is supported by a 100 MHz Quark processor. WiFi is also built-in directly to the Edison
SoC which is required for both sensing and user interaction tasks. Essentially they form
a three-tier processing hierarchy. Collectively, different configurations of these tiers offer a
variety of energy usage and computational trade-offs that we leverage towards high levels
of responsiveness and energy efficiency in ZOE.

MCU utilisation and sensor preprocessing with admission filters. Table 3.5.3

64 3.5. WEARABLE SYSTEM WORKLOAD ANALYSIS

summarises the placement of primary ZOE components between computational tiers. The
MCUs excel at continuous sensor sampling at a low power cost and we take advantage of
this by allocating to these units key filter-type computations conforming with the memory
and runtime constraints. The daughter-board MCU samples the accelerometer without
interruption at 50 Hz, whereas the Quark monitors the microphone continuously at 8KHz.
The processing units liberate the Atom CPU from performing sensor sampling allowing it
to go into a low-power standby state when the MCUs can handle the sensor events from
the stream of incoming data.

All microphone and accelerometer algorithms rely on a front-end of shared pre-processing
routines residing partly in the MCUs or the Atom CPU. In the case of accelerometer-based
ones (activities and transportation mode) these routines are placed on the daughter-board
MCU and concern admission control and calibration. Compared to the Qualcomm Hexagon
DSP which we exploit in DSP.Ear, the daughter-board MCU is considerably less powerful
computationally with an IT 8350 processor (from ITE) running at 48 MHz and only 64KB
of RAM. That is why we are able to execute here only accelerometer-based algorithms that
process data produced at a much lower frequency compared to the microphone sensor. The
admission control pre-processing on this MCU is simple: by applying a low-pass filter along
with a threshold it seeks to recognise when the device is completely stationary; perhaps
when a user leaves the device on a table. By filtering out these events the remainder of
the accelerometer stages are only exercised when there is actually data to be processed.
Calibration orients accelerometer values into gravitational units using parameters learned
by applying the Mizell technique [149].

The MCU needs to periodically communicate its accumulated inferences with the Atom
CPU which is responsible for transferring the labelled data to the knowledge base. There
is a communication overhead in the transition of the CPU from sleep to high-power active
state. To minimise the interactions between the two processing units we set the synchro-
nisation period to 20 minutes which is when the main CPU needs to be woken up to
merge the inferences in the database. This triggered computation is an analogue of selec-
tive CPU offloading defined in DSP.Ear, the difference being that here the MCU executes
full pipelines and needs to transfer only inference labels. These occupy much less space
than features, which is why accumulating labels can be sustained for long periods without
exhausting MCU memory.

For the microphone, the front-end of shared stages are only comprised of two processes.
The design for these two processes are adopted from Lu et al. [142]. First, a Silence
Filter deployed on the Quark MCU separates silence from actual sound – a threshold-
based decision is made based on the Root Mean Square (RMS) [174]. Second, for those
microphone samples that contain non-silence, a coarse-grain category classifier deployed on
the Atom CPU is used to recognise frames containing voicing, music and other. We note
that the Quark co-processor running at 100MHz is much more limited in its computational
capabilities compared to the Qualcomm Hexagon DSP, which is why we were able to
deploy only a single filter that is less computationally demanding than the original Silence

CHAPTER 3. MULTI-TIER PROCESSOR OFFLOADING 65

Sensing Pipeline Sensor Dataset Accuracy

Physical Activity Accel 10 mins of activities 82%
Transportation Mode Accel 150h transportation data [104] 85%

Stress Periods Mic Emotional Prosody [134] 71%
Place Recognition WiFi LifeMap [73] 90%

Place Context Mic local business ambience [186] 74%
Speaker Id (5s) Mic 22 people, 220 mins of speech 95%
Speaker Id (3s) Mic 22 people, 220 mins of speech 94%

Table 3.5.4: Accuracy of the pipelines.

Filter used in DSP.Ear. Nevertheless, this co-processor assisted filtering is a powerful tool
in reducing system energy consumption when the wearable is in quiet environments – the
power-hungry Atom CPU can be put to sleep during the microphone sampling and filtering.

Cross-pipeline optimisations. Similarly to DSP.Ear, we resort to leveraging cross-
pipeline connections to further optimise the sensor processing. First, we perform speech
activated Stress Detection, Speaker Identification and Keyword Spotting to ensure that
these apps are rightly triggered only when the acoustic context is human voice. Second, we
execute the heavy speech recognition that interprets user commands only after a successful
ZOE keyword activation by the owner – Keyword Spotting and Speaker Identification act
as triggers for Speech Recognition. This ensures that the system responds to commands
only when the user actually intended to issue a query.

3.5.3 System lifetime evaluation

In this part of the analysis we show the total system energy consumption and the overall
benefits of the performance control optimisations introduced in the previous subsection.
The most notable result is:

• Our design is practical as it allows the user to wear the device for well over a day
(≈ 30h) with a single battery charge. A key enabler for this is the 3-tier design which
offers a more than 30% relative improvement in the battery lifetime to alternatives.

We don’t elaborate on the sensing algorithm accuracy which has been extensively studied
in existing literature. Instead, we find our implementations achieve performance that is
in line with already published research (Table 3.5.4). We also skip a detailed analysis on
the performance characteristics of the Dialogue Subsystem which has been implemented
to offer access to the collected mobile user behavioural data.

System lifetime analysis. We compare our heterogeneous design (Atom CPU + Quark
co-processor + MCU) against three baseline models that exclude either the Quark, the
MCU or both of the additional processing chips. In this experiment we generate synthetic
sensing workloads by varying the amount of encountered speech. This is a prime determiner

66 3.5. WEARABLE SYSTEM WORKLOAD ANALYSIS

Atom+Quark+MCU

Atom

Atom+Quark

Atom+MCU

0 2 4 6 8 10 12
Detected speech per day (hours)

80
100
120
140
160

B
at

te
ry

 c
ap

ac
ity

 (
%

)

Figure 3.5.1: Percentage of the battery needed to handle the sensor processing of a daily
workload (8h of silence, 1h to 12h of speech, 20 questions per day). Values higher than
100% indicate the battery needs to be recharged at least one more time during the day to
sustain the workload.

of the sensing workload because the heavier sensor pipelines are triggered by the presence
of human voice: dialogue subsystem interactions, stress detection, as well as device owner
recognition and conversation analysis. We fix the time users are in a silent environment to
8 hours which roughly amounts to a night’s sleep. We also assume 20 questions per day
on average submitted to the dialogue system as life logging inquiries. The battery used for
the reported measurements is a typical 1500mAh Lithium-ion model with 3.7 volts.

In Figure 3.5.1 we plot the percentage of the battery capacity required by ZOE to process
a day’s worth of sensing as a function of the number of hours users spend in conversations.
The first critical observation is that our system design is the only among the alternatives
that is able to make the battery last at least one day with a single charge. With 4.5 hours
of speech, which is found to be an average amount of time users spend in conversations
throughout the day [130], the system needs 78% of the battery capacity to handle a 24-
hour processing load. This leaves us with a system lifetime of 30 hours. In contrast, the
2-tier solutions as well as the bare bones Atom-only deployment require 109% or more
of the battery to handle the same workload which means that the Edison wearable needs
to be recharged before the day expires. Overall, the 3-tier design offers more than 30%
improvement in the system longevity and this is largely attributed to the fact that part of
the sensor processing is offloaded to the dedicated low-power co-processors.

When either of the two additional chips (Quark or MCU) is left out, the sensor sampling
that would otherwise be performed there will need to be delegated to the general-purpose
Atom CPU. This prevents the CPU from going to low-power standby mode and instead
keeps the processor active with an average current draw of 63mA. When the MCU is
removed, the accelerometer sampling keeps the CPU busy, whereas when the Quark is

CHAPTER 3. MULTI-TIER PROCESSOR OFFLOADING 67

0 1 2 3 4
Energy budget (%)

Keyword

Stress

WiFi

Place Ambience

SpeakerId

Dialog
Accel Apps

Figure 3.5.2: Breakdown of the energy consumed by the various system component com-
putations for the workload scenario of 4.5h of speech, 11.5h of ambient context, 15min
WiFi duty cycle and 20 dialogue commands per day. The reported energy budget reflects
the additional energy of the raw processing on top of what the Atom CPU consumes in an
active state.

not used, the microphone sampling maintains the CPU awake. Both of the 2-tier designs
do not offer significant energy improvement over the Atom-only deployment because 1)
their limited memory and performance capabilities allow them to run only simple pipelines
such as silence filtering that on the Atom run in less than 2ms, and 2) in both cases the
Atom CPU is burdened with sampling one or both of the sensors where the energy hog
is maintaining a high-power active state. As shown in Figure 3.5.2, the energy budget
for the additional processing of the system components remains cumulatively below 12%,
meaning that the majority of the system energy is spent in keeping the CPU active to do
the processing in the non-silent periods.

3.6 Discussion and limitations

In what follows, we outline key issues with our implementations.

Programmability. Due to imposed limitations on the supported devices by the publicly
released APIs, the development of DSP.Ear cannot be performed directly on a standard
commodity phone with the same Snapdragon 800 processor. While this work is a proof-of-
concept implementation through which we provide generalisable techniques, questions of
programmability are still prominent. Further, due to limitations in early Edison compiler
support, we are only able to perform only a few basic ZOE inference stages on the Intel
Quark co-processor, a situation that is being currently improved.

Co-processor efficiency. Our current implementations do not fully take advantage of the
more advanced co-processor capabilities such as DSP optimised assembly instructions or
fixed point arithmetic. The primary advantage of using the C programming language with

68 3.7. RELATED WORK

floating point operations for the system implementations is that it allows for the prototyp-
ing of more advanced algorithms and importing legacy code. However, the challenges in
supporting advanced algorithms are not solely based on the need to perform floating point
operations or to reduce runtime through assembly optimisations. Limitations still remain
— for example, encoding the range of necessary models for each type of supported classi-
fication places significant strain on memory reserved for program space on the Qualcomm
DSP (e.g., speaker identification requires one separate model for each speaker recognised).

Absence of end-to-end user studies. The focus and contribution of the two works
is the systematic study of the hardware capabilities under the workloads DSP.Ear and
ZOE present, along with a series of proposed techniques that allow these workloads to
achieve acceptable levels of energy efficiency and responsiveness. Of particular interest in
future user studies will be user reaction to dialogue as a means of interaction as well as
understanding what type of inferences users are most keen on accessing.

Is custom hardware warranted? It is likely that a ZOE-like software system could
have been designed for a number of other mobile platforms. However, overall it would
have failed to meet the battery lifetime requirements needed to support the heavy sensing
workload for a full day with a single battery charge. For example, the energy efficiency on
alternative platforms like a smartwatch is expected to be significantly worse than ZOE’s
due to lack of additional low-power MCUs.

3.7 Related work

DSP.Ear and ZOE touch upon a wide range of topics, here we discuss the most salient
prior work in each area.

Smartphone sensing and activity recognition. The design of DSP.Ear and ZOE
contribute to the area of human activity inference by investigating how a diverse set of
existing techniques can be combined into a single integrated sensing module; in turn this
module can run on platforms or form-factors where few have been previously seen indi-
vidually (and certainly not being all supported simultaneously). Along with the recent
explosion of techniques targeting smartphones (e.g., Nirjon et al. [156], Lee at al. [130],
and Tan et al. [180]), there is a long history of platform agnostic algorithms from activity
recognition (e.g., Bao and Intille [60]). However, even though many share building block
components (features, related classes) few studies exist that investigate their usage together
(e.g., Ju et al. [116]). Towards mobile devices with a more complete understanding of the
life of users, DSP.Ear incorporates 5 and ZOE more than 10 distinct sensor inferences
that have previously been often studied in isolation. The few mobile systems that seek a
more complete monitoring of user behaviour and environment often focus on health (e.g.,
Denning et al. [84], and Lane et al. [128]).

Heterogeneity and mobile resource bottlenecks. Energy has been a considerable

CHAPTER 3. MULTI-TIER PROCESSOR OFFLOADING 69

focus of a variety of mobile sensing systems [153, 138, 124]. Towards such challenges,
low-power processors and multiple tiers of computational units are commonly used ap-
proaches [59, 179, 183]. ZOE and DSP.Ear add to this knowledge by exploring the use
of co-processors in addition to the CPU to allow a comparatively very heavy sensing and
interaction workload to remain feasible, especially in terms of energy. Similar tiered pro-
cessor architectures include Nirjon et al. [155], Priyantha et al. [160], and Lu et al. [140]
that combine high- and low-power processors for energy efficient sensing. Even commer-
cially, many smartphones today use DSPs and other processors to continuously sense and
wait for one specific keyword to be spoken before initiating a dialogue. Although the core
of the techniques we use have appeared in such systems, it is the first time they have been
applied to many of the more complex sensing algorithms (e.g., seen in DSP.Ear or ZOE’s
social sensing monitoring) and especially when they are integrated into a single system.

Software-based techniques for continuous sensing and cloud offloading. As en-
ergy is a major bottleneck for a variety of sensing systems, prominent software-based
approaches for managing energy consumption have been devised such as adaptive duty
cycling [78, 143, 187], triggered sensing [194, 124, 151], and exploiting relations between
various contexts [153]. Adaptive duty cycling techniques enhance the static duty cycling by
adjusting the interval according to various metrics such as user’s context, energy budget,
or mobility. While these techniques enhance duty cycling efficiency, they do not completely
fill the gap to perform always-on sensing. In order for these schemes to support continu-
ous sensing, especially when a stream of on-going events need to be captured, they would
need to keep the main CPU awake, which would reduce the battery life considerably. Us-
ing a low-power sensor to trigger a high-power one [151] and techniques that exploit the
relation between context items [153] are applicable to specific scenarios. An example is
accelerometer-based triggering of GPS, but it might be difficult to generalise these schemes
across different sensors.

CloneCloud [76] achieves energy efficiency and reduces latency by offloading a part of the
execution from a local virtual machine on the phone to device clones running in the cloud.
Rachuri et al. [165] build a system that distributes computation between the phone and
the cloud to balance energy-latency trade-offs. Although there is a similarity between
these works and balancing computation between the processors in a hierarchy (CPU and
co-processor), the challenges faced by these schemes are very different. While network
related issues are an important consideration in the former, memory, computation, and
energy limitations are the main focus in the latter.

Wearables and personal sensing hardware. DSP.Ear and ZOE distinguish them-
selves, particularly from commercial systems, largely because of the depth and range of its
user inferences and exploration of features like dialogue systems, heterogeneous computa-
tion and constraints like operating without a cloud. Wearable systems that seek the type
of breadth as ZOE are almost always based on vision or audio data because of the richness
of the two modalities. ZOE relies on other sensors as well but makes strong use of the
microphone which sets itself apart in terms of sensing algorithms with wearables like Ha

70 3.8. CONCLUSIONS

et al. [98], Mayberry et al. [145], and Hodges et al. [108]. Examples of microphone-based
wearables include Rahman et al. [167] but this system has a specific narrow focus on in-
ternal body sounds captured with a specially designed microphone. Instead, ZOE has a
number of commonalities with the MSP [74] that was also a heavy user of the microphone.
However, while ZOE monitors general user activities, as the MSP does, it also provides
detailed measurements of user state and social interactions; in addition to providing a
dialogue system through which to offer the user this information.

3.8 Conclusions

In this chapter we have studied the trade-offs of using multi-tier processor hierarchies
found in state-of-the-art mobile hardware to perform continuous sensing and logging of
a variety of complex sound-related behaviours and contexts. First, we have developed
DSP.Ear, an integrated audio sensing system with multiple interleaved inference pipelines
that are able to run continuously together 3 to 7 times longer than when deployed entirely
on the CPU. DSP.Ear is also 2 to 3 times more power efficient than a naive DSP-based
design. Second, we have presented a comprehensive workload analysis for a prototype
wearable, ZOE, that leverages the type of heterogeneous high-performance computation
increasingly available to this class of mobile device. Through a mixture of hardware- and
software-based approaches, ZOE offers a first-of-its-kind user experience by enabling the
continuous sensing of a range of deep inferences typically seen in isolation or in pairs in
more powerful hardware. All of this is provided without cloud assistance, which provides
significant privacy assurances to the user.

These substantially extended system lifetimes were largely enabled by the optimisations
devised in this chapter. They facilitate the decomposition and distribution of the pipeline
stages of multiple concurrent apps across processors. However, we have predominantly
relied on example applications the implementations of which were originally designed for
CPUs. In the next chapter we demonstrate that higher performance and accuracy gains
can be achieved if we also substitute algorithmic elements from the original pipelines with
co-processor targeted implementations.

Chapter 4

DSP-optimised deep audio sensing

4.1 Introduction

In the previous chapter we showed how to statically partition the mobile sensing workload
from multiple concurrent applications across heterogeneous processors in an attempt to
lower the energy barrier for the adoption of richer multi-app sensing services. We have
demonstrated the importance of maximising low-power DSP resource utilisation but we
have mainly applied pipeline filtering and splitting techniques without modifying the un-
derlying state-of-the-art algorithmic primitives. In this chapter, we investigate whether
we can further specialise the algorithm implementations for a low-power co-processor in a
way that achieves both improved accuracy and performance. Critically, we seek versatile
machine learning models that are robust to a diverse set of inferences and at the same
time can be easily deployed on the DSP, i.e. they feature significantly reduced runtime
and memory requirements.

A strong candidate for fundamental advances in how mobile sensor data is processed is
deep learning ; an emerging area of machine learning that has recently generated signifi-
cant attention—enabling, for example, large leaps in the accuracy of mature domains like
speech recognition, where previously only incremental improvements had been seen for
many years [57]. Promisingly, achieving such levels of robust inference (as seen in speech)
often requires overcoming similar data modelling challenges (e.g., noisy data, intra-class
diversity) to those found in mobile sensing.

It is somewhat surprising that deep learning techniques are mostly absent from the vast
majority of mobile sensing prototypes that are deployed and evaluated. Limited usage
exists coming in the form of largely cloud-based models that provide, for example, speech
and object recognition within mobile commercial services [57]. Perhaps this is partially
due to the computational overhead associated with deep learning: usage of deep neural
networks, even just for inference, can require amounts of memory, computation and energy

71

72 4.1. INTRODUCTION

that overwhelm the resources available to this class of hardware. For this reason, more
recently, methods are beginning to be explored [102, 71, 70] how the inference-time usage
of deep learning models can be optimised to fit within embedded device limits.

What is missing today are systematic studies to understand how advances in deep learning
can be applied to inference tasks relevant to mobile sensing. Here, we begin to examine
this timely issue with an exploratory study into the potential for deep learning to address
a range of core challenges to robust and resource efficient audio sensing on the low-power
DSP of embedded devices.

Chapter outline. In the next Section 4.2 we sketch the research directions of our study.
In Section 4.3 we describe the prototype of a mobile DNN classification engine capable
of a variety of sensor inference tasks. The role of the engine is to classify sensor data on
the mobile device, assuming deep model training is performed in an offline manner with
conventional tools. The design of the engine is tailored towards the runtime and memory
constraints of the low-power DSPs present in many already available smartphones (e.g.,
Samsung Galaxy S5, Nexus 6). As a result, this engine achieves resource efficiencies not
possible if only using a CPU.

Section 4.4 details benefits to inference accuracy and resource efficiency by adopting deep
learning techniques. For example, we show our DNN engine can achieve higher accuracy
levels for audio sensing using significantly simpler features (a 71 times reduction in fea-
tures), relative to modelling techniques more typically used. We also discover that we can
build DNNs with a resource overhead close to the most simple comparison models, yet
simultaneously have accuracy levels equal to or better than any tested alternative. More-
over, our DNN implementation gracefully scales to large numbers of inference categories
unlike other models used today.

Section 4.5 focuses on optimising DSP resource utilisation when multiple related audio
inference tasks are deployed together on the mobile device. As discussed in Section 1.4 of
Chapter 1 this use case is gaining popularity with multi-functional devices such as Amazon
Echo. Closely related learning tasks are known to be often suitable for, and benefit from,
being modelled under a multi-task learning approach [68, 139, 77, 139]. However, typically
these approaches are used towards improving model robustness and accuracy. In this
section, we ask if they can also play an important role in reducing the computational
resources necessary for deep neural networks.

We extend our inference engine with a deep multi-task framework in which a single deep
neural network is used for multiple perception tasks that share hidden layers, and tasks
are simultaneously trained. Through comprehensive evaluation we find that for several
related audio analysis tasks, commonly used in combination for embedded applications
(speaker identification, emotion recognition, stress detection and ambient scene analysis),
the reductions in runtime, memory and energy consumption are on average 2.1 times
across various multi-task combinations. In addition, we demonstrate that for the related
audio analysis tasks, a multi-task approach can replace individual task-specific models with

CHAPTER 4. DSP-OPTIMISED DEEP AUDIO SENSING 73

integrated network(s) of shared hidden layers with little loss in accuracy.

4.2 Study design

We now detail our study into the suitability and benefits of deep learning when applied to
mobile audio sensing.

Study aims. Four key issues are investigated:

• Accuracy: Are there indications that deep learning can improve inference accu-
racy and robustness in noisy complex environments? Especially when sensor data is
limited, either by features or sampling rates. (See Section 4.4.1.)

• Feasibility: How practical is it to use deep learning for commonly required sensing
tasks on today’s mobile devices? Can we push today’s hardware to provide acceptable
levels of energy efficiency and latency when compared with conventional modelling
approaches? (See Section 4.4.3.)

• Scalability: What are the implications for common scalability challenges to mobile
sensing if deep learning is adopted? For example, how well does it perform as the
number of monitored categories of activities expands? (A common bottleneck in
forms of mobile sensing such as audio [140]). Moreover, how easily can deep learning
inference algorithms be partitioned across computational units (i.e., cloud offloading),
a frequently needed technique to manage mobile resources [80]. (See Section 4.4.4
and Section 4.4.5.)

• Multi-task performance: What type of deep learning algorithm specialisation can
we adopt to optimise resource use when multiple related audio tasks are deployed
together? Can we employ multi-task learning techniques such as replacing individual
networks with a single shared model to gain memory and computational performance?
Can we maintain high both accuracy and performance with this modelling approach?
(See Section 4.5.)

By examining these important first-order questions regarding deep learning in the con-
text of mobile sensing our study highlights new directions for the community, as well as
providing the foundation for follow-up investigations.

4.2.1 Audio analysis tasks

We focus on a subset of the commonly used audio-related learning tasks presented in Sec-
tion 2.2 of Chapter 2 and listed in Table 4.2.1: Speaker Identification, Emotion Recognition,
Stress Detection and Ambient Scene Analysis (an analogue of Ambient Sound Classifica-
tion). These tasks are selected because they have a common overall pipeline structure,

74 4.3. DEEP ENGINE PROTOTYPE IMPLEMENTATION

Audio Task Inferences Made

Speaker Identification 106 speakers
Emotion Recognition afraid, angry, happy, neutral, sad
Stress Detection stressed, neutral
Ambient Scene Analysis 19 sound categories (street, cafe, etc.)

Table 4.2.1: Audio analysis tasks investigated.

are designed to recognise sound classes, and may be found together in multi-app audio
deployments (such as Speaker Identification and Ambient Scene Analysis in embedded de-
vices like Amazon Echo). In this section we introduce the datasets used for analysis, a
detailed description of the application semantics can be found in Chapter 2. Specifically,
we reuse the default datasets for emotions and stress first outlined in Chapter 2, and we
substitute the speaker and ambient scene datasets with much larger ones in order to test
the robustness of the deep learning classifiers against a volatile large number of inferred
classes.

Speaker Identification. The dataset we use here is utterances from 106 speakers from
the Automatic Speaker Verification Spoofing and Countermeasures Challenge [188] with a
total of ≈ 61 hours of speech. The dataset bears similarity to the well-known TIMIT one
used for Speaker Identification [129]. An audio sample in our case consists of 5 seconds of
speech from a speaker, as this duration has been used for mobile sensing tasks in social
psychology experiments [166].

Emotion Recognition. We use the Emotional Prosody Speech and Transcripts library
[134] where 2.5 hours of emotional speech is delivered by professional actors. For this task,
a sample consists of 5 seconds of emotional speech.

Stress Detection. We use a 1-hour dataset of stressed and neutral speech which is a
subset of the above mentioned emotions dataset. The length of the inference window for
the Stress Detection is 1.28 seconds.

Ambient Scene Analysis. We use the LITIS Rouen Audio Scene dataset [168] with
≈ 24 hours of ambient sounds grouped into 19 sound categories. Each sound sample is
1.28 seconds long, a commonly adopted window in mobile audio sensing [143] when the
goal is to capture a variety of sounds that may come and go in the environment.

4.3 Deep engine prototype implementation

4.3.1 Hardware configuration

We implement a DNN feed-forward propagation classifier engine in C for the Hexagon
DSP of a Qualcomm Snapdragon 800 MDP [46], which is also used for the development

CHAPTER 4. DSP-OPTIMISED DEEP AUDIO SENSING 75

of DSP.Ear presented in Chapter 3. As already discussed in Section 3.3, this development
board allows us to precisely measure DSP performance, and allow measurements to gen-
eralise to situations where the DSP is installed on different platforms (e.g., smartwatches,
home appliances and phones). We use the same version of the Hexagon SDK to build
our DNN engine. Our DSP implementation allows several key parameters to be changed,
namely the number of hidden layers and their size, the number of features in the input
layer, the number of classes in the output layer, as well as the node activation function.

4.3.2 Model architecture

We explore sizes of the models for audio sensing that are fairly constrained compared to
the larger networks used in computer vision and image recognition. Reduced network sizes
are preferred to comply with runtime and memory constraints where processing should
typically happen in real time on the mobile device to be useful (e.g., speech recognition).
We examine model sizes that are comparable to other models applied in embedded set-
tings: 3 hidden layers with 128 nodes each for keyword spotting [70] and 4 hidden layers
with 256 nodes each for speaker verification [182]. Our default models have 3 hidden lay-
ers with either 128, 256, or 512 nodes each, which are similarly architected to Chen et
al. [70], but might have more nodes per layer. With 900 nodes per layer, a model already
completely exhausts the runtime memory limit of the DSP. Having the deep network pa-
rameters preloaded in DSP memory is essential because the alternative of using the CPU
to continuously transfer network parameters on demand is too costly energy-wise. We
stress that we aim to provide best results possible within the constraints of embedded
hardware, where particularly the memory footprint can severely restrict the overall size
and architecture of the models used.

4.3.3 Reducing input feature complexity

The size of the input layer of a DNN equals the number of extracted features in an audio
inference window. For typical audio sensing tasks such as the ones outlined in Chapter 2,
the features are often accumulated over multiple frames in a window, resulting in hundreds
or thousands of input layer nodes. Here, we examine the opportunity to significantly
reduce the input layer evaluation overhead by unifying and simplifying both the type and
number of features used in audio processing pipelines. We adopt statistical summaries
of conventional audio filter banks as the input layer to our deep architecture. This is an
unusually simple representation, but because audio analysis tasks are by their nature low-
complexity (relative to other audio tasks like speech recognition), we observe empirically
that it is – counter to existing practice – sufficient (reported later).

Until now usual practice has been to define model specific features or use variants of PLP
coefficients [105] or MFCC [88]. A good candidate for common features across the various

76 4.4. INFERENCE ACCURACY AND RESOURCE EFFICIENCY

filter bank coefficients

1 2 … M

1

2

…

N

frames

mean

std

1 2 … M

mean

std

min

max

summaries

Figure 4.3.1: Extracting summary features from the original set.

audio processing tasks are the log filter banks [178] which are an early step in the PLPs
and MFCCs computational pipelines. On speech recognition tasks [82] it has been shown
that using filter banks does not compromise the accuracy of deep network models, and can
even boost it.

In our design, we take the use of filter banks one step further by using summaries of filter
bank coefficients in the following manner, that have the benefit of requiring significantly
fewer processor resources. Figure 4.3.1 illustrates the summarisation process. We extract
filter banks from each frame over a time window, and summarise the distribution of the
values for each coefficient across the frames in a window with statistical transformations
(min, max, std, mean, median, 25-percentile and 75-percentile). This allows us to sig-
nificantly reduce the number of features used in the classification process. For instance,
a Speaker Identification pipeline [166] that extracts features every 10ms over a 5-second
window would result in 500×M filter bank coefficients, whereas resorting to summary ones
we would need only a fraction (7 ×M , i.e. ≈ 71 times fewer). Further, using summary
features allows us to have an input layer with the same size across audio tasks regardless
of the length of the inference window. A 5-second audio window used in Speaker Identi-
fication would have the same input layer as a 1.28-second window used in Ambient Scene
Analysis. This is useful when building a shared DNN model across multiple related audio
analysis tasks.

4.4 Inference accuracy and resource efficiency

In our next set of results we examine accuracy, energy and latency properties of DNNs
applied to common behavioural inference tasks. The key results from our experiments are:

CHAPTER 4. DSP-OPTIMISED DEEP AUDIO SENSING 77

• a simple DNN model with a 71 times reduction in the number of input features
provides comparable or superior accuracy against learning techniques in common
usage;

• DNN use is feasible on the DSP and has a low energy and runtime overhead allowing
complex tasks such as emotion detection or speaker identification to be performed in
real time while preserving or improving the accuracy;

• DNN solutions are significantly more scalable as the number of recognised classes
increase;

• Splitting models between computational units (e.g., a local device and cloud) is more
flexible with a DNN that offers energy/latency trade-offs at a fine granularity.

Our early results point to the ability of DNNs to provide energy and latency trade-offs that
will be suitable for a wide range of mobile sensing scenarios; while also having beneficial
resource characteristics not found in any other commonly used model.

Experiment setup. We use the model architecture detailed in Section 4.3 to evaluate the
energy and latency characteristics of the four inference domains detailed there. We train
Deep Belief Networks with Gaussian RBMs in Python via Theano [181]. We fix the learning
rate to 0.05 and use a rectified linear unit (ReLU) [193] activation function. As is common
for multi-class audio inference tasks [129], we report classification accuracy averaged over 10
trials as a model performance metric. The datasets are divided into training, development
and test sets with an 80%-10%-10% split. We limit the total training time to 200 epochs
across experiments, but generally observe that for the larger datasets the accuracy improves
further if we allow a slower training time with an increased number of epochs. The input
layers of the DNNs use the 7 summaries of the 24 filter bank coefficients over the frames.
The DNN model is further used to implement a keyword spotting example [70] which brings
to light cloud offloading benefits studied in our cloud partitioning experiment. The GMMs
are set up with 128 mixture components [166].

4.4.1 Inference accuracy

Baselines. As discussed in Chapter 2, by far the most commonly used classification
model in audio sensing are GMMs [143, 166]. Variants of these models, before the advent
of deep learning, provided state-of-the-art performance in a wide range of audio processing
scenarios including speech recognition and ambient sound classification. That is why we
adopt the GMM-based apps built for our integrated sensing systems DSP.Ear and ZOE
from Chapter 3 as baselines in our analysis here.

Results. In Table 4.4.1 we compare the accuracy of the memory-compliant deep learn-
ing alternatives against the GMM versions. A first observation is that the deep networks
outperform the original pipeline setup across most evaluated tasks (except Ambient Scene

78 4.4. INFERENCE ACCURACY AND RESOURCE EFFICIENCY

MFCC/PLP GMM Filter banks GMM MFCC/PLP DNN Filter banks DNN

Speaker Identification 82.5% 80.1% 84.7% 85.8%
Emotion Recognition 70.9% 66.5% 81.0% 81.5%

Stress Detection 71.0% 67.2% 80.1% 80.7%
Ambient Scene Analysis 74.1% 63.3% 66.4% 85.2%

Table 4.4.1: Accuracy of the DNN models compared against GMMs as a function of the
features used in the input layer – handcrafted MFCC/PLP or summary filter banks. The
DNN structure is 3 hidden layers with 512 nodes each. The GMMs have 128 mixture
components.

Analysis) even when using the handcrafted MFCC/PLP features as the source for the in-
put layer. The Emotion Recognition and Stress Detection apps, for instance, enjoy a large
8-10% absolute boost. Further, even with the significant loss of feature complexity, the
filter banks DNN provides superior accuracy results for all audio sensing tasks. This alter-
native outperforms all others, suggesting that we can safely resort to the computationally
much simpler features with no accuracy loss. The results also imply that the accuracy
improvement is not solely attributed to the use of a different set of features: the GMMs
with filter banks fail to reach the performance levels of the deep networks.

Note that for Speaker Identification and Ambient Scene Analysis we use significantly larger
datasets compared to the ones used in Chapter 3 with many more inference classes per
task, which is the reason for the different baseline accuracy achieved here. By resorting to
these larger datasets we are able to assess modelling techniques with respect to their level
of robustness to the complexity of the audio analysis tasks.

To sum up, the incorporation of deep learning for the range of audio inference tasks
presented here results in higher accuracy levels despite the memory-limited smaller-sized
DNNs, significantly reduced complexity of the input features, and the volatile large number
of classes for some of the inference tasks.

4.4.2 Filter bank summaries efficiency

We now investigate the runtime trade-offs of adopting the unusually low-complexity fil-
ter bank summary features instead of the handcrafted MFCC and PLP coefficients that
dominate the audio processing landscape for shallow models.

Improved runtime. In Figure 4.4.1a we plot the time needed to extract features from a
single 30ms frame as a function of the feature type. The filter banks computation occupies
only a fraction of the total time needed to extract the PLPs used in Emotion Recognition
and Speaker Identification or MFCCs used in Ambient Scene Analysis and Stress Detection.
The runtime reduction is 4.9 times for the former and 1.6 times for the latter. Further, as
already shown in Table 4.4.1 and the previous section replacing handcrafted features with
filter bank summaries does not compromise the accuracy of the DNN models. Adopting the

CHAPTER 4. DSP-OPTIMISED DEEP AUDIO SENSING 79

PLP MFCC FB
0.0

0.4

0.8

1.2

1.6
R

un
tim

e
(m

s)

(a) Feature extraction runtime

102 103 104 105
Speakers
Emotions

Stress
Ambient

Filter Banks

(b) DNN input layer size (feature count)

Figure 4.4.1: (a) Runtime needed to compute features from one 30ms frame. (b) Size of
the DNN input layer (number of features per audio processing window) across the various
audio sensing tasks compared against the use of window-agnostic summary filter banks
(FB).

summaries results in accuracy levels that match or surpass the originally provided features
across all audio sensing tasks.

These reductions in the compute time of the features are critical for low-power processors
that operate with a reduced clock frequency. As discussed in Chapter 2 and confirmed
with evaluation in Chapter 3, the DSP achieves its ultra low power profile at a price.
Some of the floating point operations such as square root are implemented in software, and
the handcrafted PLP and MFCC features make use of such more advanced operations,
which taxes runtime performance. Instead, reducing feature complexity by eliminating
such operations as in the case of the simpler filter banks enables computation to be much
faster – with benefits to reduced energy consumption and arriving faster at an inference.

Input layer efficiency. The extracted filter bank summaries serve as the input layer to the
deep networks, and as discussed in Section 4.3 they succinctly describe the distribution of
the filter bank values across the frames in a window. The advantages of this representation
are that i) the size of the DNN input layer is significantly reduced as shown in Figure 4.4.1b;
and ii) we can have a shared input layer for all audio sensing tasks regardless of the size
of the inference window and number of frames inside it. Compared to an input layer that
contains all PLP coefficients for Emotion Recognition or Speaker Identification, the size of
the filter banks variant is 2 orders of magnitude less, resulting in an input layer propagation
that is about 95 times faster.

4.4.3 Feasibility results

In this experiment we provide insights with respect to the DSP runtime and energy foot-
print of DNNs compared against other techniques (DT, GMM) widely used in the mobile
sensing literature. In Figure 4.4.2 we plot the latency and energy profiles of two of the
sound-related apps detailed in Section 4.2: all apps described in that section use an iden-

80 4.4. INFERENCE ACCURACY AND RESOURCE EFFICIENCY

DNN DT GMMDNN DT GMM
Emotions Speakers

0
2
4
6
8

10
12
14

R
u
n
ti

m
e
 (

s)

features

classification

(a) Latency

DNN DT GMMDNN DT GMM
Emotions Speakers

0
100
200
300
400
500
600

E
n
e
rg

y
 (

m
J)

features

classification

(b) Energy

Figure 4.4.2: Latency and energy of the emotion recognition and speaker identification
when deployed on the DSP. The example DNNs have 3 hidden layers with 512 nodes each.
The emotions app uses 14 GMMs, the speaker identification uses only a subset (22) of the
models but still incurs a prohibitively high runtime and energy overhead. In contrast, the
DNNs feature a low latency/energy overhead similar to a Decision Tree (DT). Note that
because of the GMM high runtime, the DNN and DT appear to have the same runtime,
but in fact the DT is several times cheaper than the DNN, the similarity is relative to the
expensive GMM computation.

tically structured GMM-driven pipeline, with the difference being the number of class
models in the classification stage. As a demonstration, we pick two of these pipelines with
a different number of inference classes. The GMM version of the Emotion Recognition
task, for example, runs for approximately 9 seconds and requires 350mJ on the DSP to
process 5 seconds of audio data. A most notable observation is that the DNN classification
overhead of the relatively small deep network is extremely low compared to a GMM-based
inference and is closer to the overhead of a simple Decision Tree. We recall that both
the Emotion Recognition and Speaker Identification operate on acoustic features extracted
from 5 seconds of audio samples which means that the DNN versions of the apps, unlike the
GMM-based implementations, can perform complex sound-related inferences in real time
with comparable or superior accuracy. The prohibitively high GMM overhead stems from
both the large amounts of features (500 × 32) serving as acoustic observations and the
additive nature of the classification where one full GMM is required per class.

4.4.4 Scalability results

In this part of the analysis we shed light on how the DNN scales with the increase in the
number of inferred classes. Mobile context inference tasks often require a larger number of
behaviours or activities being recognised such as multiple activity categories [143] (e.g. still,
running, walking with phone in pocket, backpack, or belt etc.), multiple words, emotional
states or speakers [166]. In Figure 4.4.3 we plot the runtime of the classification stage of
the three models (DT, GMM, DNN) as a function of the number of recognised contextual
categories. Again, the DNN behaves in manner similar to a simple Decision Tree where

CHAPTER 4. DSP-OPTIMISED DEEP AUDIO SENSING 81

0 5 10 15 20 25
Number of classes

0

200

400

600

R
u
n
ti

m
e
 (

m
s)

DNN-128

DNN-256

GMM

DT

(a) Full scale (0 to 600 ms)

0 5 10 15 20 25
Number of classes

0
20
40
60
80

100

R
u
n
ti

m
e
 (

m
s) DNN-128

DNN-256

GMM

DT

(b) Zoom in (0 to 100 ms)

Figure 4.4.3: DSP runtime of the inference stage of the various classifiers as a function
of the number of classes. The results suggest that DNNs scale extremely well with the
increase in the number of classes, in a manner similar to a DT, while often providing
superior accuracy.

the larger number of supported classes does not significantly affect the overall inference
performance. The runtime of the feed-forward stage of a deep neural network is dominated
by the propagation from the input and multiple hidden layers which are roughly invariant
to the number of classes in the output layer. The GMM-based classification computes
probability scores for each class represented by an entire GMM so that an inference with
25 added categories/classes is 25 times more expensive than one with a single class. This
justifies the more than 11 times slower inference compared to a 256-node DNN [100] for
25 recognised categories and an identical number (750 = 25× 30) of input features for all
models.

We note that using accurate GMMs with many parameters for classification is taxing
not only on the runtime but also the memory footprint of the DSP. As exemplified in
the DSP.Ear system from Chapter 3, we were forced to reduce the number of models
deployed there to comply with the memory constraints. Using a scalable classifier such as
the DNN eliminates the need for selective CPU offloading, it enables the DSP to operate
independently from the CPU and execute a full pipeline of high complexity in real time.

4.4.5 Cloud partitioning results

In this experiment we investigate the benefits of DNN-based inference usage with respect
to cloud offloading. To set up the experiment we consider a speech recognition scenario
where a set of keywords need to be detected from voice on the mobile device. A common
DNN approach adopted in speech processing [70, 100] is repeatedly invoking the DNN feed-
forward stage on short segments, such as once every 10ms in a keyword spotting app [70],
and then performing post-processing on the sequence of extracted DNN scores for obtaining
the final inference, such as the probability of encountering a keyword. In Figure 4.4.4b

82 4.5. MULTI-TASK AUDIO DNNS WITH SHARED HIDDEN LAYERS

0 20 40 60 80 100
Remote classifications (%)

3.8
3.9
4.0
4.1
4.2
4.3
4.4
4.5

E
n
e
rg

y
 (

J) GMM

6 20

(a) GMM cloud offloading

0 20 40 60 80 100
Remote classifications (%)

3.8
3.9
4.0
4.1
4.2
4.3
4.4
4.5

E
n
e
rg

y
 (

J) DNN

(b) DNN cloud offloading

Figure 4.4.4: Energy footprint of a speech recognition inference model based on GMMs or
DNNs when a proportion of the classifications are performed in the cloud. For the GMM
case a zoom-in for the 6% to 20% partition range is also provided. A DNN with 3 hidden
layers and 128 nodes per layer is invoked every 10ms similarly to Chen et al. [70], whereas
15 GMMs with 128 components are used once every second. Experiment duration is 15
seconds with a WiFi connection assumed (5Mbps uplink). DNN usage allows for a graceful
reduction in the energy consumption unlike the choppy GMM offloading.

we demonstrate that the high frequency of DNN propagations facilitates cloud offloading
decisions to be performed at a fine level of granularity with a graceful reduction in the total
energy consumption when a larger proportion of the DNN inferences are performed in the
cloud.

In contrast, a GMM-based approach would usually increase the total amount of time acous-
tic observations (features) are accumulated before resorting to an inference. This together
with the overhead of evaluating the probability of multiple GMMs (e.g. one per keyword)
for a single inference, lead to the much choppier falls in the energy consumption for this
model when a percentage of the GMM computations are offloaded to the cloud, as illus-
trated in Figure 4.4.4a. This phenomenon is portrayed in Figure 4.4.4a with the saw-like
shape of the energy curve. We highlight that such a curve is harder to control to a specific
energy budget. Situations where a certain number of the per-class GMM inferences need to
be performed remotely may often be encountered because of latency/resource constraints,
for instance, which introduces the above mentioned local-remote split inefficiencies. The
DNN energy curve with a smoother gradient is therefore largely preferable.

4.5 Multi-task audio DNNs with shared hidden layers

The previous sections demonstrated the accuracy and resource efficiency benefits of ap-
plying small-footprint deep learning models to audio sensing tasks in common usage. We
have studied techniques that enable each individual task to be optimised separately, but
multiple continuous audio applications are routinely required to be deployed together in

CHAPTER 4. DSP-OPTIMISED DEEP AUDIO SENSING 83

embedded systems. Examples of such related tasks were given in Table 1.4.1 of Chapter 1.
In this section we investigate ways in which deep learning can be exploited for the benefit
of multiple concurrently running audio analysis tasks.

We propose a novel approach to modelling the multiple audio analysis tasks that is based on
multi-task deep learning. It results in a degree of shared hidden layers between each task,
depending on the cross-task impact on accuracy, and memory/computational constraints
of the embedded target platform. This has multiple benefits:

• the potential for supporting a larger number of inference tasks through a shared
representation that complies with embedded memory constraints;

• the advantage of fitting bigger and potentially more accurate networks with more
parameters instead of compromising model size to make room for multiple models;

• a substantially reduced runtime and energy facilitated by the evaluation of a single
shared model as opposed to performing multiple classifications separately.

We find that multi-task learning successfully integrates tasks while preserving accuracy due
to their similar structure and lower complexity (relative to other audio tasks like speech
recognition).

Building shared representations and deploying them on the embedded device is preceded
by an offline training optimisation step the purpose of which is to determine a deploy-
ment configuration, or what combinations of tasks should be integrated to have a shared
representation and what would the DNN model sizes be given the memory constraints.
A configuration results in some subsets of tasks having a shared representation (possibly
all), while others might end up with individual models. The final chosen configuration is
subject to change depending on the goal of the deployment; typically we strive for the most
accurate, energy efficient and fastest configuration.

The rest of this section describes the most salient points of the shared-layer training ap-
proach, and then outlines the offline optimisation process that prepares a multi-task con-
figuration for constrained use on embedded hardware. The section concludes with a com-
prehensive evaluation of the resource efficiency advantages of the multi-task framework.

4.5.1 Simplified architecture by sharing layers

Figure 4.5.1 portrays an example architecture of the proposed multi-task audio Deep Neural
Network (DNN). In this figure, all tasks are shared; although the decision to integrate all
tasks into a single network is left as a hyper-parameter decision based on how accuracy of
each tasks varies when tasks are combined.

In our architecture, the input and hidden layers are shared across potential combinations of
audio analysis tasks. These layers can be considered as a universal feature transformation
front-end that captures acoustic observations. The softmax output layers of tasks that are

84 4.5. MULTI-TASK AUDIO DNNS WITH SHARED HIDDEN LAYERS

Input Layer

Hidden Layers

Shared feature
representation

Audio task 1 Audio task 2 Audio task 3 Audio task 4

Figure 4.5.1: Architecture of the multi-task DNN.

combined are not shared, but each audio sensing task has its own softmax layer that acts
as a classifier that estimates the posterior probabilities of the sound categories specific to
each audio analysis task. Any task that is not determined to be joined within shared layers
remains as a separate network within the collection.

The key to the successful learning of the multi-task DNN is to train the model for all
the audio tasks simultaneously. We adopt minibatch Stochastic Gradient Descent (SGD)
where each batch contains samples from all training data available. To accomplish this
we randomise the samples across audio tasks before feeding them into the DNN train-
ing procedure. Each minibatch contains stratified samples, i.e. the larger datasets cast
proportionally more samples.

The fine-tuning of the multi-task DNN can be carried out using a conventional backprop-
agation algorithm. However, since a different softmax layer is used for each separate audio
sensing task, the algorithm is adjusted slightly. When a training sample is presented to
the multi-task DNN trainer, only the shared hidden layers and the task-specific softmax
layer are updated. Other softmax layers are kept intact. The entire multi-task DNN and
its training procedure can be considered as an example of multi-task learning. After being
trained, the multi-task DNN can be used to recognise sounds from any task used in the
training process.

Since the shared layers represent a form of feature transformation that is trained end to
end with multiple datasets, eventually all the network parameters contribute to the learnt
hidden structure. As such, all nodes and connections are required in the classification
process.

CHAPTER 4. DSP-OPTIMISED DEEP AUDIO SENSING 85

4.5.2 Optimising the multi-task configuration

Prior to placing a multi-task configuration on the embedded platform, we perform an
offline optimisation step that aims to decide the level of integration of the various tasks
– a shared representation may be built for only a subset of the tasks if the accuracy is
critically impacted otherwise. A deployment configuration consists of the set of DNN
models (shared and/or individual) that cover the range of inferences supported by the
audio sensing tasks. The optimisation process is guided by a set of hyper-parameters that
control the search space. Depending on the end goal or required level of accuracy for each
task, one deployment configuration may be preferred over another at different times. The
hyper-parameters are:

• accuracy criterion – it compares a list of accuracies against another one. Each candi-
date deployment configuration has an associated list of accuracies as observed on the
validation sets for each audio task. At the end of the training optimisation process,
the configuration that is best according to the criterion is chosen. Example criteria
are picking the candidate configuration that gives the highest average accuracy, or
selecting the configuration that minimises the mean accuracy loss across tasks.

• network topology – it specifies the overall deep neural network layout but not the exact
size of the model. By default, we explore DNNs with hidden layers each of which
has an identical number of nodes. This topology has proven effective in a variety
of audio analysis tasks such as keyword spotting [70], and text-dependent speaker
verification [182]. We vary the number of nodes per layer, but to limit the search
space we constrain the numbers to being powers of two. Typical small-footprint
networks trained for embedded devices feature 128 [70], or 256 [182] nodes in one
hidden layer. Models in a single configuration generally can have different network
sizes unless they share the layers. In our experiments to reduce the search space we
exploit same-size topologies for both the shared and individual models.

• embedded memory limit – the total size of the DNNs in a configuration is largely
constrained by the maximum amount of memory that can be used at runtime. Au-
dio tasks that perform continuous sensing are typically deployed on a low-power
co-processor (e.g., the Qualcomm Hexagon DSP) that runs its own real-time OS
and operates independently from the power-hungry general-purpose CPU. A promi-
nent limitation is the amount of runtime memory available to such low-power units.
To maximise energy efficiency we would want to maintain the co-processor opera-
tion largely independent of the CPU, and use its own memory without resorting to
interactions with the CPU for processing or parameter transfers. We use this hyper-
parameter as a leading constraint, any configuration for which the DNN models
exceed the memory limit is discarded by the multi-task optimisation process.

• combination search policy – this parameter restricts the search space to the explo-
ration of certain types of configurations in an attempt to speed the optimisation

86 4.5. MULTI-TASK AUDIO DNNS WITH SHARED HIDDEN LAYERS

t1 t2

t3

t1 t2 t3

t1 t2 t3

t1 t2t3

t1t2t3

Figure 4.5.2: Different deployment configurations for 3 audio analysis tasks (t1, t2, and
t3). We can have independent models for each task (left), all tasks can share the layers
of the DNN (middle), or we can deploy a pair of tasks with a shared representation and a
task with an independent model (right).

process. When the number of audio analysis tasks is small, the search policy could
simply be a brute-force exhaustive search, which is what we adopt by default. With
the increase in number of tasks, the search space grows exponentially. With a to-
tal of three related tasks the number of different combinations is five as shown in
Figure 4.5.2 – one possibility is having a shared representation across all tasks; an-
other one is having individual models for each task as is common practice; there are
also 3 configurations where two of the tasks share the hidden layers of a DNN, and
one is separate. An example policy to restrict the search space is to explore only
configurations that have no more than 2 DNNs in total across tasks.

The optimisation process works as follows. For each combination of tasks in our search
policy we build various sized networks of the topology supplied as a hyper-parameter.
We train the DNNs and obtain for each audio analysis task the accuracy observed on its
validation set. Given that the configuration complies with the memory limit, we use the
accuracy criterion to compare the current configuration with the best one found so far.
At the end, we have one configuration that defines how audio analysis tasks are combined
with the sizes and parameters of the DNN(s).

CHAPTER 4. DSP-OPTIMISED DEEP AUDIO SENSING 87

4.5.3 Multi-task classification efficiency

We now study the performance benefits of using DNN architectures with shared hidden
layers for sound classification as opposed to models built separately for each audio sensing
task. The most prominent results from our experiments are:

• Accuracy robustness to multi-task mixing. Multi-task audio inference performs sur-
prisingly well when various combinations of related but distinctly different tasks are
mixed together to have a shared representation. On average across multi-task con-
figurations we never observe accuracy drops larger than 1.5% compared to the best
performing similarly sized individual models.

• Improvements to runtime, energy and memory. When sharing the models across
different combinations of audio tasks, the performance gains in terms of reduced
runtime and memory footprint are on average 2.1 times.

• Scalability to number of integrated tasks. With our multi-task optimisation frame-
work, classification efficiency scales extremely well with the number of related tasks
that are mixed together. Due to the high degree of sharing with n audio tasks the
gains in runtime, energy and memory are almost n-fold in the best case when all
tasks are combined. Critically, this often comes with little to no loss in accuracy.

Accuracy. A key issue accompanying the many techniques that typically compress DNN
model sizes is the extent to which the original model accuracy is changed. Often, perfor-
mance benefits in the runtime dimension go hand in hand with accuracy drops that may
or may not be acceptable. In this case, however, we observe that training shared-hidden-
layer DNNs does not compromise accuracy when pairing different combinations of audio
analysis tasks, i.e. the accuracy remains comparable with no significant reductions. In
fact, as demonstrated in Table 4.5.1, for some of the audio sensing tasks there are even
tangible accuracy boosts when using all tasks to train a shared DNN. For instance, the
Stress Detection score raises from 80.7% to 85.4%, and the Emotion Recognition from
81.5% to 83.4%. This phenomenon can be explained by the fact that the DNN shared hid-
den layers are non-trivial feature transformations that summarise the audio input: using
multiple datasets simultaneously results in overall more data being used to learn discrimi-
native feature transformations. The multi-task transfer learning is especially beneficial for
the smaller datasets such as the Stress Detection and Emotion Recognition ones, where
the learning process is augmented with audio knowledge (training samples) from other
datasets.

Note that if we were to reduce the network size to fit all models in scarce DSP memory, we
would typically pay the price of lower accuracy. Instead, having a shared network model
allows us to use a much larger model within the same amount of space and with the same
number of concurrent sensing tasks, without the need to compromise accuracy because of
hardware constraints.

88 4.5. MULTI-TASK AUDIO DNNS WITH SHARED HIDDEN LAYERS

Single DNN Max-task DNN Average Mixing Accuracy

Speaker Identification 85.8% 85.1% 84.7% (±1.2%)
Emotion Recognition 81.5% 83.4% 85.8% (±1.6%)

Stress Detection 80.7% 85.4% 83.3% (±2.0%)
Ambient Scene Analysis 85.2% 84.8% 83.7% (±1.0%)

Table 4.5.1: Accuracy of the multi-task DNN models with shared hidden layers compared
against individually built models. In all cases the DNN structure has 3 hidden layers with
512 nodes per layer. All DNNs are trained with the same hyper-parameters and the same
number of epochs. The Max-task DNN combines all audio analysis tasks. The average
mixing accuracy shows the mean performance when the corresponding audio task is mixed
with the other tasks in pairs or triples. Numbers in brackets show the standard deviation.

All Single Shared
0.0

0.2

0.4

0.6

0.8

R
un

tim
e

(s
)

(a) Runtime

All Single Shared
0

10

20

30

40

E
ne

rg
y

(m
J)

(b) Energy

Figure 4.5.3: Runtime and energy for performing DNN classification on the low-power
Hexagon DSP when all single models (All), a single model (Single), or the DNN with
shared hidden layers (Shared) are run. Single models are run sequentially where each
model does each task separately, and the shared one leverages the multi-task design to
output all inferences.

Runtime and energy reductions. The total runtime and energy for performing audio
classification for several tasks with a shared DNN is comparable to that of evaluating a
single DNN model for one task. For example, the runtime and energy spent cumulatively
for all tasks can be up to 4 times less when using a 4-task DNN with shared hidden layers
as can be seen from Figures 4.5.3a and 4.5.3b. On average the performance improvements
when pairing different subsets of the audio analysis tasks are 2.1 times as illustrated in Ta-
ble 4.5.2. When combining pairs of tasks, for instance, there are 12 different configurations
that can be explored – 6 of these configurations feature a paired DNN plus 2 individual
networks, and the other 6 consist of 2 coupled DNNs both with shared hidden layers.
On average for these configurations inferences are obtained approximately 1.7 times faster
while also critically consuming that much less energy for the computation. These massive
reductions in the runtime and energy footprint of the audio tasks are possible because the
majority of the compute time for the DNN forward propagation is spent in the hidden
layers. The softmax output layer typically has much fewer nodes which match the number

CHAPTER 4. DSP-OPTIMISED DEEP AUDIO SENSING 89

Single Pairs Triples Quadruple Global

Reduction factor 1.0x 1.7x 2.0x 4.0x 2.1x
of configurations 1 12 4 1 18

Table 4.5.2: Total average reductions in the runtime and energy when the audio tasks are
combined in pairs, triples, or quadruples. Total number of different configurations is 18
with an average reduction of 2.1 times across all configurations.

3 hidden layers 3 hidden layers 3 hidden layers
256 nodes each 512 nodes each 1024 nodes each

Single 0.73MB 2.6MB 9.2MB
Shared 0.80MB 2.7MB 9.4MB

All 2.92MB 10.4MB 36.8MB

Table 4.5.3: Memory required by the various DNN models as a function of the size of the
hidden layers.

of inferred sound categories, and is just one out of the multiple layers of the deep network
architecture.

A prominent result that can be extracted from these observations is that using joint rep-
resentations across audio tasks scales extremely well with the increase in number of tasks.
As demonstrated, for n tasks the expected performance gains are n-fold in the best case
when our optimisation process decides to integrate all tasks. More importantly, we have
also shown this coupling of models can be achieved with very little to no loss in accuracy
across the audio analysis scenarios despite their largely disparate types of inferences made.

Memory savings. In terms of memory, a 4-task DNN with hidden layers can occupy up
to 4 times less space compared to laying out the parameters for multiple individually built
networks. The total amount of memory occupied by this space-optimised DNN is 2.7MB
when the network has 3 hidden layers with 512 nodes each, as shown in Table 4.5.3. If
we were to use single networks that are almost similarly sized for each of 4 audio sensing
tasks, we would need more than 10MB of memory which exceeds the runtime memory limit
of 8MB for the Qualcomm Hexagon DSP. Instead, the shared representation allows us to
save scarce DSP memory resources.

Shared representation vs alternatives. The types of audio analysis tasks closely
match the ones studied by the DeepEar audio sensing system [127] that is deployed on
the same series of Snapdragon embedded platforms. Whereas DeepEar also resorts to a
DSP implementation to enable efficient continuous background sensing, its architecture
is limited in several ways. First, the range of the supported audio inference tasks at
runtime is lower which is a natural consequence of modelling each audio analysis task with
a dedicated deep network model. In its deployment, DeepEar is forced to leave out one
of the investigated four tasks and downsize another just to meet the embedded memory

90 4.6. RELATED WORK

requirements. In contrast, a shared representation is extremely scalable since it allows
an arbitrary number of simple audio sensing tasks to be integrated together, as long as
accuracy is preserved to be sufficiently high. In fact, as we have demonstrated, accuracy
not only remains comparatively the same, for some tasks it can even be superior due to
the advantages of adopting extra training data from related tasks. Further, downsizing
the models as is done by DeepEar may result in unwanted accuracy drops depending on
the complexity of the inferences or the dataset. Our ambient scene analysis task features
a large-scale dataset and supports a much wider range of 19 inference classes compared
to the corresponding 4-class ambient sound classification used by DeepEar. We find that
a similarly sized DNN (3 layers with 256 nodes each) trained identically, and adopting
the best performing filter bank summaries as input, on this more comprehensive dataset
would yield an accuracy of 82% which is lower compared to the shared-layer alternative we
propose here (84.8%). Finally, the shared model representation enables the total inference
time and energy consumption to be about 2 to 3 times lower compared to DeepEar. Our
findings suggest that new cross-task modelling approaches such as the one introduced here
are necessary to overcome limits of mobile hardware.

4.6 Related work

The DNN classification engine we built for the DSP of mobile SoCs is most closely related to
two active areas of deep learning research: optimising deep models for embedded platform
constraints and forms of multi-task learning for deep neural networks.

In particular, due to memory being a key bottleneck for embedded systems and deep models
considerable efforts are under way to investigate different forms of model compression. A
common approach is to use SVD to approximate matrices such as those that describe the
weights between layers, usage of these methods for audio modelling have been common
for quite some time [191, 103]. Related approaches use hash functions to also aggregate
parameters [71] and as well as use forms of quantisation towards similar ends [96]. Instead of
approximating the network architecture, alternative methods seek to prune the connections
of the network determined to be unimportant [102]. However, collectively these methods
sit as complementary to the ones we explore here. We study a framework that 1) replaces
traditional models used in mobile sensing (i.e. GMM, DT) with DNNs, and 2) replace
multiple networks with fewer networks that perform more than one task through multi-
task learning as a means to reduce resource consumption at inference time. Therefore,
any of these approaches for optimising a single network also remain applicable to our
framework.

We are not the first to attempt to train a deep network with a shared set of hidden layers
that is able to support multiple learning tasks. However, we were unable to find prior
examples of this multi-task learning being used to overcome the limits of embedded hard-
ware. Motivations related to model robustness have been known for quite some time;

CHAPTER 4. DSP-OPTIMISED DEEP AUDIO SENSING 91

empirical findings demonstrate for instance exposure to related – yet still distinct – infer-
ence tasks can lead to the learning of robust features and assisting in the generalisability
of the whole model. Domains where such results are seen include: multi-language audio
discrimination [111] and information retrieval tasks [139]. In Collobert and Weston [77], a
deep multi-task learner is shown that provides inferences including: parts-of-speech tags,
named entity tags, semantic role assignment. This approach has also proven to be effective
in blending complementary objectives towards final discrimination; one example of this
being Li et al. [133] where image segmentation and saliency detection are treated as two
tasks within a multi-task deep framework for salient object detection. Although adopting
such techniques does not always lead to a reduction in network footprint, that is necessary
to reduce resource consumption – for example, when non-shared task-specific components
of the architecture are larger than those that are shared. For this reason, we examine an
approach where shared layers dominate, which maximises the reduction in resource usage
(like memory), and in terms of accuracy simply attempt to match the levels seen in models
with an identical architecture but focused on a single audio analysis task.

4.7 Conclusions

In this chapter, we have investigated the potential for techniques from deep learning to
address a number of critical barriers to mobile sensing surrounding inference accuracy, ro-
bustness and resource efficiency. Significantly, we performed this study by implementing
a DNN inference engine by broadly using the capabilities of modern mobile SoCs, and
heavily use the DSP. Our findings showed accuracy boosts, likely increases to inference
robustness, and acceptable levels of resource usage, when DNNs are applied to a variety
of mobile audio sensing tasks such as emotion and speaker recognition. Furthermore, we
highlighted beneficial resource characteristics (e.g., class scaling, cloud offloading) missing
from models in common use today (e.g., GMMs). In addition to all these base model
benefits, we discovered that extensions to deep learning techniques can be applied for even
larger performance gains when multiple related audio analysis tasks are deployed together
on the DSP. In particular, a multi-task learning approach where DNN representations are
shared among tasks affords significant opportunities to increase inference-time resource
efficiency. Our experiments showed, on average, a 2.1 times reduction in runtime, energy,
and memory is possible under our multi-task framework when assuming common combi-
nations of four typical audio analysis inferences. Critically, we demonstrated that for the
modest-scale DNNs able to be supported in representative low-power DSP hardware this
approach does not reduce accuracy for any tested audio analysis task, despite such resource
gains.

This chapter is a step towards understanding how deep learning can be used in mobile
contexts and provides a foundation for more complete studies. It explored deep-learning-
based algorithm specialisations targeted at a low-power co-processor, but more research

92 4.7. CONCLUSIONS

is needed to understand how other processors can be optimally exploited to benefit from
deep learning and other techniques in common mobile sensing usage. This is the focus of
Chapter 5 that turns to the GPU for audio sensing offloading.

Chapter 5

GPU sensing offloading

5.1 Introduction

The latest in mobile hardware boasts a range of heterogeneous processors, from CPUs to
DSPs and GPUs. The relative recency of such prominent mobile resource diversity coupled
with programmability challenges, however, has precluded comprehensive exploration of
how different types of computation on these processors would benefit mobile apps. In
the previous chapter we made an attempt to lower the barrier for the adoption of low-
power DSPs for complex deep-inference audio sensing tasks. Specifically, we implemented
a processor-specialised deep learning engine that can execute algorithms constrained in
time and space to match the DSP hardware. In this chapter we continue our investigation
into building mobile sensing algorithms targeted at a concrete heterogeneous resource: we
turn to the exploitation of the mobile GPU.

GPUs are the method of choice for executing high computational loads and accelerating
compute-intensive applications in domains such as computer vision [185, 72, 112] and deep
learning [38, 52, 181]. But GPUs like any complex processor architecture need to be used
smartly to maximise their throughput and efficiency. There have been extensive studies
for graphics and games [185, 112, 185, 158] including mobile [72], but analysis has largely
ignored other general-purpose GPU computations on a mobile device such as audio apps
that rely on the power-hungry microphone sensor.

Computational offloading to cloud [75] or low-power co-processors, as we have done in
the previous two chapters with DSP.Ear and our deep audio inference engine, are obvious
solutions to try and keep audio apps functional on the mobile device. However, it is not
immediately obvious whether accelerating these sensing apps via GPU offloading will result
in energy-justified performance boosts compared to the alternatives. Questions that we
investigate in this chapter are: What trade-offs do we get in terms of speed and energy if
we express audio sensing algorithms in a GPU-compliant manner? How can we best take

93

94 5.1. INTRODUCTION

advantage of the general-purpose computing capabilities of mobile GPUs to offload audio
processing? When should we prefer GPU computation to a resource such as a low-power
DSP or cloud?

In this chapter we present a GPU offloading engine that leverages parallel optimisation
techniques that allow us to auto-tune the performance of audio routines. Without such
optimisation, naively parametrised GPU implementations may be up to 1.5 times slower
than multi-threaded CPU alternatives, and consume more than 2 times the energy of cloud
offloading. To the best of our knowledge, we are the first to identify generalisable GPU
parallel optimisations that are applicable across multiple algorithms used in audio sensing.
Previous efforts [197, 97] have focused on isolated use cases with techniques heavily relying
on the specifics of the concrete application scenario (e.g., automated speech recognition).

Chapter outline. We begin the chapter by discussing the general GPU execution model
and highlighting the challenges in deploying audio sensing apps in Section 5.2. Section 5.3
briefly describes our GPU audio optimisation engine, and Section 5.4 details our perfor-
mance tuning techniques. Key audio-specific structural and memory access parallel pat-
terns are introduced here to allow us to automatically tune the GPU performance boost
of audio pipelines. These patterns 1) increase the data parallelism by allowing a larger
number of threads to work independently on smaller portions of the audio input stream;
and 2) strategically place data needed by the threads into GPU memory caches where
access latency is lower and the data can be reused.

Section 5.5 elaborates on some of the implementation details. In Section 5.6 we extensively
evaluate our framework to find that for time-sensitive audio apps, and when energy is less of
a concern, there is no better option than using GPU optimised audio routines. Algorithms
tuned for the GPU can deliver inferences an order of magnitude faster than a sequential
CPU deployment, and 3.1 or 6.5 times faster than cloud offloading with good connectivity
for deep audio inferences such as Speaker Identification and Keyword Spotting, respectively.
Perhaps more surprising, for tasks that are more continuous but tolerate short delays (of
10-20 seconds) GPU is also the best choice. When raw data is accumulated for batched
processing, algorithms optimised for the GPU begin to consume less energy than both cloud
offloading with fast connections and a low-power DSP. The batching delays are sufficiently
short to support the operation of not only life-logging style behaviour monitoring apps that
tolerate large delays, but also apps that deliver context aware services and notifications
such as conversation analysis [94, 130].

Section 5.7 discusses major issues concerning our design, whereas Section 5.8 outlines re-
lated work. We conclude the chapter with a short summary of contributions in Section 5.9.

CHAPTER 5. GPU SENSING OFFLOADING 95

Work Item

Work Group ND Range

SP

Waves

Figure 5.2.1: OpenCL thread model and a GPU Shader Processor. The SP features 2
waves of 8 work items each, it can run 16 threads in total simultaneously. The work items
of one work group are executed on a single SP.

5.2 GPU execution model and challenges

In this section we will elaborate on the GPU execution model and highlight some of the
challenges it presents for audio sensing. We use OpenCL’s terminology [42] and Qualcomm
Adreno GPU [2] as an example for GPU architecture and programming model, but our
discussion and conclusions apply equally to other GPU platforms, such as NVIDIA with
CUDA [37].

To an OpenCL programmer, a computing system consists of a host that is traditionally
a CPU, such as the Snapdragon 800 Krait CPU, and one or more devices (GPU) that
communicate with the host to perform parallel computation. Programs written in OpenCL
consist of host code (C API extensions) and device code (OpenCL C kernel language) –
communication between the two is performed by issuing commands to a command queue
through the host program space. Example commands are copying data from host to device
memory, or launching a kernel for execution on the device. Kernels specify the data-parallel
part of the program that will be executed by the GPU threads. When a kernel is launched,
all the threads execute the same code but on different parts of the data.

Thread model and compute granularity. All the threads generated when the kernel
function is called are collectively known as a grid (or ND Range) and are organised in a
two-level hierarchy independently from the underlying device architecture. Figure 5.2.1
illustrates this organisation. The grid consists of work groups each containing a set of
threads known as work items. The exact thread scheduling on the GPU is decoupled from
the work groups and is vendor specific although it shares a lot of similarities among GPU
varieties. Switching from a group of work items to another occurs when there is a data
dependency (read/write) that must be completed before proceeding and is done to mask
these IO latencies.

One of the challenges of implementing GPU-friendly algorithms is providing the right level

96 5.3. OPTIMISATION ENGINE OVERVIEW

of work item granularity. If the GPU threads are too few, the GPU will struggle with hiding
memory access latency due to not being able to switch between compute-ready threads
while others are stalled on a memory transaction. Audio sensing algorithm execution
revolves around the analysis of frames, and a natural candidate for data parallelisation
is to let each work item/thread analyse a frame. However, the number of frames in an
inference window is on the order of tens to hundreds, whereas the GPU typically requires
thousands of threads for any meaningful speedups to begin to appear. A challenge is
organising the audio algorithm execution in a way that allows more work items to perform
computation.

Managing memory-bound audio kernels. Work items have access to different memory
types (global, constant, local/shared, or private) each of which provides various size vs.
access latency trade-offs. Global memory is the largest but also the slowest among the
memories. Private memory is exclusive to each work item and is very limited in size,
whereas the shared memory is larger and accessible by all work items in a group. Often,
a compute to global memory access (CGMA) ratio is used as an indicator of the kernel
efficiency – the higher the ratio is, the more work the kernel can perform per global memory
access, the higher the performance.

Typical algorithms used in audio sensing need to read a large number of model parameters
which they apply to the frame data, but the number of floating point operations per read is
relatively low making audio kernels memory-bound. In order to squeeze maximum perfor-
mance out of the mobile GPU (highest speed and thus lowest energy consumed), algorithms
will need to reduce the global memory traffic by intelligently leveraging the smaller but
lower access latency memories (shared and private). The challenge is enabling appropri-
ate memory optimisation strategies that keep the CGMA ratio high while maintaining a
suitable level of granularity for the work items.

Summary. GPUs are a powerful platform for general-purpose computing programmed
by language abstractions such as OpenCL and CUDA. An unanswered challenge is how
and what performance control techniques we can leverage that depend on the algorithm
semantics rather than a concrete hardware configuration.

5.3 Optimisation engine overview

To address the GPU deployment challenges presented in the previous section, we build a
library of OpenCL auto-tunable audio routines that form the narrow waist of audio pro-
cessing pipelines found in the mobile sensing literature (e.g., filter bank feature extraction,
GMM and DNN inference). This library builds upon a set of structural and memory ac-
cess techniques that expose a set of tunable audio model-dependent control-flow parameters
which we can control in a pre-deployment step with an optimisation engine. The goal of this
engine is to provide the best match between the domain-specific library implementation

CHAPTER 5. GPU SENSING OFFLOADING 97

Pattern Type Applicability

fan-out structural GMM, DNN, feature extrac-
tion sub-phases

vectorisation memory access ubiquitous
sliding window memory access DNN, pre-emphasis

tiling memory access GMM, filter banks

Table 5.3.1: Parallel optimisation patterns taxonomy.

GPU

Config

Audio

Algorithm

Library

Model

Parameters

Optimization

Engine

Parameterized

GPU algorithm

instances

Offline

Optimization

Mobile

GPU

1

2

3

Figure 5.3.1: High-level optimisation engine workflow.

and mobile GPU hardware constraints. The engine helps to avoid cumbersome hand tun-
ing, instead automatically parametrises the audio kernel routines with large performance
boosts for some of the algorithms. This requires zero change in the kernel code itself, the
parameters are passed through OpenCL commands as kernel arguments at runtime. A
high-level workflow is illustrated in Figure 5.3.1.

The pre-deployment step is a three-staged process, where the engine first loads as input
audio model parameters such as the DNN layout and queries the GPU device specification
(e.g., GPU shared cache size) in order to be able to estimate optimum values for the
GPU algorithm control-flow parameters. In the second stage, the engine performs the
optimisation step by solving a series of linear and quadratic equations and outputs a
configuration file with GPU-kernel parameter values required by our audio library. The
third stage is loading the values from the locally persisted config file to parametrise the
audio algorithms upon initialisation of concrete sensor apps.

To provide high-performance parallel implementations, we build the techniques listed in
Table 5.3.1 that enable control over the following parameters. Empirically we found that
for memory-bound audio kernels, these provide a sweet spot of tunable but not too complex
parameters with a big impact on mobile GPU performance:

• frame fan-out factor (φ) – defined as the total number of audio frame processing
GPU threads. A higher value results in an increase in the number of concurrent

98 5.4. PARALLEL CONTROL-FLOW OPTIMISATION

threads that can work independently.

• per-thread compute factor (κ) – defined as number of computed output values
per GPU thread. By optimising this the engine attempts to maximise the number
of computations each thread can perform relative to its memory reads and writes
(favouring compute-bound operation instead of memory-bound).

Manipulating the first parameter is achieved in our library through the frame fan-out
structural optimisation pattern. The core idea behind it is to split the audio analysis
so that each GPU thread can work on a subset of the output values extracted from an
audio frame. The second parameter is tightly related to a set of memory access patterns
that reduce expensive global memory traffic and increase the per-thread compute factor.
These techniques are: 1) Vectorisation that consolidates slow global memory reads into a
single load operation which is possible thanks to the sequential nature of accessing values
from the audio stream. In our examples, the engine selects larger read batches and can
fetch into the thread registers up to x values from memory, where x is vendor specific (for
Qualcomm Adreno x = 16, for NVIDIA Tegra X1 x = 4 [40]). 2) Memory Sliding Window
and Memory Tiling : the techniques allow threads to collaboratively load data into shared
memory where this data can be subsequently reused with lower latency to produce multiple
output values. These are critical optimisations since global memory access is arguably the
most prominent bottleneck we observe in the widely used audio classification and feature
extraction algorithms.

5.4 Parallel control-flow optimisation

In this section we detail the structural and memory access parallel patterns that enable
the optimisation engine to parametrise the audio routines in our library. Throughout the
exposition we show how the techniques are applied to the two most popular types of audio
pipelines presented in Chapter 2: GMM-based and DNN-based. As concrete examples
we focus on the computationally more demanding applications the classification models of
which have a large number of parameters and are better equipped to reap benefits from
parallel execution. Namely, these apps are Speaker/Emotion Recognition (GMM-based)
and Keyword Spotting (DNN-based).

5.4.1 Inter- and intra-frame fan-out

This pattern controls the level of data parallelism by allowing a larger number of concurrent
threads to perform independent computations on the input data. We can support such a
mode of operation thanks to the way audio pipelines process frames – repeatedly mixing
the frame samples/coefficient with multiple parameters (GMM mixtures, DNN network
weights). Independent computations are performed not only among different frames but

CHAPTER 5. GPU SENSING OFFLOADING 99

also within a single frame, a phenomenon which we call the frame fan-out. This allows the
total amount of threads, or fan-out factor (φ), to be relatively high. It can be computed as
follows: φ = n∗ν

κ
where n is the number of frames, ν is the total number of output values

per frame, and κ is the number of computed values per GPU thread (per-thread compute
factor). This structural optimisation is applicable across both feature extraction (filter
bank computation) and classification phases. The next two examples illustrate how this
pattern can be applied:

GMM fan-out. The input for this classification phase is the extracted feature coefficients
from all frames. In the Speaker Identification pipeline there are 32 PLP frame features
and a total of n = 500 frames per inference window (one frame every 10ms for 5s). Each
GMM has ν = 128 mixtures each of which computes a probability score by mixing the 32
PLP coefficients from a frame with the parameters (mean and variance) of 32 Gaussian
distributions. With a per-thread compute factor of κ = 1, we could let each OpenCL work
item estimate the probability score for one mixture per frame resulting in a fan-out factor
of φ = 500× 128. We enable the kernel to generate this massive number of work items by
letting them write intermediate scores to global memory and a separate kernel is launched
to sum the scores.

DNN fan-out. Similarly, the input data for the Keyword Spotting DNN classification is
the extracted filter bank energies from the frames. In a 1-second inference window there
are a total of n = 100 network propagations (one per new frame every 10ms). A DNN
kernel computes partial results across all input frames by performing the feed forward
propagation for one layer across the frames simultaneously. Multiple kernels are launched
each of which computes the node activation values for the next layer. With ν = 128 nodes
in the hidden layers we could let each OpenCL work item compute the activation for one
node per frame offset (κ = 1) resulting in a fan-out factor of φ = 100× 128.

The role of the optimisation engine is to provide optimum values for the control-flow
parameters φ and κ. n and ν are determined directly by the audio model specification,
whereas the final value of φ depends on κ, or the amount of work each GPU thread
is assigned. The engine tunes the per-thread compute factor κ since we observe that
maximum GPU performance may not necessarily be reached when parallelism is highest
(the fan-out factor φ reaches its maximum when κ = 1). The memory access patterns
in the following section enable each GPU thread to perform more computation (κ > 1)
relative to the number of its memory reads and writes.

5.4.2 Memory access control

Tuning audio kernel performance with the per-thread compute factor κ is closely related
to how memory access is managed by the threads in a work group. Increasing the number
of computations per thread per global memory access and thus finding optimum values for
κ depends on maximum exploitation of the faster but limited in size GPU memories. We

100 5.4. PARALLEL CONTROL-FLOW OPTIMISATION

frame
data

0 1 2 N-1 N+1N

Work item 1
load

Work item 2
load

Work item 3
loadwork

group

frame
data

0 N+1

DNN
prop

Work item 1
computation

DNN
prop

DNN
prop

Figure 5.4.1: Sliding window example. The DNN activation of one node in the first layer
(denoted by DNN prop) is performed by each work item in a work group. The required
data for one such computation is N frames. The figure explicitly shows the computation
for work item 1 which is performed for 3 frame offsets from the accumulated frame input
data (0 to N − 1, 1 to N , and 2 to N + 1). Each work item in a group can load a part
of the data needed for the DNN layer activation, but will use all data loaded by the peers
in the group, as work item 1 does. A work item computes the activation for one node in
a layer (DNN prop), but since more data is accessible from the collaborative loading, the
item can reuse its parameters to compute the activation for the same node for 3 different
frame offsets.

discuss several key strategies, enabled by the specifics of digital signal processing, to lower
the number of global memory operations. These strategies either 1) batch global memory
transactions into fewer operations, or 2) let the threads in a work group collaboratively load
data needed by all of them into shared memory where access latency is lower.

Vectorisation. When kernels read the input data features or parameters, for instance,
they access all the adjacent values in a frame. As a result, the memory access can be
vectorised and consolidated with vector load operations that fetch multiple neighbouring
values at once from global to private memory. For example, when a thread requires the
32 PLP coefficients from a frame, it can use the OpenCL vloadx operation to issue 2 reads
with 16 values (vload16) fetched simultaneously instead of performing 32 reads for each
coefficient separately.

Shared memory sliding window. Often the input raw audio or feature stream is pro-
cessed in sliding window steps, i.e. the input is divided into overlapping frames over which
identical computations are performed. Example scenarios where this type of processing is
commonly applied are the feature extraction (PLP, MFCC [88]), or the classification of the
feature stream into observed phenomena (as is the case for the DNN Keyword Spotting,

CHAPTER 5. GPU SENSING OFFLOADING 101

Algorithm 1 Shared Memory Use Kernel Template

1: Input: (i) Pointer to input buffer (in), (ii) Pointer to output buffer (out), (iii) Thread local id (lid),
(iv) Thread group id (gid), (v) Shared memory maximum size (max s).

. Collaborative data load:
2: loadOffset ← compute load offset(lid)
3: inputOffset ← compute input offset(gid, lid)
4: shared floatN data[max s] . shared memory declaration
5: if loadOffset < max s then
6: data[loadOffset] ← vloadN(0, &in[inputOffset]) . vectorised

7: barrier(CLK LOCAL MEM FENCE) . wait for all threads to finish loading data
. Shared data processing:

8: for (i = 0; i < x; + + i) do
9: localDataOffset ← compute local offset(lid, i)

10: result ← process(&data[localDataOffset])
11: outputOffset ← compute output offset(gid, lid, i)
12: out[outputOffset] ← result

see Figure 5.4.1). The data overlap is usually quite substantial – the feature extraction
phase for the Speaker Identification pipeline, for instance, uses 30ms frames (240 samples
at a sampling rate of 8kHz) with a 10ms frame rate (an offset of 80 samples) resulting in
a 66% data overlap between subsequent frames. We can exploit this property of the audio
stream processing to let the threads in a work group collaboratively load a larger chunk
from the input spanning samples from multiple frames into shared memory (where access
latency is lower), and let each thread reuse its loaded parameters by applying them against
several offsets from the input. The higher the data overlap for adjacent frames, the larger
the opportunity the threads have to load more adjacent regions with fewer read operations,
and the more computation they can perform per global memory read. The pattern enables
the control of the per-thread compute factor κ by increasing the CGMA ratio of the kernel
operation.

Algorithm 1 shows example kernel pseudo code where the work items cooperate to load data
into shared memory. The key advantage is that each thread can use a single vectorised
fetch which is only a small proportion of the actual data needed from global memory.
Collectively, however, all threads are able to load the data needed by their peers in the
work group. The number of adjacent input regions x over which the threads in a work group
perform computations are limited by the maximum size of the shared memory reserved to
a work group. For Adreno 330 that size is 8KB. The optimisation engine estimates the
maximum x as a function of the model size and shared memory constraints, the pattern
exposes x as the per-thread compute factor (κ = x).

Shared memory tiling. As discussed in the description of the frame fan-out in Sec-
tion 5.4.1, when audio processing pipelines work on a frame they usually produce multiple
output values (e.g., feature coefficients or probability scores) by combining the frame data
with multiple parameters. The procedure can be treated as generalised dense matrix-matrix
multiplication with the two matrices being: 1) an input matrix I(n,d) with n input frames

102 5.4. PARALLEL CONTROL-FLOW OPTIMISATION

tiling
alternatives

shared memory
size = 4

frames

1

N

2

parameters
1 2 M

output (NxM)

1

2

Figure 5.4.2: Tiling example. There are N frame data rows and M parameter columns that
can be combined to yield N×M output values. The shared memory size of a work group
is limited to 4 frame rows or parameter columns in total. There are 2 tiling alternatives.
Alternative 1 fills shared memory by loading data for 2 frames and 2 parameters leading
to 4 computed values in total from the work group. Alternative 2 loads data for 3 frames
and 1 parameter leading to 3 computed values in total.

each of which has d elements (samples/coefficients); and 2) a parameter matrix P(k,d) with
k parameters each of which has dimensionality d. The result of the combination of the two
matrices is a matrix O(n,k) = I(n,d)

⊗
P T

(k,d) where
⊗

can be a generalised operation that

performs a reduction over d elements from the two matrices (a row from O and a column
from P T). Prominent applications of this operation can be found in the computation of the
filter bank coefficients, the GMM mixture probability estimation, and the DNN network
propagation. An example reduction

⊗
used in the GMM classification stage is shown in

the following equation:

oij = −1

2
(gj +

∑
0≤s<d

(xis −mjs)
2vjs) (5.1)

where oij is one element from the output matrix; mj, vj, and gj are the Gaussian parameters
of a mixture component; and xi are feature values from frame i.

The straightforward implementation of a GPU kernel to compute matrix O would be to
let each thread compute one output value oij and load independently an input row i and a
parameter column j. However, a strategy for reducing global memory traffic is to introduce
a model-specific version of tiled algorithms used in matrix-matrix multiplication [121]. The
core idea is to let the work groups of a kernel partition the output matrix into tiles so that
the total data for each tile fits into shared memory. Our goal is to have the threads in a work

CHAPTER 5. GPU SENSING OFFLOADING 103

group collaboratively load both input data and parameters into shared memory in a way
that maximises the number of computations per global memory read. This can be achieved
if the number of computed values ({number of frames} Nf times {number of parameters}
Np) per loaded data is as large as possible for the entire work group. Figure 5.4.2 illustrates
the pattern in operation.

5.4.3 Parameter estimation

Vector size x. The engine selects the vector size for batched memory reads by querying
with OpenCL commands whether the audio kernel can successfully be compiled with the
given value for x. The engine enumerates the possible values for x in descending order and
picks the highest value under which the kernel successfully compiles. Compilation may fail
when the size of the vectorised loads exhausts the thread register space.

Memory sliding κ. Optimising this parameter involves solving a linear equation with
respect to the GPU shared memory size, and input model parameters. If SM is the total
number of values the shared memory can accommodate, SF is the input region size, and
r is the frame offset in number of input values, then the maximum κ is computed in the
following manner: κ =

⌊
SM−SF

r

⌋
+ 1.

Memory tiling κ. The optimisation engine makes a two-staged decision: whether to
activate this pattern and if activated how to best parametrise it. The decision is based on
the type of the model used for audio analysis (filter banks, GMM, or DNN), input model
dimensions (size of the model parameters), maximum work group size, and shared memory
size. The optimisation engine estimates the work group size and an optimum number of
output matrix values each thread in the work group should compute so that global memory
accesses are minimised. This is implemented by solving a quadratic equation with respect
to Nf and Np under the shared memory constraints. In our examples, the pattern would be
activated for the filter banks and GMM computation, but not for the DNN where the size
of the network is prohibitively large for any meaningful subset to be effectively exploited
from shared memory.

Frame fan-out φ and work group size. The engine estimates the fan-out factor in
a final step by reading the specified audio model parameters (e.g., number of frames)
and having κ determined in a prior step. We strive to select the largest work group size
possible. Similarly to vectorisation, this can be done by exhaustively trying to compile the
kernels with values up to the maximum size allowed. Sizes are enumerated in multiples
of the preferred group multiple parameter which can be queried for a GPU with OpenCL
commands.

104 5.5. IMPLEMENTATION

5.5 Implementation

Hardware and APIs. In a manner similar to what we have done in Chapters 3 and 4, we
prototype the audio sensing algorithms on a Snapdragon 800 Mobile Development Plat-
form for Smartphones (MDP) [46] with an Android 4.3 Jelly Bean OS featuring Adreno
330 GPU present in mobile phones such Samsung Galaxy S5 and LG G Pro2. All GPGPU
development is done with OpenCL 1.1 Embedded Profile and we reuse utilities for initialis-
ing and querying the GPU from the Adreno SDK that is openly available [2]. In addition,
we reuse baseline versions of the audio sensing pipelines for the Qualcomm Hexagon DSP
[43] built for DSP.Ear and our deep audio engine. The DSP has 3 hardware threads and
we use the dspCV thread pool library shipped with the Hexgagon SDK to also build mul-
tithreaded versions of these algorithms for the DSP. Interfacing between the CPU and
DSP is done as described in Chapter 3 with the Android Native Development Kit (NDK).
Multithreaded CPU versions are built by using C++11 threads – we leverage the 4 cores
available to the Snapdragon Krait CPU. Again, power measurements are performed with a
Monsoon Power Monitor [34] attached to the MDP. The classifier models are trained with
the HTK toolkit [23] for the Speaker/Emotion Recognition and the Theano python library
[181] for the Keyword Spotting.

Kernel compilation. Building the OpenCL kernels can be done either via reading the
sources from a string and compiling them at runtime or by pre-compiling the source into
a binary. We use pre-compiled binaries that drastically reduce the kernel load time and
that need to be produced once per deployment.

5.6 Evaluation

In this section we provide an extensive evaluation of the parallel optimisations and perfor-
mance of representative audio sensing algorithms when deployed on the mobile GPU. The
main findings are:

• Optimising the control-flow parameters is critical – naively parametrised GPU im-
plementations may be up to 1.5 times slower than multithreaded CPU baselines and
consume more than 2 times the energy of offloading batched computation to the
cloud.

• The total speedup against a sequential CPU implementation for an optimised GMM-
based and a DNN-based pipeline running entirely on the GPU is 8.2 and 13.5 times
respectively, making the GPU the processing unit of choice for fast real-time feedback.
The optimised GPU is also 3 to 4 times more energy efficient than sequential CPU
implementations, but can consume up to 3.2 times more energy than a low-power
DSP.

CHAPTER 5. GPU SENSING OFFLOADING 105

• After a certain batching threshold (10 to 20 seconds) of computing multiple infer-
ences in one go, optimised GPU algorithms begin to consume less energy than cloud
offloading with good throughput (5Mbps and 10Mbps), in addition to obtaining in-
ferences 3.1 and 6.5 times faster for the GMM and DNN-based pipelines respectively.

5.6.1 Experimental setup

Experiments are performed with the display off and the algorithms are executing in the
background, as is typical for sensing apps to operate in such mode. We denote with
Audio Optimised GPU (a-GPU) the output from the optimisation engine as described in
Section 5.3. Throughout the section we use the following baselines.

• CPU sequential (CPU). Our primary baseline implementations have a sequential
workflow implemented in DSP-compatible C.

• DSP sequential (DSP). Our DSP baselines reuse the C compatible sequential CPU
implementations but are run on the DSP via the Qualcomm Hexagon SDK.

• CPU multi-threaded (CPU-m). We implement variants of the pipeline algorithms
where the bottleneck classification stage of the audio pipeline (occupying > 90%
of the runtime in our examples) is parallelised across multiple threads. The GMM
classification is restructured so that each GMM model probability is the unit of work
for a separate thread. We maintain a pool of 4 threads which equals the number of
physical cores of the Snapdragon Krait CPU – adding more threads did not lead to
any performance benefits. The DNN classification is restructured so that the network
propagation step is performed in parallel: each thread processes the activation of one
node in a layer.

• DSP multi-threaded (DSP-m). Similarly to the multi-threaded CPU versions of the
algorithms, we adopt DSP alternatives that parallelise the pipeline classification.
The parallel DSP variants have logically the same threading model as the CPU one,
with the difference that the DSP thread pool size is 3, i.e. it equals the number of
hardware threads. We use the worker pool utility library dspCV which speeds up
the execution for Computer Vision algorithms on the DSP.

• Naive GPU (n-GPU). We add the most naively parametrised GPU implementations
as explicit baselines in addition to showing different parameter configurations. For
all algorithmic building blocks (GMM, DNN, and features) in this naive baseline
category we set the vectorised load factor x = 1, and the per-frame compute factor
to be κ = ν which results in a frame fan-out factor of φ = n.

Again, we build our analysis around the GMM-based and DNN-based computationally
demanding audio pipelines as discussed in Section 5.4.

Energy Measurements. All energy measurements are taken with a Monsoon Power

106 5.6. EVALUATION

Computation Parameters Speed-up Gain
GMM x = 1, κ = ν 3.6x

x = 16, κ = ν 12.8x
x = 16, κ = 1 15.6x
x = 16, κ = 4 (tiling) 16.2x

DNN x = 1, κ = ν 1.8x
x = 16, κ = ν 4.8x
x = 16, κ = 1 13x
x = 16, κ = 5 (sliding window) 21.3x

Filter banks x = 1, κ = ν 1.7x
x = 16, κ = ν 4x
x = 16, κ = 1 6x
x = 16, κ = 2 (tiling) 6.6x

Table 5.6.1: Parameter configuration speed-ups vs. CPU sequential implementation. Lines
in bold show the results for the parameter values found by the optimisation engine.

Monitor attached to our MDP device. By default, the experiments were performed with
a display off, with no services running in the background except system processes. This
reflects the case when GPU offloading is done in the background, as in a continuous sensing
scenario. The power evaluation setup closely matches the one reported by DSP.Ear in
Chapter 3. Each application is profiled separately for energy consumption by averaging
power over 10 runs on the CPU, DSP and GPU.

5.6.2 Pattern optimisation benchmarks

In this subsection we study how the application and parametrisation of the various opti-
misation techniques presented in Section 5.4 affect the GPU kernel runtime performance.
Table 5.6.1 shows different points in the parameter space compared to the engine optimised
configuration.

Pattern speedups. A first observation is that using vectorisation with larger batches
(x = 16) provides a significant boost across all algorithms. The speedup of the most naive
GMM kernels jumps from 3.6 to 12.8 times, the DNN ones – from 1.8 to 4.8 times, and the
filter banks – from 1.7 to 4 times. The success of this simple technique can be attributed
to the fact that the mobile GPU is optimised to efficiently access multiple items with a
single instruction.

Another observation is that increasing the fan-out factor φ by setting κ = 1 provides
tangible runtime boosts. As illustrated, speedups increase from 12.8 to 15.6 times for the
GMM, and from 4.8 to 13 times for the DNN. Interestingly, the higher fan-out provides
benefits even though the number of global memory accesses is raised by issuing writes of
intermediate values to a scratch memory. The reason for this is that the fan-out pattern
prominently increases the total number of work items and as a consequence there are more
opportunities for the GPU to hide memory access latencies – whenever a group of threads
is stalled on a memory read or write operation, with a higher probability the GPU can
find another group that can perform computation while the former waits.

CHAPTER 5. GPU SENSING OFFLOADING 107

GMM full pipeline GMM classification DNN full pipeline DNN classification
DSP -8.8x -8.6x -4.5x -4.0x
DSP-m -3.2x 2.5x -2.1x -1.5x
CPU (runtime) 1.0x (1573 ms) 1.0x (1472 ms) 1.0x (501 ms) 1.0x (490 ms)
CPU-m 3.0x 3.4x 2.8x 2.9x
n-GPU 3.1x 3.6x 1.8x 1.8x
a-GPU 8.2x 16.2x 13.5x 21.3x

Table 5.6.2: Speedup factors for one run of the various pipeline implementations compared
against the sequential CPU baseline. Negative numbers for the DSP variants show that
the runtime is that amount of time slower than the CPU baseline. CPU average runtime
in ms is given for reference in brackets.

Last but not least, the more advanced tiling and sliding window techniques tuned by the
optimisation engine provide noticeable speedup improvements over the straightforward use
of shared memory. The sliding window optimisation boosts the second best DNN kernel
speedup from 13 to 21.3 times, which is also the highest cumulative gain observed across
all algorithms. Optimally parametrised tiling, on the other hand, brings the overall GMM
speedup to 16.2 times and filter banks to 6.6 times. In these cases, increasing κ further
results in suboptimal use of shared memory – since its size is limited, the work items can
fetch only a proportion of the total data they need, the rest needs to be loaded from the
slower global memory into thread registers.

Summary. The engine optimised kernels allow GPU computation to exhibit much higher
performance than naively parametrised baselines. The optimisation techniques can be
ubiquitously applied across multiple stages of the pipelines.

5.6.3 GPU pipeline runtime and energy

We compare our engine optimised GPU pipelines against the baselines listed in Sec-
tion 5.6.1. Table 5.6.2 shows the runtime for running the pipelines on the various pro-
cessing units. The most prominent observation is that the optimised GPU implementation
is the fastest one. For instance, the full GMM and DNN pipelines are 8.2 and 13.5 times
faster than a sequential CPU implementation respectively, an order of magnitude faster.
In comparison, the CPU multi-threaded alternatives are around 3 times faster only. If
the GPU is not carefully utilised, the naively parametrised GPU implementations may be
up to 1.5 times slower than the multicore variants (e.g., DNN pipeline). The reason why
the audio-optimised GPU fares so much better than both multicore CPU and naive GPU
alternatives is because massive data parallelism is enabled by the parallel techniques – the
hundreds of cores on the GPU can work on multiple small independent tasks simultane-
ously and hide memory access latency. This is especially true for the classification tasks
that are 16.2 (GMM) and 21.3 times (DNN) faster than their sequential CPU counterparts.

In Figure 5.6.1 we plot the energy needed by the various units to execute the pipeline
logic repeatedly on batched audio data. For one-off computations the cheapest alternative

108 5.6. EVALUATION

10 20 30 40 50
Batch Size (seconds)

0

5

10

15

20

25
E

ne
rg

y
(J

)

(a) GMM pipeline

1 2 3 4 5 6 7 8 9 10
Batch Size (seconds)

0
2
4
6
8

10
12
14

E
ne

rg
y

(J
)

n-GPU

a-GPU

CPU

DSP

CPU-m

DSP-m

(b) DNN pipeline

Figure 5.6.1: Energy (J) as a function of the audio processing batch size in seconds. Legend
is shared, axis scales are different.

energy-wise is the DSP which can be up to 3.2 times more energy efficient than the opti-
mised a-GPU for the DNN pipeline. Yet, the a-GPU is between 3 and 4 times more energy
efficient than the sequential CPU for both applications. If high performance is of utmost
priority for an application, the GPU is the method of choice for on-device real-time feed-
back – when optimised, GPU offloading will obtain inferences much faster and significantly
reduce energy compared to the CPU.

A notable observation is that as the size of the buffered audio data increases, the a-GPU
begins to outperform energy-wise the low-power DSP. For instance, with batch sizes of 10
and 6 seconds for the GMM and DNN pipeline respectively, the a-GPU provides 1.6 and
1.1 times lower energy and is more than 50 times faster. If applications can tolerate small
delays in obtaining inferences, batched GPU computation will both deliver results faster
than the DSP and save energy.

5.6.4 GPU sensing vs. cloud offloading

Cloud baselines. We compare the performance of the sensing algorithms on the GPU
against the best performing cloud alternatives. For the DNN-style Keyword Spotting
application, the cheapest alternative is to send the raw data directly for processing to
the cloud because the application generates as many features as the size of the raw input
data. For the GMM-style Speaker Identification pipeline, the cheapest alternative is to
compute the features on the DSP and send them for classification to the cloud. However,
this variant is > 10 times slower than computing the features on the CPU. Further, we find
that when sending the features to the cloud, establishing the connection and transferring
the data dominate the energy needed to compute features on the CPU. For this reason, the
GMM cloud baseline in our experiments computes features on the CPU and sends them

CHAPTER 5. GPU SENSING OFFLOADING 109

1 5 10 20 n- a-
0.0
0.4
0.8
1.2
1.6

R
un

tim
e

(s
)

(a) GMM

1 5 10 20 n- a-
0.0
0.4
0.8
1.2
1.6

R
un

tim
e

(s
)

(b) DNN

Figure 5.6.2: End-to-end latency for computing the audio pipelines on the GPU vs cloud.
Numbers on the x axis show throughput in Mbps, and n- and a- refer to n-GPU and
a-GPU.

10 20 30 40 50
Batch Size (seconds)

0
1
2
3
4
5
6
7

E
ne

rg
y

(J
)

(a) GMM

2 4 6 8 10 12 14 16 18 20
Batch Size (seconds)

0
1
2
3
4
5
6
7

E
ne

rg
y

(J
)

n-GPU

a-GPU

1Mbps

5Mbps

10Mbps

20Mbps

(b) DNN

Figure 5.6.3: End-to-end energy as a function of the batch computation size for running
the audio pipelines on the GPU vs cloud offloading. Legend is shared.

for classification to a remote server.

Latency results. In Figure 5.6.2 we plot the end-to-end time needed to offload one
pipeline computation to the cloud and compare it against the total time required by the
GPU to do the processing (including the GPU kernel set-up and memory transfers). We
assume a window size of 64KB and vary the network RTT so that the throughput ranges
from 1 to 20Mbps. Given this, the a-GPU implementation is 3.1 and 6.5 times faster
than the good 5Mbps cloud alternative for the GMM and DNN pipelines respectively.
This comes at the expense of a 1.6 and 1.4 times increase in the energy for a one-off
computation for the two pipeline types respectively. The takeaway is that if speed is
favoured over energy, the GPU should be used for local processing because it will deliver
inference results several times faster than cloud offloading even with good connectivity.

Energy results. In Figure 5.6.3 we plot the total energy required to offload batched

110 5.6. EVALUATION

GMM DNN
0.0
0.2
0.4
0.6
0.8
1.0

E
ne

rg
y

(J
) GMM cloud

DNN cloud

Figure 5.6.4: Energy consumed for one-off computation for the GMM- and DNN-based
audio apps. Checkered bars show energy spent for processing, the rest is GPU tail energy.
Lines show the total energy consumed by cloud offloading for the two apps for a network
connection with an RTT of 104 ms.

pipeline computations to the cloud as a function of the batch size in seconds for which
raw audio data is queued for processing. The most notable outcome is that the a-GPU
competes energy-wise with good connectivity cloud offloading in addition to being multiple
times faster. After a certain batching threshold, the total processing with the optimised
a-GPU consumes even less energy. For instance, unless the network has a throughput of
20Mbps (and an RTT of 25 ms) the GMM-style pipeline starts getting cheaper than the
faster connections after 20 seconds of buffered audio, and the DNN Keyword Spotting
pipeline – after only 10 seconds of audio data. The reason for this phenomenon (batched
processing is less expensive than cloud and one-off computation is not) is that the initial
kernel set-up and memory transfer costs are high, but once paid, the a-GPU offers better
energy per second for audio sensing.

In Figure 5.6.4 we plot a breakdown of the energy for a one-time run of the audio apps on
the GPU to quantify the GPU setup overhead. Overall, the amount of energy spent in the
GPU tail states is over 65% of the total consumption for both applications which confirms
the prohibitively high setup/tear-down GPU costs. With a network that has an average
RTT of 104ms (translating to ≈ 5Mbps throughput), the energy spent by cloud offloading
is less than the GPU setup cost. Unless the audio app is highly sensitive to the runtime,
cloud offloading may provide a desirable trade-off between energy and latency.

Another critical result is that optimising GPU execution is crucial – the naive n-GPU is
more expensive (> 2 times) energy-wise than almost all types of cloud offloading when
batching. With the better but still unoptimised baselines with highest fan-out (κ = 1), the
batching threshold for preferring GPU execution over cloud is higher (e.g., ≈ 14 seconds
for the DNN algorithm), delaying the application response time further than what could
be achieved with the engine optimised version.

Summary. Although cloud offloading has a significant computational lead over mobile,

CHAPTER 5. GPU SENSING OFFLOADING 111

AB FN CR ABG SS
0

20

40

60

80
A

ve
ra

ge
 F

P
S

no GPGPU load

with GPGPU load

(a) Frame rate (FPS)

AB FN CR ABG SS
0

20
40
60
80

100

G
P

U
 lo

ad
 (

%
)

(b) total GPU load

Figure 5.6.5: Average frame rate and GPU load when the games run without and with
additional GPGPU load. Games in the experiment are Angry Birds (AB), Fruit Ninja
(FN), Crossy Road (CR), Angry Birds GO (ABG), and Subway Surfers (SS). Legend is
shared.

the GPU now provides advantages that makes local processing highly desirable – it is
faster, less susceptible to privacy leaks as execution is entirely local, works regardless of
connection speed, and even competes with cloud in terms of energy.

5.6.5 GPGPU and graphics workloads

Here we investigate how GPGPU computations interfere with other GPU workloads such as
those used for graphics processing – will the background GPU computation affect negatively
the user experience? We schedule the execution of the audio sensing pipelines (either
Speaker Identification or Keyword Spotting) to run continuously for a minute on the GPU
while the mobile user is interacting with other applications that are known to strain the
GPU resources, i.e. games. We pick 5 hugely popular Android games with multi-million
downloads and different play styles (Angry Birds, Fruit Ninja, Crossy Road, Angry Birds
GO, and Subway Surfers), and observe the effect GPGPU computation has on the perceived
gameplay quality. To quantify this we measure the average frame rate (frames per second
(FPS)) with GameBench [17] during gameplay over 5 1-minute long runs.

In Figure 5.6.5 we show the aggregate results from the experiments. For all games except
Subway Surfers the GPGPU computation does not change the original frame rates of the
games, although the total GPU load substantially increases. For instance, the render-
heavy racing Angry Birds GO maintains an average frame rate of 30 FPS both with and
without the added audio sensing workload, even though the total GPU load jumps from
44% to 85%. For this and the other three games with similar behaviour (Angry Birds,
Fruit Ninja, Crossy Road), the effect can be explained by the facts that 1) the original
load the games place on the GPU is not too high, 2) GPU rendering is time-shared with
GPGPU computation, and 3) the audio sensing kernels are short-duration (a single kernel
execution never exceeds tens of milliseconds). With the endless runner Subway Surfers,

112 5.7. DISCUSSION AND LIMITATIONS

however, the original average GPU load is already very high (≈ 70%), and adding the
GPGPU computation results in a screen freeze so that the game becomes unresponsive.
This can be attributed to the fact that the OS does not treat the GPU as a shared resource
and there is a lack of isolation of the various GPU workloads. One way to approach this
is introduce OS-level abstractions that provide performance guarantees [172].

5.7 Discussion and limitations

Here we survey key issues related to the applicability of the GPU parallel optimisations
for audio sensing.

5.7.1 Implications

Privacy. Our findings suggest that algorithms optimised for embedded-class GPUs can
bring the much coveted privacy guarantees to devices such as Amazon Echo [4] and Google
Home [20], if the operation remains entirely on the device itself. These assistants respond to
simple home user requests (such as, “turn on the light”), but are known to heavily exploit
cloud offloading. With the help of our techniques doing the processing locally on the GPU
can be done faster than cloud offloading, and without exposing sensitive information to
untrusted third parties.

Servicing multi-app workloads. GPUs will play a crucial role in offloading the sens-
ing workloads of digital assistants as they cannot be serviced by the DSP capabilities
alone. Amazon Echo, for instance, performs multiple audio sensing tasks on a continu-
ously processed audio stream, including: 1) detect the presence of speech vs other sounds;
2) perform spoken keyword spotting (as all commands are triggered by the same starting
word); and, 3) speech recognition, along with additional dialogue system analysis that al-
lows it to understand and react to the command. These tasks collectively are well beyond
the DSP processing and memory capabilities as demonstrated in Chapter 3 with the design
of DSP.Ear; in such multi-app audio sensing scenarios approaching the mobile GPU with
routines that maximise runtime performance and minimise energy consumption is critical.

Energy reductions. Audio sensing algorithms are notorious for their continuous monitor-
ing of the sensor stream. Whereas DSP offloading is massively adopted as the go-to power
reduction approach for apps such as hot keyword spotting, with the increase in number
of concurrent audio sensing services mobile users adopt (e.g., Google Now, Auto Shazam),
the DSP will have to selectively process a subset of the algorithm stages. In multi-app
scenarios, optimally using the GPU as we have done in this work will be instrumental in
keeping the power-hungry CPU or privacy-invading cloud offloading at bay.

CHAPTER 5. GPU SENSING OFFLOADING 113

5.7.2 Discussion

Performance on other mobile GPU varieties. Although it is highly likely there will
be a difference in the exact values for the performance boosts on other GPU models (such
as NVIDIA’s Tegra), we expect qualitatively similar results when deploying the pipelines
there. For example, speedups from the GPU data parallelism will be sufficiently high
to deliver real-time performance for applications that can afford the energy costs. This is
because the optimisations we have performed can be generalised to any OpenCL-compliant
GPU architecture, and do not rely on vendor-specific features.

Parallelising other audio sensing algorithms. The core mechanics behind the optimi-
sation patterns can be applied to other classifiers such as Support Vector Machines (SVM),
and deep learning network topologies such as Convolutional Neural Networks (CNN). This
is because the patterns depend on how the classification is applied to the audio data stream
(in sliding windows, combining model parameters with frame data independently to differ-
ent frame offsets), rather than fully depend on the concrete algorithm implementation.

GPU vs. multicore CPUs. As single-thread performance for microprocessor technology
is levelling off, multiple cores will become major drivers for increased performance [62]
(e.g., up to 61 for Intel Xeon Phi [26]). Developers will likely be faced with similar data
parallel challenges – increasing the total number of concurrent tasks for better utilisation,
and efficiently leveraging memory caches to mask access latency. As OpenCL manages
heterogeneous parallel algorithms transparently from the underlying multicore architecture,
the developed OpenCL-compliant optimisation techniques will prove valuable to multicore
CPUs as well.

GPU programmability. GPUs are notoriously difficult to program – even if the algo-
rithm exhibits data parallelism, restructuring it to benefit from GPU computation often
requires in-depth knowledge about the algorithm mechanics. In fact, automated conver-
sion of sequential to parallel code has been an active area of research [66, 65], but fully
automating the parallelisation process still remains a big challenge. We provide a portable
OpenCL library of parallel implementations of popular algorithms used in audio sensing
(e.g., GMMs, DNNs) and expect developers will either compose their own pipelines by
reusing the OpenCL host and kernel code, or by applying the insights from the parallel
optimisation patterns to their own implementations.

5.8 Related work

Sensor processing acceleration and efficiency. A large body of research has been
devoted to the use of heterogeneous computation via low-power co-processors [160, 140, 175]
and custom-built peripheral devices [183] to accelerate or sustain power efficient processing
for extended periods of time. Little Rock [160] and SpeakerSense [140] are among the first

114 5.8. RELATED WORK

to propose the offloading of sensor sampling and early stages of audio sensing pipelines to
low-power co-processors – the processing enabled by such early units is extremely energy
efficient but limited by their compute capabilities to relatively simple tasks such as feature
extraction. Shen et al. [175] study more complex inference algorithms for continuous
operation on DSPs but with DSP.Ear from Chapter 3 we demonstrate such units can be
easily overwhelmed and often the energy efficiency comes at the price of increased inference
latency.

General-purpose GPU computing. GPUs have been used as general-purpose accelera-
tors for a range of tasks, the most popular applications being computer vision [185, 72, 112]
and image processing [177, 158]. Object removal [185] and face recognition [72] on mo-
bile GPUs have been showcased to offer massive speedups via a set of carefully selected
optimisation techniques. Although the techniques found in the graphics community as
well as in the field of speech processing (fast spoken query detection [197]) address similar
data parallel challenges to what we identify (increasing thread throughput, careful memory
management), these techniques remain specific to the presented use cases.

The GPU implementation of automatic speech recognition based on GMMs [97], for ex-
ample, proposes optimisations that are tightly related to the specific speech recognition
pipeline organisation. Instead, we target general techniques that are applied at the level of
the machine learning model, or the level of organisation related to multiple algorithms for
processing audio data (e.g., computation with overlapping frames). As such, the insights
drawn from our work are directly applicable to a full class of algorithms that build upon
commonly adopted machine learning models in audio sensing.

Packet routing [101] and SSL encryption [113] leverage GPUs to increase processing through-
put via batching of computations, but none of these works is focused on studying energy
efficiency aspects which are critical for battery-powered devices.

GPU resource management. PTask [172] is an OS-level abstraction that attempts to
introduce system-level guarantees such as fairness and performance isolation, since GPUs
are not treated as a shared system resource and concurrent workloads interfere with each
other. The relative difficulty in manually expressing algorithms in a data parallel manner
may lead to missed optimisation opportunities – works such as those of Zhang et al. [195]
and Jog et al. [115] attempt to streamline the optimisation process. The former improves
GPU memory utilisation and control flow by automatically removing data access irregu-
larities, whereas the latter addresses problems with memory access latency at the thread
scheduling level. Both types of optimisations are complementary to our work – we opti-
mise the general structure of the parallel audio processing algorithms, while the mentioned
frameworks tune parallel behavior of already built implementations. Last but not least,
Sponge [109] provides a compiler framework that builds portable CUDA programs from a
high-level streaming language. Instead, we study the trade-offs mobile GPUs provide for
sensing, and build on top of OpenCL which together with the Qualcomm Adreno GPU
dominate the mobile market.

CHAPTER 5. GPU SENSING OFFLOADING 115

5.9 Conclusions

In this chapter we studied the trade-offs of adopting audio sensing routines specialised to
run on a mobile GPU. We devised an optimisation engine that leverages a set of structural
and memory access parallel patterns to auto-tune GPU audio pipelines. As a result, our
optimised GPU routines are an order of magnitude faster than sequential CPU implemen-
tations, and up to 6.5 times faster than cloud offloading with a 5Mbps throughput. We
discovered that with only 10-20 seconds of batched audio data, the optimised GPU begins
to consume less energy than both cloud offloading with good throughput and a low-power
DSP.

The insights drawn in this and the previous chapter can help towards the growth of the
next-generation mobile audio apps that adopt advanced DSP and GPU capabilities for
extreme runtime and energy performance. Despite these considerable gains in accuracy,
runtime and energy, the optimisations were primarily applied at the algorithm level for each
app individually. What is missing from our studies so far is the exploration of scheduling
approaches that automate the process of resolving resource contention among multiple
apps when they share heterogeneous processor time and memory. This is the concern of
the next chapter.

116 5.9. CONCLUSIONS

Chapter 6

Scheduling sensor processing

6.1 Introduction

The previous two chapters explored the potential of customising mobile sensing algorithms
for two heterogeneous processor types, a low-power co-processor and a GPU. Chapter 3
evaluated how sensing systems could efficiently exploit the processor hierarchy to statically
partition sensor execution across resources and reduce their energy consumption to accept-
able operational levels. These optimisations, however, are inherently static in nature: they
target either the implementation of specific sensing algorithms, or a pre-defined distribu-
tion of sensor processing stages across resources. In this chapter we present a scheduling
framework that dynamically places sensor tasks for execution on various processors or in
cloud in response to fluctuations in resource availability and sensor processing load.

We re-examine some key ideas scattered in existing computational offloading approaches
to answer the question: can we maximise resource utilisation from multiple concurrent
sensor apps by better placement of the underlying algorithms across resources and without
compromising app accuracy and responsiveness? A variety of capable scheduling/offloading
approaches have been proposed [154, 80, 150, 116, 176] but they either have different
optimisation goals or have not fully addressed the above question in the emerging context of
concurrent sensor apps with diverse deadlines running on recent off-the-shelf heterogeneous
mobile SoCs.

We introduce LEO – a purpose-built sensing algorithm scheduler that targets specifically
the workloads produced by sensor apps. LEO builds upon the solid body of related work to
demonstrate that further increases in the efficiency of sensor processing without reducing the
app accuracy can be achieved by bringing together four key ideas scattered across existing
systems: 1) full usage of heterogeneous hardware, 2) joint sensor app optimisation, 3)
frequent schedule re-evaluation, and 4) exposing algorithm semantics to the optimisation
model. As a result, LEO is able to optimally offload individual stages of sensor processing

117

118 6.2. SCHEDULING FRAMEWORK OVERVIEW

across the complete range of heterogeneous computational units (viz. the co-processor,
CPU, cloud, and provisionally a GPU). A key innovation in LEO is that all offloading
decisions can be performed on the smartphone co-processor, this enables scheduling to be
low energy and frequently performed. Consequently, LEO adjusts how sensor algorithms
are partitioned across each computational unit depending on fluctuating resources (e.g.,
network conditions, CPU load) in addition to which sensor apps are executing concurrently.
With LEO, the energy and responsiveness trade-offs of sensing algorithms of all apps are
jointly optimised, leading to more efficient use of scarce mobile resources.

Chapter outline. In Section 6.2 we give a bird’s eye view of the scheduling engine execu-
tion, whereas Section 6.3 details the major design components that collectively define the
system. Section 6.4 describes the implementation of the scheduler as well as the interfaces
necessary to access our extensive library of algorithms for feature extraction and classifi-
cation needed for common forms of context inference. We provide a systematic evaluation
of LEO’s overhead and schedule optimality, and a thorough analysis of the system energy
savings under a variety of network conditions and workloads in Section 6.5. We find that
compared to a principled general-purpose offloader that leverages the DSP in addition to
cloud, LEO requires about 7 to 10 times less energy to build a schedule, and still reduces
the energy consumption by up to 19% for medium to heavy sensor workloads. Section 6.6
discusses key issues related to the scheduler design, and Section 6.7 compares our sys-
tem with existing sensor optimisation techniques and orchestrators. Finally, Section 6.8
concludes the chapter with reflections on our contributions.

6.2 Scheduling framework overview

Towards addressing the shortcomings of general computational offloading for sensor app
workloads, LEO is a sensor algorithm scheduling engine that maximises the energy efficient
execution of a variety of sensor apps. LEO is used by developers via a set of Java/C APIs
with a unified interface (see Section 6.4 for details). Through the Java API developers
can specify the sequence of sensing algorithms (e.g., feature extraction, classifier model)
required by their app to collect and process data. In turn, LEO leverages the internal
structure of the sensing algorithms predefined in our library of algorithmic components to
partition the execution of each algorithm across all available computational units (even
conventionally closed DSPs found in smartphone SOCs, along with the CPU, cloud, and a
GPU). Because of the rich portable library of sensing algorithms (ranging from DNNs to
domain-specific features for emotion recognition) LEO is able to support a wide range of
sensor processing (and thus apps).

LEO re-examines several concepts related to scheduling/offloading from previous systems
and re-evaluates them in the context of concurrent sensor apps running on off-the-shelf
heterogeneous mobile SoCs. LEO shows that we do not need to compromise the utility/ac-
curacy of apps or sacrifice their responsiveness in order to gain substantial energy savings.

CHAPTER 6. SCHEDULING SENSOR PROCESSING 119

Sensor Apps

CPU

Sensor Job Buffer

Tasks

Sensing
Workload
Monitor

Accel

Gyro

Mic

GPS

WiFi

3G

CPU

LPU

Network
Profiler

 Resource
Monitor

DSP Sensing
Scheduler

WiFi

3G

DSP

Figure 6.2.1: LEO architectural components.

Instead, maximising resource utilisation can be performed by a smarter distribution of con-
current sensor algorithms with well known semantics across multiple resources. To achieve
this, LEO:

1) considers offloading decisions collectively for heterogeneous mobile proces-
sors and cloud. LEO solves a Mixed Integer Linear Programming (MILP) global resource
optimisation problem that directly targets energy efficiency as its objective.

2) jointly optimises resource use for multiple apps simultaneously. This promotes
cooperation in using network bandwidth or scarce co-processor memory/computation. As
a result, maximising resource use is done across the full sensing ecosystem rather than
leaving individual apps to do guesswork on when resources are busy.

3) exposes the internal structure of the pipeline stages to the offloading engine
for fine-grained energy control. LEO provides a rich set of reusable algorithmic com-
ponents (feature extraction, classification) which are the building blocks of common sensor
pipelines. By leveraging sensor processing specific knowledge LEO decomposes pipelines
into more granular units, orchestrates and interleaves their execution even under tight
latency constraints by working on multiple smaller tasks in parallel.

4) frequently re-evaluates the schedule to remain responsive to sensor process-
ing requests. Sensor apps generate mixed workloads with near real-time and delayed
execution requirements. To provide timeliness guarantees while coping with changes in
network conditions and bursts of generated sensor events such as detected speech, noise, or
motion, LEO computes fast, reactive schedules that are frequently revised. A key enabler
for this is the ability of LEO to run as a service on one of the hardware threads of the
low power DSP where the scheduler solves heuristically the global optimisation problem
mentioned above.

120 6.2. SCHEDULING FRAMEWORK OVERVIEW

6.2.1 Architectural overview

In Figure 6.2.1 we show a birds-eye view of the system architecture and its operational
workflow. The system supports a mixture of near real-time and delay-tolerant sensor
processing apps. The pipeline stages of these apps are typically triggered by sensing events
such as the detected presence of speech from the sensor data streams, or by logic embedded
in the sensor app. Example apps with their trigger contexts are recognising emotions from
voice, or counting the number of steps when the user is walking. Over time and as sensor
events are encountered, the apps generate job definitions which are buffered requests for
obtaining an inference (e.g., detected emotion) from the sensor data. Periodically, the
sensor offloading scheduler, known as DSP Sensing Scheduler, inspects the sensor job buffer
for the generated workload of sensor processing requests, and makes scheduling decisions
that answer the questions: 1) How should the pipelines be partitioned into sensor tasks?
and 2) How should these tasks be offloaded if needed?

Sensing Workload Monitor. A set of binary filters (e.g., “silence vs. noise”, “speech
vs. ambient sounds”, “stationary vs. moving”) comprise the Sensing Workload Monitor
which continuously inspects the sampled sensor data on the Low Power Unit (DSP in our
case) for the presence of relevant events (for triggered sensing apps). Once such events are
detected or in response to the sensor app, job requests are placed in a global queue that
buffers them together with the raw sensor data.

DSP Sensing Scheduler. This component represents the core scheduling algorithm that
decides how the pipeline execution should be partitioned into sensor tasks and where these
tasks should be executed (DSP, CPU, cloud or potentially GPU). The scheduler inspects
the sensor job buffer once every t seconds for processing requests where t is a configurable
system parameter currently set to a short window of 1 second. Queued tasks are period-
ically scheduled and executed before the next period expires. Critically, LEO defines a
mathematical optimisation problem that can be solved frequently and maintains a short
rescheduling interval in order to systematically re-evaluate fleeting optimisation opportu-
nities and remain responsive to apps such as voice activation services with near real-time
requirements. The high levels of responsiveness and frequent on-demand optimisations are
largely enabled by two key design choices. First, the scheduler reorganises the structure of
sensor pipelines to create more modular processing tasks via three key techniques detailed
in Section 6.3.1: Pipeline Partitioning, Pipeline Modularisation, and Feature Sharing. Sec-
ond, the scheduler employs a fast heuristic optimisation solver (based on metaheuristics)
that is executed with an ultra low overhead on the DSP to find a near optimal assignment
of tasks to resources.

Resource Monitor. A Resource Monitor provides feedback to the DSP Sensing Sched-
uler with regard to changing CPU load or network conditions such as connecting to or
disconnecting from a WiFi network.

Network Profiler. Similarly to MAUI [80], a Network Profiler sends a fixed 10KB of data

CHAPTER 6. SCHEDULING SENSOR PROCESSING 121

and measures the end-to-end time needed for the upload. Fresh estimates are obtained
every time the scheduling engine ships data for processing to a remote server. To keep
measurements fresh, profiler data is sent every 15 mins in case no offloading has been
done.

Offline Profiling. Last, an offline app profiler obtains estimates of the energy consump-
tion and latency for each of the app pipeline stages (feature extraction and classification)
measured on the CPU, DSP, and for some algorithms on the GPU. The measurements serve
as an input to the DSP Sensing Scheduler that distributes sensor pipeline tasks across of-
floading resources. The profiling session is a one-time operation performed offline since
the mobile OSs have limited APIs for performing fine grained energy measurements [80]
and only report the percentage of the battery left, largely insufficient to cover the profiling
needs.

6.3 Framework design components

LEO is designed to manage the offloading needs of sensor apps with both near real-time
and delayed deadline requirements. In this section we detail how LEO leverages algorithm
semantics to optimise resource use, and also formally define the optimisation problem that
jointly decides for concurrent apps how to execute their algorithms across resources.

6.3.1 Restructuring sensor app execution

Pipeline Partitioning. Sensing pipelines are decomposed into logical chunks of compu-
tations to increase the granularity of the sensor tasks and enable their more comprehensive
exposure to the offloading components (cloud, DSP, and GPU). This can potentially lead
to more efficient local-remote splits and parallelise execution across multiple resources to
meet the tighter deadlines of near real-time apps.

Our framework exploits the typical structure of audio sensing apps presented in Section 2.2
of Chapter 2 to define the types of sensor tasks distributed across resources. Pipeline
tasks are divided into two primary types: 1) feature extraction, typically represented by a
single task per app; and 2) classification, which may be further decomposed into multiple
identical tasks the output of which is combined by a simple aggregation operation (e.g.,
max, sum). For instance, the inference stage of many of the apps detailed in Chapter 2
is usually organised around multiple class models (GMMs). The Speaker Identification
example is revisited here in Figure 6.3.1a – we have one model for each speaker. During the
classification process, the extracted audio features that summarise the acoustic observations
are matched against each model in turn. The speaker, the model of which with highest
probability corresponds to the features, is the end output of the pipeline. The aggregation
operation for this and other GMM-based pipelines is thus “max”.

122 6.3. FRAMEWORK DESIGN COMPONENTS

Feature
Matrix

Speaker 3 GMM

Speaker 2 GMM

Speaker 1 GMM

Arg
Max

Feature
Extraction

Classification

(a) Pipeline Partitioning

10ms 25ms

FE

Buffered raw data (1 sec)
FE FE FE FE

DNN
Consolidated sensor tasks

FE

DNNDNN

FE FE

DNNDNN

DNN DNN DNN

(b) Pipeline Modularisation

Figure 6.3.1: Sensor pipeline restructuring techniques.

The ways in which signal processing algorithms can be partitioned is predefined in our
library. At runtime LEO decides whether and how to leverage the partition points by
solving a global resource allocation problem and managing cross-resource communication
with custom implemented message passing. As a result, apps that use the algorithms
we offer automatically benefit from efficient task distribution without them knowing the
details of the pipeline execution plan. Further, the decomposition into shorter duration
tasks enables the pipeline stages of concurrent apps to be interleaved – the result being
higher utilisation of the energy efficient but memory-constrained DSP.

Pipeline Modularisation. Partitioning the pipelines into their natural processing stages
increases the granularity at which sensor apps operate. However, depending on the app
subject to partitioning, the technique may sometimes produce a large number of sensor
tasks that unnecessarily pollute the resource optimisation space with a forbiddingly high
number of offloading configurations. The goal of the Pipeline Modularisation is to consoli-
date multiple sensor tasks generated at a high frequency into a single modular computational
unit processed at a reduced frequency.

The DNN-based Keyword Spotting app introduced in Chapter 2 and revisited in Fig-
ure 6.3.1b, for example, generates 100 classification and feature extraction tasks per sec-
ond. This is because it extracts features from 25ms frames, and performs classification
(neural network propagation and smoothing) on a sliding window of 40 frames every 10ms.
This high frequency of computations enables the app to maintain almost instantaneous
responsiveness to detected hot phrases. However, at a small latency price we can reduce
the amount of tasks a hundredfold if we group all feature extractions or classifications in
a second into a modular unit by buffering the sensor data and performing them together
on the accumulated speech samples. Thus, processing is performed at a reduced frequency
once every second, greatly simplifying the search for the optimal task allocation, while at
the same time still maintaining near real-time responsiveness of the app to up to 2 seconds

CHAPTER 6. SCHEDULING SENSOR PROCESSING 123

after the detection of a hot phrase.

Feature Sharing. The pipeline decomposition allows us to register modular identifiable
tasks into the queue of sensor processing requests. Each feature extraction task is identified
by a reference to a position in the sensor stream and the type of features to be extracted
from the raw data. This allows LEO to detect overlapping computations and eliminate
redundancies when multiple apps require the same set of features for their stages deeper
into the pipeline. One example of shared features are the PLP coefficients needed by the
Speaker Identification and Emotion Recognition apps.

6.3.2 LEO optimisation solver

The LEO solver uses the restructured pipeline components as well as data collected by the
Sensor Workload Monitor and Network Profiler as an input to a global joint optimisation
problem that determines which and where sensor app tasks should be offloaded. LEO
solver’s goal is to find a multi-app partitioning strategy that minimises the mobile device
energy consumption subject to latency constraints.

The solver takes advantage of the pipeline reorganisation techniques introduced in the pre-
vious subsection to generate modular sensor task definitions with loose data dependencies :
feature extraction output serves as input to classification and tasks from the same pipeline
stage can be computed in parallel across units. Formally, the DSP Sensing Scheduler solves
a mixed integer linear programming problem (MILP) with relaxed data dependencies con-
straints. The objective is to minimise the total energy consumption for processing all
sensor tasks generated in a time window τ by all actively running sensor apps:

Min
∑
i,q,u

xiqueiqu +
∑
i

Fmem(i, xiqξ)wuplinkpξ (6.1)

where

• xiqu denotes the total number of computations from app i’s pipeline stage q that will
be processed on computational unit u ∈ {CPU, DSP, GPU } (or networked resource
ξ when u = ξ ∈ {3G, WiFi, Bluetooth}).

• eiqu indicates the energy consumed by performing these computations on the resource
u (eiqξ = 0).

• Fmem() is a linear function mapping the number of remotely executed sensor tasks
to the size of the application data needed for network transfer.

• wuplink – most recently estimated uplink speed (Kbps).

• pξ is the estimated average power in mW for performing the network transfer.

124 6.3. FRAMEWORK DESIGN COMPONENTS

The objective expresses the estimated total energy expenditure from performing compu-
tations on the assigned offloading resources plus the energy needed to transfer data for
remote execution. The offloading schedule is subject to the following constraints:

• The total execution time for processing tasks locally (Equation 6.2) and remotely
(Equation 6.3) must not exceed the time window τ :

s.t. ∀u
∑
i,q

xiqutiqu ≤ τku (6.2)

s.t.
∑
i

Fmem(i, xiqξ)wuplink +
∑
i,q

xiqξtiqξ ≤ τ (6.3)

Here tiqu is the time in seconds required by computation of type q to be performed
on computational unit u, and ku is the number of concurrent threads on resource u.

• The total number of sensor tasks offloaded across resources must be equal to the
number of tasks niq(τ) generated by the buffered processing requests in time window
τ .

s.t.
∑
u

xiqu = niq(τ) (6.4)

We note that the typical restructured pipeline computations from our representative exam-
ples can be easily executed with subsecond latencies. As demonstrated in the evaluation
of DSP.Ear in Chapter 3, the feature extraction stages for many apps are already exe-
cuted within a second for both the CPU and DSP. The low latencies enable us to shrink
the offloading window τ to 1 second. This also helps with fast reactive dispatching of
computations that require tight timeliness guarantees (e.g., Keyword Spotting). In our
implementation, although the tasks from apps that do not need near real-time require-
ments are scheduled in a batch with other tasks under tight 1-second constraints, their
actual execution is postponed and rescheduled at a later stage if executing them before the
next rescheduling interval expires means that the power-hungry CPU will be used.

6.3.3 Running the solver on the DSP

The optimisation problem defined in the previous section would typically be solved with
standard optimisation tools such as GLPK [18] or lp solve [30]. However, we observe that
the underlying algorithm that systematically explores the scheduling configurations to find
the optimal solution is too heavy to be performed frequently. In fact, when we set the
time window for buffering processing requests to 30 seconds, and increase the number
of scheduled apps to 9, the algorithm takes seconds to minutes to complete even on the
quad-core Snapdragon CPU. For our aims the general-purpose solver scales poorly with
the increase in number of apps and processing requests. Instead, we adopt a heuristic
algorithm that can be run efficiently on the DSP to constantly re-evaluate a near optimal

CHAPTER 6. SCHEDULING SENSOR PROCESSING 125

Algorithm 2 DSP Sensing Scheduler Heuristic Algorithm

Require: Number of generations n, mutation probability α
1: function HeuristicSearch(n, α)
2: P ← InitialSchedulePopulation()
3: x ← SelectBestSchedule(P)
4: for i← 1 to n do
5: O ← GenerateOffspringSchedules(P)
6: for c ∈ O do
7: c ← Mutate(c, α)
8: if i%2 = 0 then
9: c ← LocalImprovement(c)

10: P ← SelectNextGenerationSchedules(P ∪O)
11: x ← SelectBestSchedule({x} ∪ P)

12: return x

offloading schedule. We sacrifice the absolute optimality for substantial reductions in the
scheduling overhead both in terms of energy and latency.

Heuristic Algorithm. The concrete framework we use is based on memetic algorithms
(MAs) [152, 79] which are population-based metaheuristics that are highly scalable, are
able to incorporate domain-specific knowledge, and are less prone to local optima. However,
the scheduling algorithm is not restricted to a concrete choice as long as it conforms to
several criteria: it is fast (preferably with polynomial complexity to the number of sensor
apps and resources), it finds solutions that are close to optimal, and it is deployable on
the DSP. We experimentally find that the memetic algorithm is one that satisfies all these
requirements.

The algorithm takes as input sensor pipeline tasks, available offloading resources, and the
constraints listed in Section 6.3.2 that define the feasible solutions. Algorithm 2 outlines the
pseudo code of our heuristic. The basic structure of the algorithm is an iterative procedure
that maintains a population of candidate schedules the quality of which improves over time
and is measured through a utility function (our objective defined in Equation 6.1). Each
offloading configuration is represented as shown in Figure 6.3.2 and each cell in the table
corresponds to the value of the decision variable xiqu defined in our problem statement
6.3.2.

The memetic algorithm defines a series of schedule transformation (mutation and local
search) and recombination (crossover) operations that are applied systematically to the
population of schedules updated each iteration. The iteration consists of creating candidate
offspring schedules (line 5) from selected parents and subsequently choosing the surviving
set of schedules (line 10) that will constitute the next generation. Parent schedules are
selected for reproduction with a probability proportional to their utility. Reproduction is
performed through a standard two-point crossover operation illustrated in Figure 6.3.3.
Once offspring schedules are generated, two key transformations are applied to each child

126 6.4. FRAMEWORK IMPLEMENTATION

F

C

C

F

C

F

C

2 4

0

0

6

7

0 10

20

0

0 7

14

40

132

0

Emotion
Recognition

Speaker
Identification

Activity
Recognition

CPU LPU Cloud

Figure 6.3.2: Schedule representation.

Parents

Children

Figure 6.3.3: Two-point crossover.

Application Sensor Main Features Inference Model Frame Window

Activity Rec. [143] Accel Freq. and Time Domain J48 DT 4s 4s
Step Counting [63] Accel Time Domain WPT 4s 4s
Speaker Count [94] Mic MFCC [88], pitch [81] Clustering 32ms 3s
Emotion Rec. [166] Mic PLP [105] 14 GMMs [61] 30ms 5s
Speaker Id. [166] Mic PLP 22 GMMs 30ms 5s

Stress Detection [141] Mic MFCC, TEO-CB [199] 2 GMMs 32ms 1.28s
Keyword Spotting [70] Mic Filterbank Energies DNN [106] 25ms 1s

Table 6.3.1: Implementation overview of the sensing apps used in our scheduling workloads.
The window shows the amount of time features are accumulated from frames before an the
classification/inference stage is triggered. Frame lengths shown are the default used in the
original works. The used sensor sampling rates are 50Hz for the accelerometer and 8kHz
for the microphone. WPT (Windowed Peak Thresholding), DT (Decision Tree), GMMs
(Gaussian Mixture Models), DNN (Deep Neural Network).

(lines 6− 9): mutation to promote diversity, and local search to increase utility. The local
search step improves the utility of a newly produced offspring schedule by searching for
better neighbour solutions and replacing the original schedule with the neighbour the fitness
of which is highest. Finally, the best s schedules survive through the next iteration, where
s equals the population size. To reduce the runtime of the algorithm we limit the number
of generations n to 100 and perform the local improvement step every other generation.
We resort to standard textbook parameters of the algorithm [79]: population size of 10, 5
parents, 20 child schedules, and a mutation probability set to 0.1.

6.4 Framework implementation

Here we discuss the implementation details of the system prototype and example sensing
algorithms used in the evaluation. As in Chapters 3, 4, and 5, the development is performed
on a Snapdragon 800 Mobile Development Platform for Smartphones (MDP/S) [46]. We
exploit the following resources on this platform: Hexagon DSP, Adreno GPU, Krait CPU
and wireless connectivity.

CHAPTER 6. SCHEDULING SENSOR PROCESSING 127

Application model. Similarly to ORBIT [150] we adopt a component-based program-
ming model where we provide an extensive library of reusable signal processing algorithms
which developers can use to build and integrate their sensing pipelines into application
code. We refactor our sensing algorithm implementations from the systems presented in
Chapters 3, 4, and 5 to organise them into a library of routines. After the reimplementa-
tion we have 7 domain-specific categories of feature extraction algorithms and 5 popular
machine learning models covering the narrow waist of computations for multiple apps from
the mobile sensing literature. With this library we were able to prototype and incorporate
2 accelerometer and 5 microphone sensing apps listed in Table 6.3.1.

The audio pipelines used in our workload analysis cover the range of examples given in
Chapter 2: various sound recognition apps, together with keyword spotting and unsuper-
vised speaker counting. Although for many of the apps we were able to design much more
accurate and efficient classifiers based on DNNs as demonstrated in Chapter 4, we stick to
the original pipeline design. This promotes diversity in the types of sensing algorithms used
and enables us to evaluate how the scheduling framework can cope with heavy workloads
that feature both compute-intensive GMMs and DNNs.

One of the major advantages of resorting to a library-based approach is that we have full
control over how the various signal processing tasks can be decomposed, i.e. we can expose
the sensing algorithms to our pipeline restructuring techniques (Section 6.3.1) without
involving the developer in the process. Instead, LEO fully automates the partitioning
decisions at runtime.

The algorithms are subject to our pipeline reorganisation techniques so that all app
pipelines are partitioned as discussed in Section 6.3.1, and the Keyword Spotting app
is restructured by the Pipeline Modularisation technique. Feature Sharing is enabled for
the Emotion Recognition and Speaker Identification apps. We give a recap of the most
prominent elements from the algorithm implementations in Table 6.3.1.

APIs and accessibility. To enable app components to run on heterogeneous compu-
tational processors and cloud, all accelerometer and audio processing algorithms are im-
plemented in C with a unified interface following the guidelines of the Hexagon SDK. In
Figure 6.4.1 we provide a subset of the C signature conventions the various audio processing
methods must comply to in order to take advantage of LEO’s partitioning capabilities. We
maintain the same copies of the C code on the DSP, CPU and on the server. To facilitate
the integration of the signal processing components with Java application code we have
built a Java Native Interface (JNI) bridge library that interfaces between the CPU and
DSP. Further, we have defined a high-level Java API with some notions borrowed from
Google Cloud Dataflow programming model [19] (applying a sequence of transforms to the
input stream) that can help developers specify custom pipelines built from the reusable
components we provide. Sample code defining a speaker identification pipeline with 2
speaker models and a voice-activation trigger is given in Figure 6.4.1. The high level
components ultimately map to the C functions with conventionalised signatures – e.g.,
the WindowTransform class accepts as an argument to its constructor the name of the C

128 6.4. FRAMEWORK IMPLEMENTATION

/∗ Java p i p e l i n e s p e c i f i c a t i o n :
sequence o f t rans forms
app l i ed to the senso r stream ∗/
P i p e l i n e p = new AudioPipe l ine () ;
p . t r i g g e r (new FrameTrigger (” S p e e c h t r i g g e r ”)) ;
p . apply (new WindowTransform (”PLP windowFeatures”)

. f rameSize (2 4 0) . frameRate (8 0) . window (500))
. apply (new Para l l e lTrans fo rm (new Transform [] {

new GMMTransform(” speaker1 .gmm”) ,
new GMMTransform(” speaker2 .gmm”)
} , AggregatorType . Argmax)) ;

/∗ DSP compatible C s i g n a t u r e convent ions ∗/
// i n i t i a l i z e s a s t r u c t from the memory
// r e f e r e n c e d by ptr
void ∗ X i n i t (i n t 8 t ∗ ptr , void ∗ params) ;
// amount o f memory in bytes (s i z e o f s t a t e s t r u c t)
u i n t 3 2 t X getS ize (void ∗ params) ;
// t r i g g e r func t i on (e . g . , speech d e t e c t i o n)
i n t X t r i g g e r (i n t 1 6 t ∗ bu f f e r , i n t s i z e) ;
// f e a t u r e e x t r a c t i o n
void X windowFeatures (void ∗ me, i n t 1 6 t ∗ bu f f e r ,

i n t s i z e , f l o a t ∗∗ outData ,
i n t nRows , i n t nCols) ;

// i n f e r e n c e / c l a s s i f i c a t i o n
f l o a t X windowInference (void ∗ me, f l o a t ∗∗ inData ,

i n t nRows , i n t nCols) ;

Figure 6.4.1: Example code snippets showcasing the APIs supported by LEO. The Java
API can be used to define the structure of a pipeline. The C API conforms to the set of
conventions given by the Qualcomm Elite SDK for audio processing on the DSP. The Java
pipeline definition is mapped to a set of DSP compatible C routines.

method (PLP windowFeatures) that will be invoked to process accumulated raw audio
data. Developers can additionally define their custom algorithm components by providing
a C implementation that conforms to the conventions we follow.

The wrapper functionality defines the structure of a sensor pipeline which consists of two
primary computation types: 1) context triggers, added by the trigger method and executed
as an optional first processing step; and 2) a series of transforms (feature extraction,
classification) chained through the apply method so that the output from one transform
serves as the input to another. Transforms are of two primary subtypes: primitive and
composite. Primitive transforms are executed on a single computational unit as an atomic
non-preempted operation. Composite transforms consist of multiple primitive transforms:
currently we support a parallel transform operation that allows multiple transforms to

CHAPTER 6. SCHEDULING SENSOR PROCESSING 129

work concurrently with the same input on different computational units. The pipeline
specification is a one-time operation needed to register the type and sequence of C methods
that will be scheduled for execution on the various computational units.

Offloading service. As discussed in Chapter 3, the DSP has three hardware threads
architected to look like a multi-core system. LEO runs continuously on the DSP as a
service where we reserve one thread for the offloading decision logic. The pipeline stages
of the sensing algorithms (additionally extracted features and classification) are executed
in the other two threads. All CPU-DSP interactions (loading model parameters, sharing
data) in our framework are facilitated through the FastRPC mechanism supported by the
Hexagon SDK, in the same way as it was done for DSP.Ear and our deep audio inference
engine. An Android background service task that is running on the CPU waits for the DSP
to return a list of sensor tasks with assigned resources. If the CPU is in sleep mode, it is
woken up by the DSP through a return from a FastRPC call to manage the assignment of
tasks to other resources (cloud or GPU).

The schedule evaluation is timed periodically every t seconds (currently t = 1), with the
primary unit of time being the length of audio frames. LEO accumulates raw sensor data
in circular buffers, filters the type of data based on the registered triggers (motion, speech)
and runs the scheduling algorithm every n-th frame (e.g., every 34th frame when its length
is 30ms). The raw data buffers accumulate sensor samples over the largest registered
window of processing for the corresponding sensor (e.g, 5 seconds for the microphone).
The registered context triggers are typically short-duration routines (less than 5ms per
30ms audio frame, and less than 1ms per 4s accelerometer frame) and we interleave their
execution with the schedule evaluation in the same thread.

Offline training. We expect developers to train their machine learning models offline
and provide the model parameters required by our library of classification algorithms in
the form of text files which we parse when an app is started/accessed for the first time.
For instance, the Gaussian Mixture Models are encoded in the format defined by the HTK
toolkit [23] which we used for the training of the DSP.Ear algorithms from Chapter 3. Our
parsing utility is written in C++ so that it can supply the model parameters directly in
the JNI bridge.

GPU support. We add GPU support for the most computationally demanding algorithms
by reusing the implementations built in Chapter 5: Speaker Identification, Emotion Recog-
nition and Keyword Spotting. Enabling GPU parallel execution with our framework re-
quires incorporating additional energy into the scheduling objective function that captures
the overhead of approaching the GPU (setting up computation and transferring buffers
from the CPU host to GPU device memory). Further, custom algorithms not included in
LEO’s library would require additional programmer effort to provide an OpenCL imple-
mentation in addition to the DSP-compliant C version used by default. Interfacing with
the GPU is mediated through the background CPU service which flattens the matrix of
features required by the heavy classification stages into contiguous blocks of memory that
can be copied with OpenCL commands to GPU device memory.

130 6.5. PROTOTYPE EVALUATION

6.5 Prototype evaluation

In this section we evaluate LEO’s overhead, the energy improvement over baseline of-
floading and the energy consumption when running example sensing apps under common
smartphone usage and varying network conditions. By default, we use the base version
of LEO that handles the heterogeneous processing units with full algorithm support and
unified C programming model (CPU, DSP, and cloud). We discuss the implications of
incorporating the GPU as an extra resource in a separate subsection. The main findings
are:

• The cross-app scheduling decisions made by LEO are on average 5% worse than those
made by an “oracle” knowing the optimal offloading of tasks to resources.

• LEO is between 1.6 and 3 times more energy efficient than off-the-shelf CPU-based
APIs enhanced with conventional cloud offloading of classification tasks. Compared
to a general-purpose offloader enhanced to use the DSP, LEO requires only a fraction
of the energy (< 1

7
) to build a schedule and is still up to 19% more energy efficient

for medium and heavy workloads.

• The overhead of the DSP Sensing Scheduler is low (< 0.5% of the battery daily),
allowing frequent rescheduling.

• Considering the smartphone daily usage patterns of 1320 Android users, in more
than 90% of the cases LEO is able to operate for a full day with a single battery
charge with other apps running on the phone, while providing advanced services such
as keyword spotting, activity and emotion recognition.

6.5.1 Baselines definition

Here we introduce commonly found scheduling/offloading alternatives that we are used to
compare the performance of LEO.

• DSP+Cloud. This strategy uses the DSP for feature extraction and then ships the
features to a remote server for processing.

• CPU+Cloud. This is an alternative that follows a conventional cloud offloading
strategy where features are extracted locally on the CPU and then sent to the cloud
for classification.

• Greedy Local Heuristic. A greedy strategy offloads sensing tasks locally on the mobile
device by first pushing to the DSP the CPU-expensive computations. The tasks are
sorted in descending order of their CPU-to-DSP energy ratio so that those with the
largest energy gain factors are prioritised for execution on the DSP.

CHAPTER 6. SCHEDULING SENSOR PROCESSING 131

4 6 8 10 12 14 16
Number of sensor apps

0.0
0.5
1.0
1.5
2.0
2.5

R
un

tim
e

(s
)

1sec
5sec
15sec
30sec

Figure 6.5.1: Runtime of the scheduling algorithm as a function of the number of apps and
the length of the rescheduling interval.

• Delay-Tolerant. To demonstrate the huge performance boosts from delayed sensor
inference execution, we provide a delay-tolerant version of LEO that runs the optimi-
sation solver with relaxed deadline constraints once every minute (τ = 60 seconds).

• MAUI-DSP. MAUI [80] is a general-purpose offloader that targets all categories of
mobile apps and relies on code annotations to tag methods that can be executed re-
motely. It orchestrates cloud offloading for managed code, whereas sensor processing
specialised for heterogeneous processors runs in an unmanaged environment. The
core program partitioning algorithm is similarly based on mathematical optimisation
but performs only binary split decisions (execute locally on the CPU or remotely
on a server). We implement the MAUI optimisation model with lp solve [30] as an
enhanced baseline capable of leveraging the DSP locally in the following manner. All
pipeline methods that can be executed remotely are flagged as remote-able, and the
solver runs its local-remote binary partitioning logic with respect to the DSP, i.e. it
will always prefer the low-power DSP over the CPU to compute sensor tasks locally.
The solver logic is written in the AMPL modelling language [6] and runs as a service
in cloud, while the mobile device is intended to communicate schedules by sending
input parameters (sensing tasks identifiers, resource availability) as a JSON string.
MAUI annotations are not explicitly implemented, and neither is runtime profiling
of the methods. Instead, the solver leverages domain-specific information such as the
type of pipeline methods, their expected runtime and energy characteristics from the
offline profiling.

6.5.2 LEO’s overhead

Runtime. The runtime of the scheduling algorithm solving the optimisation problem
on the DSP is largely determined by the number of sensing apps to be managed. In
Figure 6.5.1 we plot the runtime of the scheduler as a function of two parameters: the
number of managed sensor apps and the rescheduling interval. The runtime for scheduling
the execution of 5 apps every second is 107 milliseconds which allows frequently revising

132 6.5. PROTOTYPE EVALUATION

the offloading decisions at the expense of a relatively small added latency. In addition,
if the algorithm runs once every second when there are generated sensor tasks (triggered
by the presence of relevant events such as speech or motion), the daily energy budget for
the scheduling on a 2300mAh battery would amount to < 0.5%. We can attribute the
success of this relatively low overhead to two factors. First, although the optimisation
search space grows exponentially in the number of apps, the low latency is enabled by the
heuristic algorithm scaling polynomially instead of exponentially with the number of apps.
Second, the low energy is maintained by running the scheduler entirely on the DSP and
independently from the energy-hungry CPU.

Scheduling capacity. The total response time of LEO is 2 times the rescheduling interval
plus the time needed to produce a schedule (which amounts to ≈ 2.1 seconds). In other
words, the scheduler provides soft real-time guarantees which are sufficient for notification-
style sensing apps (e.g., mute the device when entering a conversation, or trigger services
based on voice commands). Whereas the scheduling algorithm can solve optimisation
problems within 500ms for 15 apps on the DSP, typically only a small proportion of the
apps will be executed on the DSP as it becomes easily overwhelmed. With 2 hardware
threads reserved for app-specific logic, the DSP is able to process with real-time guarantees
the feature extraction stages of several apps of the complexity of our examples. Longer-
running classification stages need to be broken down into subcomputations, in which case
the DSP could typically process a subset of these additional tasks from this stage for one to
two more apps. This break-down is achieved through the Pipeline Partitioning discussed
in Section 6.3.1.

DSP memory. With the runtime memory limit of 8MB on the DSP (see Section 2.3 of
Chapter 2), we use 2MB for system parameters and application models (including 1 DNN
and 5 emotion or speaker GMMs). If the DSP Sensing Scheduler revises the joint app
schedule every 30 seconds, we would also need approximately 480KB of memory to buffer
raw microphone data sampled at a rate of 8KHz. We recall that we use the buffering to
monitor the exact workload generated by the currently activated sensor apps. The rest of
the memory is reserved to useful application data such as accumulated inferences.

6.5.3 Optimality of offloading schedules

Here we investigate how close our scheduling heuristics as well as straw-man offloading
variants are to an optimal schedule. We generate example sensing tasks to be offloaded
and compare the generated solutions to the optimal ones produced by an optimisation
solver. We create sensing traces with a workload that matches 30 seconds of relevant
sensing context (detected motion and speech) and vary the number of apps to be scheduled
in each trace. For each number of apps we create 10 different traces (where applicable)
by changing the underlying set of sensor apps. Application sets are sampled with repeats
from the family of implemented example apps shown in Table 6.3.1. The generated example
configurations are expressed as mixed integer linear programming (MILP) problems via the

CHAPTER 6. SCHEDULING SENSOR PROCESSING 133

LEO

MAUI-DSP

DSP+Cloud

CPU+Cloud

Greedy

0 1 2 3 4 5 6 7 8 9
Number of apps

10-1

100

101

102

103

M
ea

n
er

ro
r

(%
)

Figure 6.5.2: Deviation from the energy of the optimal solution when the offloading variants
generate a schedule.

AMPL modelling language [6] and fed to the optimisation solver GLPK [18]. We observe
significant, on the order of minutes or more, delays in the termination of the solver when
the number of scheduled apps exceeds 8, which is why we limit this number when presenting
the results.

In Figure 6.5.2 we plot how far off percentage-wise the offloading solutions are from the
global optimum found by the GLPK solver. The results show that LEO produces generally
good solutions that are on average within 5% away from the optimal ones. In contrast,
the closest among the alternatives, DSP+Cloud and MAUI-DSP, are on average 19% and
10% away from the optimum respectively. As expected, LEO’s (and the alternatives’)
error increases with the rise in number of scheduled apps to reach 19% when 8 apps are
scheduled. Nevertheless, we believe that the DSP Sensing Scheduler provides a much
needed optimality trade-off to make the offloading decisions practical and executable on
the DSP.

6.5.4 LEO vs alternatives

In this subsection we compare the performance of LEO in terms of energy consumption
against the commonly found offloading baselines defined in Section 6.5.1.

Experimental setup. We introduce three example scenarios covering the spectrum from
light to heavy sensing app usage. Depending on the scenario, the user has subscribed for the
services of a different subset of the apps shown in Table 6.5.1. To maintain a mixture of apps
with a variety of deadlines, we coarsely split the apps into two groups in the following way.
We impose near real-time requirements for the accelerometer-based inference algorithms
as well as the Keyword Spotting, Speaker Counting and Stress Detection apps by setting
their inference deadlines to be equal to their processing period, and set the heavier Emotion
Recognition and Speaker Identification pipelines to be tolerant to larger 10-second delays
in obtaining an inference (double their period). The delay tolerance for these sensor apps
is set as an example to diversify the timeliness requirements.

134 6.5. PROTOTYPE EVALUATION

Heavy (H) Medium (M) Light (L)

Activity Recognition X X X
Step Counting X X

Speaker Counting X X
Emotion Recognition X X
Speaker Identification X X

Stress Detection X X
Keyword Spotting X X

Table 6.5.1: Applications used in the workload scenarios.

We generate 100 1-minute long sensor traces per scenario with relevant events sampled
from a uniform random distribution. Such events are detected speech and motion that
trigger the generation of sensor jobs. We note that even though the length of the sensing
trace appears relatively short, it is sufficiently long to enable the sensor apps to generate
a large number of jobs. An Emotion Recognition app, for instance, will create 12 jobs per
minute given continuous speech and features are extracted for classification every 5 seconds
(Table 6.3.1), whereas the Keyword Spotting app would produce 60 jobs per minute. The
saturation of sensing context (speech, motion) that generates pipeline tasks varies from
5% to 100% in the artificial traces. For instance, a trace that is 1 minute long might
contain 20 seconds of speech (33%) spread throughout the whole interval and grouped into
several patches of continuous speech. We replay the traces for each offloading strategy and
evaluate the energy consumption depending on the produced distribution of computations
among offloading resources and CPU.

System load and energy profiling. Power measurements are obtained with a Monsoon
Power Monitor [34] attached to the MDP. The average base power of maintaining a wake
lock on the CPU with a screen and WiFi off is 295mW for the MDP. Each app is profiled
separately for energy consumption by averaging power over 10 runs on the CPU, DSP
and GPU where applicable. To obtain the power contributed by the sensor processing
algorithms only, we subtract the base power from the total power of running the apps
in background mode with a screen off. No other background services are running during
the profiling apart from the system processes. We confirm that the total sensing system
energy consumption is additive as long as the normalised CPU load on the MDP remains
below ≈ 80%. Thus, the total energy for a sensing trace is an additive function of the
energy expenditure of individual tasks under moderate CPU utilisation. As reported in
the evaluation of DSP.Ear from Chapter 3, popular mobile apps from various categories
that follow a processing pattern different from the sense-transform-classify one rarely push
CPU utilisation beyond 25%. To mitigate any potential interference, we limit the amount
of concurrent CPU threads working on sensing tasks to two which keeps the extra CPU
load incurred by sensor processing below 40%. If the scheduler decides to use the CPU for
computation under high system loads, interference with other services is inevitable unless
sensor processing is cancelled. In such extreme conditions, delays in the response time of

CHAPTER 6. SCHEDULING SENSOR PROCESSING 135

WiFi 5Mbps WiFi 1Mbps 3G 0.8Mbps 3G 0.4Mbps No connectivity
H M L H M L H M L H M L H M L

LEO Delay 0.87 0.86 1.00 0.89 0.70 1.00 0.57 0.50 0.58 0.37 0.33 0.32 0.23 0.21 0.30
Greedy 5.30 4.36 4.74 3.97 3.60 3.19 2.64 2.54 1.90 1.64 1.69 1.02 1.04 1.08 1.00

CPU+Cloud 2.86 2.67 2.91 2.49 2.40 3.02 2.07 2.13 1.77 1.75 1.90 1.67 n/a n/a n/a
DSP+Cloud 1.17 1.24 1.00 1.20 1.24 1.00 1.23 1.30 1.00 1.21 1.34 1.00 n/a n/a n/a
MAUI-DSP 1.13 1.19 1.00 1.11 1.15 1.00 1.08 1.16 1.00 1.04 1.17 1.00 n/a n/a n/a

Table 6.5.2: Mean factors showing the amount of energy expended by the baselines relative
to LEO. A factor of x means that the offloading alternative expends x times the amount of
energy for the same workload-connectivity scenario. See next figure for example baseline
energy absolute values in Joules.

services is expected (e.g., video playback, game play) as well as an increase in the total
energy consumption.

Baseline comparison results. In Table 6.5.2 we display the relative amount of energy
incurred by the offloading strategies when compared to LEO. The numbers show how many
times the total energy of LEO an offloading alternative consumes. In all of the resource
availability and workload scenarios LEO succeeds in delivering better energy profiles than
the alternatives. The cloud-based baselines, for example, that always perform the classifica-
tions remotely and do not perform cross-app resource optimisation, fail to spot optimisation
opportunities where processing the classification stages (deeper into the pipeline) on the
DSP may be cheaper than remote computations. As a result, the CPU+Cloud strategy
consistently consumes 1.6 to 3 times more energy than LEO, whereas the DSP+Cloud al-
ternative introduces significant 17% to 34% overheads under heavy and medium workloads.
Compared to CPU+Cloud, the DSP+Cloud baseline reduces energy consumption by ≈ 2
times on average across the workloads, which is a significant improvement. This energy re-
duction can be thought of as the gains of simply leveraging a DSP without benefiting from
any cross-resource optimisation. With principled scheduling of sensor tasks, as we have
already shown, energy gains can be up to 34% higher with LEO than with DSP+Cloud
for medium to heavy workloads.

In Figure 6.5.3 we plot the mean energy expended by the sensing pipelines when following
the various offloading schedules as a function of the sensing workload (e.g. proportion of
speech captured by the microphone) for the sensing traces. Under relatively good WiFi
throughput (5Mbps) LEO consumes 30J for performing all sensor tasks when there is 100%
saturation of the sensing context (continuous speech/walking) in the trace. To put this
number into perspective and assuming 4.5 hours of talking on average during the day [130],
LEO would drain 26% of the capacity of a standard 2300mAh battery (such as the one of
a Nexus 5 [21] based on the Snapdragon 800 SoC) to fully process the sensor data for the
above mentioned set of accelerometer and microphone apps while importantly maintaining
timeliness guarantees. The best among alternatives MAUI-DSP scheduler with its ≈ 20%
energy overhead would drain the notably higher 31% of the battery to process the same
amount of sensor data.

136 6.5. PROTOTYPE EVALUATION

0 20 40 60 80 100
Sensing workload (%)

0
20
40
60
80

100
120
140

E
ne

rg
y

(J
)

LEO

Greedy

CPU+Cloud

DSP+Cloud

MAUI-DSP

Delay-Tolerant

(a) WiFi 5Mbps

0 20 40 60 80 100
Sensing workload (%)

0
20
40
60
80

100
120
140

E
ne

rg
y

(J
)

LEO

Greedy

Delay-Tolerant

(b) No connectivity

Figure 6.5.3: Energy consumption of the offloading strategies compared against the delay-
tolerant LEO as a function of the sensing workload saturation for the medium load scenario
(M).

Why not MAUI? A general-purpose offloader such as MAUI-DSP significantly outper-
forms naive cloud offloading alternatives, yet there are multiple workload scenarios where
LEO can maximise the energy gains even further. For example, under medium and heavy
loads LEO can be up to 19% more efficient compared to the version of MAUI enhanced
with DSP processing capabilities. This improvement can be attributed to two factors: 1)
MAUI’s local-remote binary partitioning model does not explicitly model the heterogene-
ity of local resources and may miss more optimal scheduling configurations that involve
multiple local processing units; 2) MAUI applies its offloading decisions structurally for the
program at the method level, whereas LEO exploits algorithm semantics to allow copies of
the same method with different data (e.g., speaker GMM probability estimation) to be run
in parallel on different processing units and cloud. In addition, the original MAUI uses the
network to communicate schedules with a remote server to save energy, but still network
transfers are mediated through the CPU in a high-power active state (hundreds of mW).
Compared to our DSP Sensing Scheduler, MAUI would require about 7 to 10 times more
energy for the schedule computation given a rescheduling frequency of 1 second.

Why not Wishbone? Wishbone’s [154] original problem formulation targets a slightly
different goal: increase data rate and reduce network bandwidth. Minimising network
bandwidth is not a good proxy for energy because recent mobile devices boast powerful
multi-core CPUs that can easily cope with complex processing locally – this will incur a
high energy cost but will minimise the amount of transferred data. To target on-device
energy consumption, the objective needs to be redefined as we have done and latency
constraints need to be added to ensure apps remain responsive. Further, frequently using
an optimisation solver such as GLPK [18] incurs a large energy and computation overhead.
We find that scheduling the tasks of no more than 7 or 8 sensor apps such as the examples we
have implemented requires on average 100ms on the Snapdragon CPU which is fast enough

CHAPTER 6. SCHEDULING SENSOR PROCESSING 137

0% 25% 50% 75% 100%

3G availability

0%

25%

50%

75%

100%
W

iF
i
a
v
a
ila

b
ili

ty

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

(a) Medium

0% 25% 50% 75% 100%

3G availability

0%

25%

50%

75%

100%

W
iF

i
a
v
a
ila

b
ili

ty

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

(b) Light

Figure 6.5.4: Percentage of the battery capacity needed for processing 4.5 hours of sensing
context under varying network availability.

but the energy cost of running the scheduler there is high – more than 30 times higher
than what LEO requires. Given this overhead the only alternative is to run Wishbone less
frequently: the solver would need to schedule defensively the execution across resources
for multiple apps. In our experiments this leads to missed opportunities of using resources
and energy consumption that is more than 3 times higher than what LEO can deliver.

6.5.5 Practicality considerations

Varying network availability. In Figure 6.5.4 we plot the percentage of the battery
needed by the system to fully process the sensor data for a sensing workload of 4.5 hours
spent in conversations [130] under the medium and light application scenarios (Table 6.5.1)
and as a function of the network availability. The consumed energy is mindful of the
sampling of the sensors and the overhead of waking up the CPU. We vary the amount
of time when the system would be able to offload part of the classifications via WiFi
or 3G. The network throughput is set to 5Mbps for WiFi and 0.4Mbps for 3G (median
uplink throughput for 3G is dependent on carrier but remains around 0.3-0.4Mbps [110]).
According to a recent study of smartphone usage patterns of more than 15K mobile users
[184], 50% of them are connected to WiFi, LTE or 3G for at least 80% of the time.
Being able to offload processing assuming such cumulative wireless coverage in Figure 6.5.4
corresponds to draining around 67% of a 2300mAh battery for medium workloads and
barely 27% for light scenarios. The figures for the medium workload are high but we
stress we maintain near real-time responsiveness for most of the apps. Should we relax the
deadline constraints to use Delay-Tolerant LEO, we can drop these numbers to merely 25%
and 12% for the medium and light scenarios respectively.

Smartphone usage. To understand how the workloads in Table 6.5.1 affect the user
experience we analyse a dataset of 1320 smartphone users, provided to us by the authors
of AppJoy [192], where interactive mobile app usage is logged on an hourly basis. We

138 6.5. PROTOTYPE EVALUATION

WiFi 3G
5Mbps 1Mbps 0.8Mbps 0.4Mbps local

LEO-GPU 1.00 1.00 0.74 0.53 0.38
DSP+GPU 2.08 1.55 1.03 0.64 0.46

LEO-GPU (5s) 1.00 0.76 0.49 0.29 0.22
DSP+GPU (5s) 1.13 0.80 0.51 0.31 0.25

Table 6.5.3: Mean factors showing the amount of energy expended by the alternatives
relative to LEO. The bracketed names refer to the same scheduling strategies when the
rescheduling interval is set to 5 seconds which relaxes the deadline constraints for real-time
apps and promotes batched GPU execution.

replay the user daily traces with LEO running in the background and add to all traces the
workload of typical background services (a mail client, Facebook, Twitter, music playback)
in a manner similar to DSP.Ear from Chapter 3. Assuming the previously mentioned
80% wireless network coverage and 4.5 hours of speech on average in a day (as found by
SocioPhone [130]), we find that with the Delay-Tolerant version of LEO for more than 80%
or 93% of the daily usage instances the users would be able to sustain a full 24-hour day of
operation without recharging a 2300mAh battery when the sensing apps from the medium
and light scenarios are active respectively.

6.5.6 GPU acceleration

In this subsection we investigate the implications of scheduling computations when an
additional massively parallel heterogeneous processor such as the Qualcomm Adreno 330
GPU [2] is added to the pool of resources available to LEO. We build two scheduling
alternatives to streamline our analysis: 1) LEO-GPU which follows LEO’s scheduling
logic and brings the GPU as an optional resource for the heavy classification algorithms
(as discussed in Section 6.4); 2) DSP+GPU which always uses the GPU for the algorithms
that can be executed there, extracts features on the DSP and any routines that cannot
meet the deadlines on either of these processors are run on the CPU.

In Table 6.5.3 we show the proportion of LEO’s energy the GPU-enhanced alternatives
would spend in order to process the workloads from Table 6.5.1 under varying network
connectivity. For each connectivity use case, the numbers are averaged across the heavy,
medium, and light scenarios. With slower connections, the GPU-enhanced strategies spend
a fraction (< 0.75 times) of vanilla LEO’s energy to process the same workloads which
suggests that the GPU is a viable offloading option cheaper than CPU and cloud offloading.
With faster connections under tight deadline constraints (rescheduling every second by
default), LEO-GPU spends the same amount of energy as LEO which means that the
GPU is not used in these faster connectivity scenarios. In our experiments from Chapter 5
we find the GPU can deliver results faster than 5Mbps cloud under tight deadlines (≈ 6.5

CHAPTER 6. SCHEDULING SENSOR PROCESSING 139

times for the Keyword Spotting and ≈ 3 times for the Speaker/Emotion Recognition) but
consumes more power which is dominated by the GPU initialisation stage repeated every
second. As already shown in Chapter 5, however, batching has a desirable effect on energy
consumption. If we pay the setup costs once and batch multiple computations for GPU
execution, LEO-GPU (5s) begins to find opportunities where the total GPU energy is lower
than 1Mbps cloud offloading. In other words, LEO-GPU automatically discovers we can
compensate for the initially consumed high power with sheer GPU speed.

6.6 Discussion and limitations

We now examine key issues related to LEO’s design.

Beyond the DSP. LEO is extensible beyond the three computation classes in our proto-
type to n-units by profiling each supported sensor algorithm under each new processor. As
we have shown in Section 6.5.6, support for a GPU processor can be easily incorporated
into LEO’s resource pool modelling but may require extra programmer effort. We antic-
ipate future LEO versions will provide a more comprehensive GPU support and fan-out
feature extraction to multiple DSP varieties.

Extending sensor support. We largely focus on the microphone and accelerometer
sensors as examples of a high and a low-data rate sensors, respectively. As these sensors
provide a large variability in their requirements, they are an effective combination to under-
stand the performance of LEO. However, our overall scheduling design is generic enough to
support other phone sensors as long as the apps using them have a sense-transform-classify
execution flow similar to the one we find among popular audio sensing apps.

Device fragmentation. Despite interacting with a co-processor, LEO remains portable
to various phone models: LEO’s components are OS-specific rather than device-specific,
with two exceptions. First, each DSP variety needs a runtime and sensor algorithm library.
Scaling LEO to use multiple DSPs would require adding support in the scheduling service
for communication across different computational units and providing compatible imple-
mentations for the sensor algorithms. However, units such as the DSP in the Qualcomm
800 SoC is in dozens of smartphones, and recent DSP programmability trends revolve
around adopting standard embedded programming tools such as C. Second, kernel drivers
are needed to interface non-CPU components to the OS. But drivers are required only for
each {OS, component} combination.

Programmability. We have provided Java wrapper functionality which allows develop-
ers to specify custom chains of sensor processing with a few lines of code when the library
of pre-built algorithmic components are used. We acknowledge this may not always be
possible, in which case the developers can integrate custom algorithms by providing DSP
compatible C routines that conform to a set of conventions (briefly outlined in Section 6.4)
most of which are set by the Qualcomm Hexagon SDK we used in our prototype.

140 6.7. RELATED WORK

Custom algorithms that do not conform with LEO’s partitioning conventions will not
benefit as much from the scheduler as structured algorithms. As long as the runtime
of these custom algorithms is within the rescheduling interval, LEO will be able to find
energy reduction opportunities for concurrent sensing apps without compromising the per-
formance of the introduced new algorithms. This is because the algorithm execution can
be treated as a single computational unit that involves the full pipeline (without exposing
finer implementation details). When the custom algorithms are long running (severely
exceeding the rescheduling interval), and given that the scheduler is not pre-emptive, there
might be suboptimal resource utilisation choices in light of unforeseen future resource
availability. However, such cases are expected to be rare since mobile sensor process-
ing [141, 166, 140, 144, 94, 143] is typically periodic over the sensor stream with short
repeated tasks to maintain tight mobile resource consumption and timeliness guarantees.

Proprietary sensor processing. Exposing an app’s sequence of sensor processing steps
to LEO entails intellectual property risks, but this is a problem relevant to a class of
emerging orchestrators that operate with domain-specific signal processing knowledge [116,
119, 150]. As these solutions mature, new approaches will be developed to handle security
risks. If developers trust the OS, sandboxing techniques [190] can be applied to prevent
LEO from leaking sensitive information such as parameters for the classification models.
If customised sensor processing C or OpenCL routines need to be added, code obfuscation
techniques can be taken advantage of.

6.7 Related work

SpeakerSense [140], Little Rock [160], AudioDAQ [183], DSP.Ear and ZOE utilise low-
power co-processors or purpose-built peripheral devices to achieve energy savings while
supporting a fixed set of constantly running sensing applications. However, none of the
above mentioned are designed to dynamically balance the workload when the set of actively
running sensor apps changes.

Why not general-purpose offloaders? General-purpose offloaders [80, 161, 170, 196,
76, 165, 99], do not target the diverse sensor processing workloads explicitly and, as a
result, may miss substantial optimisation opportunities. For example, MAUI [80] defines an
offloading optimisation problem that performs binary local-remote split decisions (CPU vs.
cloud) and inspects the general program structure but does not take advantage of domain-
specific signal processing knowledge. As we have shown in Section 6.5, such knowledge can
be leveraged for even greater energy benefits. Odessa [161] instruments individual apps to
make offloading decisions for improving makespan and throughput but performs only per-
app performance tuning instead of cross-app optimisations when apps share scarce mobile
computing resources. Code in the Air [170] assumes that wireless connectivity is plentiful
and that cloud offloading is the ultimate solution to reduce energy and improve throughput.
With the advent of low-power co-processors these assumptions are seriously challenged: we

CHAPTER 6. SCHEDULING SENSOR PROCESSING 141

have demonstrated that optimal offloading configurations for sensor processing workloads
are the ones that utilise a combination of all available computational resources. Last, VM
migration mechanisms [76, 99] offer performance benefits but are difficult to deploy across
architecturally different platforms.

Why not other sensor orchestrators? Existing sensor orchestrator frameworks [119,
116, 118, 137, 143, 122] approach the optimisation space from different angles in order
to improve sensor processing on resource-constrained mobile devices, and often provide
complementary functionality that can be executed side by side with LEO. Reflex [137], for
example, eases programmability for co-processors [137] but does not explicitly optimise for
energy efficiency. MobileHub [176] automatically rewrites app binaries to provide a sensor
data notification filter that buffers data on the co-processor unlikely to result in an appli-
cation notification and thus trigger pipeline processing. However, when the later stages of
sensor processing pipelines are triggered and execution cannot be bypassed, applications
will benefit from LEO automatically distributing chunks of these later-phase computations
across resources. CAreDroid [86], on the other hand, presents a framework for automat-
ically choosing among different implementations of the same sensor processing logic that
leads to highest performance gains given the current device and user context. Again, we
argue that once the relevant processing for an application is determined, sensor computa-
tions can be further optimised by jointly deciding for the currently active sensor apps on
which resource their execution logic should be run. ORBIT [150] similarly to LEO uses
profile-based partitioning of application logic to determine the most appropriate resource
to use for a processing task issued by a data-intensive embedded app, but does not focus
its optimisation on multiple simultaneously running apps.

Orchestrator [119] does not scale well with the increase in number of offloading configura-
tions as it systematically explores subsets of offloading plans the number of which grows
exponentially with offloading components and sensor apps. Wishbone [154] is very closely
related to our work and we build upon some of its fundamentals (linear programming for-
mal model, exploiting data flow semantics for the partitioning). As we have demonstrated
in Section 6.5, it was originally designed to maximise a different optimisation objective
and in the case of frequent rescheduling incurs a high energy overhead. SymPhoney [116]
introduces a powerful utility-based model to deal with resource contention of sensor apps
locally, whereas we attempt to maximise the efficiency of multiple apps with their original
maximum utility across the various resources (DSP, CPU, GPU and cloud).

6.8 Conclusions

We have presented LEO, a mobile sensor inference algorithm scheduler enabling concur-
rent execution of complex sensor apps while maintaining near real-time responsiveness and
maximising energy efficiency. LEO makes this possible by restructuring and optimally
partitioning sensor algorithms (from simultaneously running apps) across heterogeneous

142 6.8. CONCLUSIONS

computational units, and revising this allocation dynamically at runtime based on fluctu-
ations in device and network resources.

Chapter 7

Reflections and future work

The chapters presented a variety of optimisation approaches that empower mobile audio
sensing apps with accurate and energy efficient continuous operation on smartphones and
wearables. In this chapter we reflect on our contributions and how they support our thesis
by answering the three major research questions outlined in Chapter 1. We also provide
directions for future work.

There are two recent trends in the mobile app landscape that have fuelled the research
in this dissertation. First, there is the growing adoption of mobile apps that rely on
sensor data to track user behaviour and context. It is not unusual for a mobile user to
install multiple of these apps on their device, and many of them are hungry for reliable
and efficient audio sensing frameworks. Microphone-enabled apps such as Shazam (song
recognition) and voice commands supported by digital assistants have a central role – they
are capable of delivering rich inferences about user behaviour, but have high computational
demands. Second, the range of heterogeneous processors found in modern mobile SoCs has
significantly diversified to include not only CPUs and GPUs but also low-power cores and
co-processors. Each of these processors has its own resource profile offering different trade-
offs in the execution of sensing algorithms. Consequently, our thesis was that to meet the
workload demands of next-generation audio sensing apps and go beyond incremental energy
savings we need to consider optimisation techniques that facilitate concurrent operation
of audio algorithm chains and that maximise the shared use of the full range of mobile
heterogeneous processors.

To support our thesis we investigated several related threads of research. We studied
how to make a better use of the processor hierarchy (low-power co-processors and CPU)
by splitting the sensing algorithm execution in more effective ways. We validated our
multi-tiered offloading approach by building two sensing systems for a smartphone and
a wearable. We then specialised some of the core audio sensing algorithms for the DSP
and GPU in an attempt to deliver highly efficient implementations that understand the
hardware. Finally, we introduced dynamic scheduling that distributes sensor processing on

143

144 7.1. SUMMARY OF CONTRIBUTIONS

demand across the full range of heterogeneous processors (CPU, DSP, GPU) and cloud.

7.1 Summary of contributions

Here we revisit the research questions driving the work presented in the dissertation and
provide a summary of our major contributions.

[Research Question 1] How can we enable the energy efficient concurrent and continuous
operation of multiple mobile audio sensing apps with a high algorithm complexity?

[Contribution 1] In Chapter 3 we investigated how to leverage the hierarchy of low-power
co-processors and CPU to support the energy efficient operation of two continuous sensing
systems that infer multiple complex user behaviour cues such as expressed emotions or the
number of speakers in a conversation. We presented a series of optimisation techniques
that maximise the exposure of pipeline stages to co-processors or allow sensor process-
ing to remain largely on the DSP with minimal assistance from the power-hungry CPU:
admission filters, behaviour locality detectors, selective CPU offloading and cross-pipeline
optimisations. We validated the importance of these techniques by comprehensively eval-
uating the energy consumption of the two proof-of-concept systems that relied on them.
Consequently, we showed continuous sensing of deep audio inferences can be sustained with
a single battery charge for at least 24 hours even in the presence of other apps running on
the studied platforms.

[Research Question 2] What type of audio sensor inference algorithm specialisation do
we need to perform in order to draw benefits from available heterogeneous mobile hardware?

[Contribution 2] In Chapters 4 and 5 we studied the advantages of designing audio al-
gorithm implementations that are purpose-built for a DSP and a GPU. Chapter 4 devised
memory-constrained deep learning models for fast, robust and accurate inference on low-
power co-processors. We evaluated our inference engine based on Deep Belief Networks
across a variety of audio sensing tasks to show that significant, an order of magnitude,
reductions in runtime and energy can be achieved. We further demonstrated in Chap-
ter 5 that large performance gains can also be attained with the design of a novel GPU
optimisation engine. It employed key structural and memory access data parallel pat-
terns to allow audio algorithm performance to be dynamically tuned as a function of GPU
device specifications and model semantics. We showed that parameter optimised audio
routines outperform all alternatives runtime-wise, and in batching scenarios also consume
less energy than both a low-power DSP and cloud offloading.

[Research Question 3] How can we automate the process of maximising resource util-
isation from multiple concurrent audio sensing apps without compromising app accuracy
and responsiveness?

[Contribution 3] In Chapter 6 we implemented and evaluated the prototype of a novel

CHAPTER 7. REFLECTIONS AND FUTURE WORK 145

sensor algorithm scheduling framework, LEO, that targets the mixed workload of a va-
riety of sensor apps with different timeliness requirements. The scheduler relies on a
comprehensive library of sensing algorithms that serves as the building block for popular
services found in the mobile sensing literature. LEO exploits model semantics to pre-define
pipeline partitioning points so as to effectively distribute the computational load from mul-
tiple concurrent apps across heterogeneous processors and cloud. LEO runs as a service
on the low-power DSP unit with a low overhead (<0.5% of the battery daily) thanks to a
fast heuristic scheduling algorithm that solves a global resource optimisation problem. We
found that LEO is not only between 1.6 and 3 times more energy efficient than conven-
tional cloud offloading with CPU-bound sensor sampling, but also generates lower energy
schedules than a general-purpose mobile app offloader with only a fraction of the power
budget required to make the scheduling decisions.

To summarise, we believe that optimising shared resource use for concurrent audio sensing
apps as well as specialising algorithm implementations for heterogeneous processors are
the most critical types of performance tuning techniques to be considered in order to
deliver accurate and low-energy system profiles. We expect our contributions will encourage
developers to rethink their audio sensing designs and abandon the conventional approaches
(e.g., exclusive cloud offloading) that we have proved obsolete in the heterogeneous resource
era. Ultimately, this dissertation has laid the foundation for new research directions that
enable audio sensing algorithms and system-level components to make better use of mobile
hardware.

7.2 Future directions

The work we have done so far touches on some of the most immediate questions that the
proliferation of sensor apps together with advances in processor technology raise. Opportu-
nities for expanding on the current body of research are numerous, and here we summarise
some of the more salient points that might need to be addressed.

Automated integration of existing sensor apps. In order to take advantage of the
advanced DSP and GPU computation capabilities, existing apps with custom sensor pro-
cessing routines have several options, none of which fully frees the developer from the
burden of reimplementing some of their custom logic. We aid developers in building their
DSP and GPU sensing apps by enabling them to reuse our library of algorithmic compo-
nents. We also allow developers to integrate with our scheduling framework customised
algorithm versions that comply with the set of conventions offered by our library and by
the officially released SDKs for each processor. However, more research is needed in order
to better automate the process of re-targeting CPU implementations to other units. The
ideal case would be to design an all powerful compiler framework that takes existing C or
Java code and produces highly optimised parallel versions for the DSP and GPU. How-
ever, fully automating the conversion process in such a way is a very hard problem [66, 65].

146 7.2. FUTURE DIRECTIONS

Static analysis techniques accompanied with code annotations, or custom domain specific
languages, are more realistic and could help towards minimising the developer effort of
migrating an existing code base to the DSP or GPU. New programmability mechanisms
need to be investigated that provide a reasonable trade-off between the amount of effort ex-
erted by the developer and the level of performance optimisation achieved in an automated
manner.

TensorFlow [53] is a machine learning framework developed by Google that allows algo-
rithms to be expressed as a symbolic graph of operations which are automatically compiled
and executed on underlying hardware. So far the framework has largely been used for large-
scale machine learning in the data centre, but its use is being extended to mobile devices
where a single TensorFlow model can be mapped to DSP or GPU resources. This is a
significant step towards bridging the gap between ever-increasing machine learning model
requirements and local mobile computation. Yet the framework is quite general and re-
search is needed into how it can be efficiently exploited for continuous sensing and signal
processing tasks where co-processors need to be utilised without interruption, and where
sensing workloads change dynamically based on user context.

Advanced hardware optimisations. A promising area of research is exploring how us-
ing more advanced hardware capabilities of state-of-the-art processors can improve sensor
processing performance. Optimised assembly instructions, fixed point arithmetic, approx-
imate computing [148], or dynamic voltage and frequency scaling are some examples of
what can be further used to maximise sensor algorithm efficiency. For dynamic power
scaling, for instance, the different operational clock frequencies of DSPs and GPUs pro-
vide specific power profiles which can be scaled automatically based on the current sensor
workload. Further, deep learning accelerator chips [5, 15] are gaining a lot of attention
recently and their role in the mobile sensor app landscape has yet to be determined. Given
how typical sensor processing algorithms rely on machine learning primitives targeted by
such accelerators, it is important to assess how such specialised chips can effectively service
sensor workloads or interact with other components such as DSPs that excel at low-power
sensor sampling and filtering.

Cross-device offloading. In the era of wearable electronics mobile users are becoming
increasingly equipped with multiple devices: a smartwatch paired with a smartphone is a
popular combination of mobile devices seen together. In this dissertation we have inves-
tigated computational offloading schemes that either operate entirely locally or use cloud
services via a wireless link. However, a smartwatch, for example, might be able to of-
fload via Bluetooth algorithm execution to a smartphone, thus taking advantage of nearby
device computational resources. Cross-device offloading will prove a viable option when
unused low-power units on the more powerful mobile platform are approached or when the
smartphone is being charged – with no energy loss for the smartphone during charging,
the less powerful smartwatch platform would harness execution beyond its capabilities or
energy budget. A direction for future research is understanding what scheduling schemes
are suitable to efficiently leverage this ecosystem of interconnected devices.

CHAPTER 7. REFLECTIONS AND FUTURE WORK 147

? ? ?

This dissertation has demonstrated that it is possible to run multiple audio sensing apps
capable of deep inferences about user behaviour on smartphones and wearables without
adversely affecting battery life. This has largely been enabled by a series of optimisation
techniques that partition and distribute sensor processing across heterogeneous processors
available in leading edge mobile SoCs. The insights drawn from building our integrated
sensing systems are key enablers for the energy efficient and accurate continuous operation
that audio sensing apps desperately need in order to deliver new rewarding user experi-
ences. We hope this work lays the foundation for further examination of mobile sensing
optimisation that focuses on internal inward looking optimisations of key machine learn-
ing and signal processing algorithms (rather than treating these as black boxes) not only
for audio but other modalities as well, that collectively seek to increase the utilisation of
heterogeneous mobile processors on embedded SoCs.

148 7.2. FUTURE DIRECTIONS

Bibliography

[1] Accupedo Pedometer. http://www.accupedo.com/. Accessed: 2017-06-25.

[2] Adreno GPU SDK. https://developer.qualcomm.com/software/

adreno-gpu-sdk/gpu. Accessed: 2017-06-25.

[3] Alexa Commands. https://www.cnet.com/how-to/

the-complete-list-of-alexa-commands/. Accessed: 2017-06-25.

[4] Amazon Echo. http://www.amazon.com/Amazon-Echo-Bluetooth-Speaker
-with-WiFi-Alexa/dp/B00X4WHP5E. Accessed: 2017-06-25.

[5] AMD Radeon Instinct GPU Accelerator for Deep
Learning. http://www.anandtech.com/show/10905/

amd-announces-radeon-instinct-deep-learning-2017. Accessed: 2017-06-
25.

[6] AMPL modeling language. http://ampl.com/. Accessed: 2017-06-25.

[7] Android Sensor APIs. http://developer.android.com/guide/topics/sensors/

index.html. Accessed: 2017-06-25.

[8] Android Wear hardware review: Sometimes promising, often frustrating. http:

//tinyurl.com/m9zb3yz. Accessed: 2017-06-25.

[9] Apple iPhone 7 Specification. http://www.apple.com/uk/iphone-7/specs/. Ac-
cessed: 2017-06-25.

[10] Apple Motion Core API. https://developer.apple.com/library/iOs/

documentation/CoreMotion/Reference/CoreMotion_Reference/index.html.
Accessed: 2017-06-25.

[11] Apple Siri. https://www.apple.com/uk/ios/siri/. Accessed: 2017-06-25.

[12] ARM big.LITTLE technology. https://www.arm.com/products/processors/

technologies/biglittleprocessing.php. Accessed: 2017-06-25.

[13] Auto Shazam. https://support.shazam.com/hc/en-us/articles/

204457738-Auto-Shazam-iPhone-. Accessed: 2017-06-25.

149

150 BIBLIOGRAPHY

[14] British Library of Sounds. http://sounds.bl.uk/. Accessed: 2017-06-25.

[15] Deep Learning Accelerator and Fathom Software Framework. http://www.

movidius.com/news/movidius-announces-deep-learning-accelerator-and-

fathom-software-framework. Accessed: 2017-06-25.

[16] Free Sound Effects. http://www.freesfx.co.uk/. Accessed: 2017-06-25.

[17] GameBench. https://www.gamebench.net/. Accessed: 2017-06-25.

[18] (GLPK) GNU Linear Programming Kit. https://www.gnu.org/software/glpk/.
Accessed: 2017-06-25.

[19] Google Cloud Dataflow. https://cloud.google.com/dataflow/model/

programming-model. Accessed: 2017-06-25.

[20] Google Home. https://home.google.com/. Accessed: 2017-06-25.

[21] Google Nexus 5. https://www.qualcomm.com/products/snapdragon/

smartphones/nexus-5-google. Accessed: 2017-06-25.

[22] Google Now. http://www.google.co.uk/landing/now/. Accessed: 2017-06-25.

[23] HTK Speech Recognition Toolkit. http://htk.eng.cam.ac.uk/. Accessed: 2017-
06-25.

[24] Intel Edison. http://www.intel.com/content/www/us/en/do-it-yourself/

edison.html. Accessed: 2017-06-25.

[25] Intel Unveils New Merrifield Smartphone Chip With Integrated Sensor Hub.
https://www.laptopmag.com/articles/intel-merrifield-smartphone-chip.
Accessed: 2017-06-25.

[26] Intel Xeon Phi. http://www.intel.com/content/www/us/en/processors/xeon/

xeon-phi-detail.html. Accessed: 2017-06-25.

[27] iPhone 5s M7 Motion Coprocessor. https://www.apple.com/iphone-5s/specs/.
Accessed: 2017-06-25.

[28] Jawbone Up 3. http://jawbone.com/store/buy/up3. Accessed: 2017-06-25.

[29] LG G Watch R. https://www.qualcomm.com/products/snapdragon/wearables/

lg-g-watch-r. Accessed: 2017-06-25.

[30] lpsolve MILP Solver. http://lpsolve.sourceforge.net/5.5/. Accessed: 2017-06-
25.

[31] Lumia SensorCore SDK. https://www.nuget.org/packages/

LumiaSensorCoreSDK/. Accessed: 2017-06-25.

[32] Microsoft Band. http://www.microsoft.com/Microsoft-Band/. Accessed: 2017-
06-25.

BIBLIOGRAPHY 151

[33] Microsoft Cortana. http://www.windowsphone.com/en-gb/how-to/wp8/cortana/
meet-cortana. Accessed: 2017-06-25.

[34] Monsoon Power Monitor. http://www.msoon.com/LabEquipment/PowerMonitor/.
Accessed: 2017-06-25.

[35] Moovit. http://www.moovitapp.com/. Accessed: 2017-06-25.

[36] Motorola Moto X. http://www.motorola.com/us/FLEXR1-1/

moto-x-specifications.html. Accessed: 2017-06-25.

[37] NVIDIA CUDA. http://www.nvidia.com/object/cuda_home_new.html. Ac-
cessed: 2017-06-25.

[38] NVIDIA Deep Learning SDK. https://developer.nvidia.com/deep-learning.
Accessed: 2017-06-25.

[39] NVIDIA Tegra 4 family. http://www.nvidia.com/object/tegra-4-processor.

html. Accessed: 2017-06-25.

[40] NVIDIA Tegra X1. http://www.nvidia.com/object/tegra-x1-processor.html.
Accessed: 2017-06-25.

[41] Ok Google. http://www.makeuseof.com/tag/ok-google-20-useful-things-you-
can-say-to-your-android-phone/. Accessed: 2017-06-25.

[42] OpenCL. https://www.khronos.org/opencl/. Accessed: 2017-06-25.

[43] Qualcomm Hexagon DSP. https://developer.qualcomm.com/software/

hexagon-dsp-sdk/dsp-processor. Accessed: 2017-06-25.

[44] Qualcomm Hexagon SDK. https://developer.

qualcomm.com/mobile-development/maximize-hardware/

multimedia-optimization-hexagon-sdk. Accessed: 2017-06-25.

[45] Qualcomm Snapdragon 400. https://www.qualcomm.com/products/snapdragon/

processors/400. Accessed: 2017-06-25.

[46] Qualcomm Snapdragon 800 MDP. https://developer.qualcomm.com/hardware/

mdp-820. Accessed: 2017-06-25.

[47] Qualcomm Snapdragon 800 Processors. http://www.qualcomm.com/snapdragon/

processors/800. Accessed: 2017-06-25.

[48] RunKeeper. http://runkeeper.com/. Accessed: 2017-06-25.

[49] Scikit-Learn Python Library. http://scikit-learn.org/stable/. Accessed: 2017-
06-25.

[50] Shake Gesture Library Windows Phone 8. http://code.msdn.microsoft.com/

windowsapps/Shake-Gesture-Library-04c82d5f. Accessed: 2017-06-25.

152 BIBLIOGRAPHY

[51] Snapdragon 800 Smartphones. http://www.qualcomm.com/snapdragon/

smartphones/finder. Accessed: 2017-06-25.

[52] TensorFlow. https://www.tensorflow.org/. Accessed: 2017-06-25.

[53] TensorFlow Mobile. https://www.tensorflow.org/mobile/. Accessed: 2017-06-
25.

[54] Trepn Profiler. https://developer.qualcomm.com/mobile-development/

increase-app-performance/trepn-profiler. Accessed: 2017-06-25.

[55] Waze Social GPS Maps and Traffic. https://www.waze.com/. Accessed: 2017-06-25.

[56] Will a smartphone replace your PC? http://www.govtech.com/blogs/

lohrmann-on-cybersecurity/will-a-smartphone-replace-your-pc.html. Ac-
cessed: 2017-06-25.

[57] Recent Advances in Deep Learning for Speech Research at Microsoft. IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing (ICASSP), May
2013.

[58] R. J. Baken. Clinical Measurement of Speech and Voice. Taylor & Francis Ltd,
London, 1987.

[59] R. K. Balan, D. Gergle, M. Satyanarayanan, and J. Herbsleb. Simplifying cyber
foraging for mobile devices. In Proceedings of the 5th International Conference on
Mobile Systems, Applications and Services, MobiSys ’07, pages 272–285, New York,
NY, USA, 2007. ACM.

[60] L. Bao and S. S. Intille. Activity recognition from user-annotated acceleration data.
In Pervasive computing, pages 1–17. Springer, 2004.

[61] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[62] S. Borkar and A. A. Chien. The future of microprocessors. Commun. ACM, 54(5):67–
77, May 2011.

[63] A. Brajdic and R. Harle. Walk detection and step counting on unconstrained smart-
phones. In Proceedings of the 2013 ACM International Joint Conference on Pervasive
and Ubiquitous Computing, UbiComp ’13, pages 225–234, New York, NY, USA, 2013.
ACM.

[64] E. O. Brigham. The Fast Fourier Transform and Its Applications. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1988.

[65] S. Campanoni, K. Brownell, S. Kanev, T. M. Jones, G.-Y. Wei, and D. Brooks.
HELIX-RC: An architecture-compiler co-design for automatic parallelization of ir-
regular programs. In Proceeding of the 41st Annual International Symposium on

BIBLIOGRAPHY 153

Computer Architecuture, ISCA ’14, pages 217–228, Piscataway, NJ, USA, 2014. IEEE
Press.

[66] S. Campanoni, T. M. Jones, G. H. Holloway, G.-Y. Wei, and D. M. Brooks. Helix:
Making the extraction of thread-level parallelism mainstream. IEEE Micro, 32(4):8–
18, 2012.

[67] A. Carroll and G. Heiser. An analysis of power consumption in a smartphone. In Pro-
ceedings of the 2010 USENIX Conference on USENIX Annual Technical Conference,
USENIXATC’10, pages 21–21, Berkeley, CA, USA, 2010. USENIX Association.

[68] R. Caruana. Multitask learning. Mach. Learn., 28(1):41–75, July 1997.

[69] G. Chechik, E. Ie, M. Rehn, S. Bengio, and D. Lyon. Large-scale content-based audio
retrieval from text queries. In Proceedings of the 1st ACM International Conference
on Multimedia Information Retrieval, MIR ’08, pages 105–112, New York, NY, USA,
2008. ACM.

[70] G. Chen, C. Parada, and G. Heigold. Small-footprint keyword spotting using deep
neural networks. In IEEE International Conference on Acoustics, Speech, and Signal
Processing, ICASSP’14, 2014.

[71] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen. Compressing
neural networks with the hashing trick. ICML-15, 2015.

[72] K. T. Cheng and Y. C. Wang. Using mobile GPU for general-purpose computing –
a case study of face recognition on smartphones. In VLSI Design, Automation and
Test (VLSI-DAT), 2011 International Symposium on, pages 1–4, April 2011.

[73] J. Chon and H. Cha. LifeMap: A smartphone-based context provider for location-
based services. IEEE Pervasive Computing, 10(2):58–67, Apr. 2011.

[74] T. Choudhury, G. Borriello, S. Consolvo, D. Haehnel, B. Harrison, B. Hemingway,
J. Hightower, P. P. Klasnja, K. Koscher, A. LaMarca, J. A. Landay, L. LeGrand,
J. Lester, A. Rahimi, A. Rea, and D. Wyatt. The mobile sensing platform: An
embedded activity recognition system. IEEE Pervasive Computing, 7(2):32–41, Apr.
2008.

[75] D. Chu, N. D. Lane, T. T.-T. Lai, C. Pang, X. Meng, Q. Guo, F. Li, and F. Zhao.
Balancing energy, latency and accuracy for mobile sensor data classification. In
Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems,
SenSys ’11, pages 54–67, New York, NY, USA, 2011. ACM.

[76] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. CloneCloud: Elastic
execution between mobile device and cloud. In Proceedings of the Sixth Conference
on Computer Systems, EuroSys ’11, pages 301–314, New York, NY, USA, 2011.
ACM.

154 BIBLIOGRAPHY

[77] R. Collobert and J. Weston. A unified architecture for natural language processing:
Deep neural networks with multitask learning. In Proceedings of the 25th Interna-
tional Conference on Machine Learning, ICML ’08, pages 160–167, New York, NY,
USA, 2008. ACM.

[78] I. Constandache, S. Gaonkar, M. Sayler, R. R. Choudhury, and L. P. Cox. EnLoc:
Energy-efficient localization for mobile phones. In INFOCOM, pages 2716–2720.
IEEE, 2009.

[79] C. Cotta and A. J. Fernndez. Memetic algorithms in planning, scheduling, and
timetabling. In K. P. Dahal, K. C. Tan, and P. I. Cowling, editors, Evolutionary
Scheduling, volume 49 of Studies in Computational Intelligence, pages 1–30. Springer,
2007.

[80] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra, and
P. Bahl. MAUI: Making smartphones last longer with code offload. In Proceedings
of the 8th International Conference on Mobile Systems, Applications, and Services,
MobiSys ’10, pages 49–62. ACM, 2010.

[81] A. de Cheveigné and H. Kawahara. YIN, a fundamental frequency estimator for
speech and music. The Journal of the Acoustical Society of America, 111(4):1917–
1930, 2002.

[82] L. Deng, G. Hinton, and B. Kingsbury. New types of deep neural network learning
for speech recognition and related applications: An overview. In IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), May 2013.

[83] L. Deng and D. Yu. Deep learning: Methods and applications. Technical Report
MSR-TR-2014-21, January 2014.

[84] T. Denning, A. Andrew, R. Chaudhri, C. Hartung, J. Lester, G. Borriello, and
G. Duncan. Balance: towards a usable pervasive wellness application with accurate
activity inference. In Proceedings of the 10th workshop on Mobile Computing Systems
and Applications, page 5. ACM, 2009.

[85] S. Dixon. Onset Detection Revisited. In Proc. of the Int. Conf. on Digital Audio
Effects (DAFx-06), pages 133–137, Montreal, Quebec, Canada, Sept. 2006.

[86] S. Elmalaki, L. Wanner, and M. Srivastava. CAreDroid: Adaptation framework for
android context-aware applications. In Proceedings of the 21st Annual International
Conference on Mobile Computing and Networking, MobiCom ’15, pages 386–399,
New York, NY, USA, 2015. ACM.

[87] B. Fang, N. D. Lane, M. Zhang, A. Boran, and F. Kawsar. BodyScan: Enabling
radio-based sensing on wearable devices for contactless activity and vital sign mon-
itoring. In Proceedings of the 14th Annual International Conference on Mobile Sys-
tems, Applications, and Services, MobiSys ’16, pages 97–110, New York, NY, USA,
2016. ACM.

BIBLIOGRAPHY 155

[88] Z. Fang, Z. Guoliang, and S. Zhanjiang. Comparison of different implementations of
MFCC. J. Comput. Sci. Technol., 16(6):582–589, Nov. 2001.

[89] J. Gemmell, G. Bell, and R. Lueder. MyLifeBits: a personal database for everything.
Communications of the ACM (CACM), 49(1):88–95, January 2006. also as MSR-TR-
2006-23.

[90] P. Georgiev, S. Bhattacharya, N. D. Lane, and C. Mascolo. Low-resource multi-
task audio sensing for mobile and embedded devices via shared deep neural network
representations. In Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies (IMWUT), 2017.

[91] P. Georgiev, N. D. Lane, C. Mascolo, and D. Chu. Accelerating mobile audio sensing
algorithms through on-chip gpu offloading. In Proceedings of the 15th Annual In-
ternational Conference on Mobile Systems, Applications, and Services, MobiSys ’17,
pages 306–318, New York, NY, USA, 2017. ACM.

[92] P. Georgiev, N. D. Lane, K. K. Rachuri, and C. Mascolo. DSP.Ear: Leveraging
co-processor support for continuous audio sensing on smartphones. In Proceedings of
the 12th ACM Conference on Embedded Network Sensor Systems, SenSys ’14, pages
295–309, New York, NY, USA, 2014. ACM.

[93] P. Georgiev, N. D. Lane, K. K. Rachuri, and C. Mascolo. LEO: Scheduling sensor
inference algorithms across heterogeneous mobile processors and network resources.
In Proceedings of the 22Nd Annual International Conference on Mobile Computing
and Networking, MobiCom ’16, pages 320–333, New York, NY, USA, 2016. ACM.

[94] P. Georgiev, A. Noulas, and C. Mascolo. The call of the crowd: Event participation
in location-based social services. CoRR, abs/1403.7657, 2014.

[95] P. Georgiev, A. Noulas, and C. Mascolo. Where businesses thrive: Predicting the
impact of the Olympic Games on local retailers through location-based services data.
CoRR, abs/1403.7654, 2014.

[96] Y. Gong, L. Liu, M. Yang, and L. D. Bourdev. Compressing deep convolutional
networks using vector quantization. ICLR-15, 2015.

[97] K. Gupta and J. D. Owens. Compute & memory optimizations for high-quality
speech recognition on low-end GPU processors. In Proceedings of the 2011 18th
International Conference on High Performance Computing, HIPC ’11, pages 1–10,
Washington, DC, USA, 2011. IEEE Computer Society.

[98] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan. Towards
wearable cognitive assistance. In Proceedings of the 12th Annual International Con-
ference on Mobile Systems, Applications, and Services, MobiSys ’14, pages 68–81,
New York, NY, USA, 2014. ACM.

156 BIBLIOGRAPHY

[99] K. Ha, P. Pillai, W. Richter, Y. Abe, and M. Satyanarayanan. Just-in-time provision-
ing for cyber foraging. In Proceeding of the 11th Annual International Conference on
Mobile Systems, Applications, and Services, MobiSys ’13, pages 153–166, New York,
NY, USA, 2013. ACM.

[100] K. Han, D. Yu, and I. Tashev. Speech emotion recognition using deep neural network
and extreme learning machine. In Fifteenth Annual Conference of the International
Speech Communication Association, 2014.

[101] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: A GPU-accelerated software
router. In Proceedings of the ACM SIGCOMM 2010 Conference, SIGCOMM ’10,
pages 195–206, New York, NY, USA, 2010. ACM.

[102] S. Han, J. Pool, J. Tran, and W. J. Dally. Learning both weights and connections
for efficient neural networks. NIPS-15, 2015.

[103] T. He, Y. Fan, Y. Qian, T. Tan, and K. Yu. Reshaping deep neural network for fast
decoding by node-pruning. In ICASSP-14, May 4-9, 2014, pages 245–249, 2014.

[104] S. Hemminki, P. Nurmi, and S. Tarkoma. Accelerometer-based transportation mode
detection on smartphones. In Proceedings of the 11th ACM Conference on Embedded
Networked Sensor Systems, SenSys ’13, pages 13:1–13:14, New York, NY, USA, 2013.
ACM.

[105] H. Hermansky. Perceptual linear predictive (PLP) analysis of speech. J. Acoust. Soc.
Am., 57(4):1738–52, Apr. 1990.

[106] G. Hinton, L. Deng, D. Yu, A. rahman Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. S. G. Dahl, and B. Kingsbury. Deep neural networks for acoustic mod-
eling in speech recognition. IEEE Signal Processing Magazine, 29(6):82–97, Novem-
ber 2012.

[107] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief
nets. Neural Comput., 18(7):1527–1554, July 2006.

[108] S. Hodges, L. Williams, E. Berry, S. Izadi, J. Srinivasan, A. Butler, G. Smyth,
N. Kapur, and K. Wood. SenseCam: A retrospective memory aid. In UbiComp
2006: Ubiquitous Computing, pages 177–193. Springer, 2006.

[109] A. H. Hormati, M. Samadi, M. Woh, T. Mudge, and S. Mahlke. Sponge: Portable
stream programming on graphics engines. In Proceedings of the Sixteenth Interna-
tional Conference on Architectural Support for Programming Languages and Operat-
ing Systems, ASPLOS XVI, pages 381–392, New York, NY, USA, 2011. ACM.

[110] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and P. Bahl. Anatomizing
application performance differences on smartphones. In Proceedings of the 8th In-
ternational Conference on Mobile Systems, Applications, and Services, MobiSys ’10,
pages 165–178, New York, NY, USA, 2010. ACM.

BIBLIOGRAPHY 157

[111] J.-T. Huang, J. Li, D. Yu, L. Deng, and Y. Gong. Cross-language knowledge transfer
using multilingual deep neural network with shared hidden layers. In ICASSP-13,
May 2013.

[112] A. Huqqani, E. Schikuta, S. Yea, and P. Chena. Multicore and GPU parallelization of
neural networks for face recognition. In International Conference on Computational
Science, ICCS, Procedia Computer Science, pages 349–358, London, UK, June 2013.
Elsevier.

[113] K. Jang, S. Han, S. Han, S. Moon, and K. Park. SSLShader: Cheap SSL accelera-
tion with commodity processors. In Proceedings of the 8th USENIX Conference on
Networked Systems Design and Implementation, NSDI’11, pages 1–14, Berkeley, CA,
USA, 2011. USENIX Association.

[114] S. Ji, W. Xu, M. Yang, and K. Yu. 3D convolutional neural networks for human
action recognition. IEEE Trans. Pattern Anal. Mach. Intell., 35(1):221–231, Jan.
2013.

[115] A. Jog, O. Kayiran, N. Chidambaram Nachiappan, A. K. Mishra, M. T. Kandemir,
O. Mutlu, R. Iyer, and C. R. Das. OWL: Cooperative thread array aware scheduling
techniques for improving GPGPU performance. In Proceedings of the Eighteenth
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’13, pages 395–406, New York, NY, USA, 2013. ACM.

[116] Y. Ju, Y. Lee, J. Yu, C. Min, I. Shin, and J. Song. SymPhoney: A coordinated sensing
flow execution engine for concurrent mobile sensing applications. In Proceedings of
the 10th ACM Conference on Embedded Network Sensor Systems, SenSys ’12, pages
211–224, New York, NY, USA, 2012. ACM.

[117] S. E. Kahou, C. Pal, X. Bouthillier, P. Froumenty, c. Gülçehre, R. Memisevic,
P. Vincent, A. Courville, Y. Bengio, R. C. Ferrari, M. Mirza, S. Jean, P.-L. Car-
rier, Y. Dauphin, N. Boulanger-Lewandowski, A. Aggarwal, J. Zumer, P. Lamblin,
J.-P. Raymond, G. Desjardins, R. Pascanu, D. Warde-Farley, A. Torabi, A. Sharma,
E. Bengio, M. Côté, K. R. Konda, and Z. Wu. Combining modality specific deep
neural networks for emotion recognition in video. In Proceedings of the 15th ACM on
International Conference on Multimodal Interaction, ICMI ’13, pages 543–550, New
York, NY, USA, 2013. ACM.

[118] S. Kang, J. Lee, H. Jang, H. Lee, Y. Lee, S. Park, T. Park, and J. Song. SeeMon:
Scalable and energy-efficient context monitoring framework for sensor-rich mobile
environments. In Proceedings of the 6th International Conference on Mobile Systems,
Applications, and Services, MobiSys ’08, pages 267–280, New York, NY, USA, 2008.
ACM.

[119] S. Kang, Y. Lee, C. Min, Y. Ju, T. Park, J. Lee, Y. Rhee, and J. Song. Orches-
trator: An active resource orchestration framework for mobile context monitoring in
sensor-rich mobile environments. In Eigth Annual IEEE International Conference

158 BIBLIOGRAPHY

on Pervasive Computing and Communications, PerCom 2010, March 29 - April 2,
2010, Mannheim, Germany, pages 135–144, 2010.

[120] D. H. Kim, Y. Kim, D. Estrin, and M. B. Srivastava. SensLoc: Sensing everyday
places and paths using less energy. In Proceedings of the 8th ACM Conference on
Embedded Networked Sensor Systems, SenSys ’10, pages 43–56, New York, NY, USA,
2010. ACM.

[121] D. B. Kirk and W.-m. W. Hwu. Programming Massively Parallel Processors: A
Hands-on Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1st edition, 2010.

[122] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro, and
F. Kawsar. DeepX: A software accelerator for low-power deep learning inference
on mobile devices. In 15th ACM/IEEE International Conference on Information
Processing in Sensor Networks, IPSN 2016, Vienna, Austria, April 11-14, 2016,
pages 1–12, 2016.

[123] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, and F. Kawsar. An early
resource characterization of deep learning on wearables, smartphones and internet-
of-things devices. In Proceedings of the 2015 International Workshop on Internet of
Things Towards Applications, IoT-App ’15, pages 7–12, New York, NY, USA, 2015.
ACM.

[124] N. D. Lane, Y. Chon, L. Zhou, Y. Zhang, F. Li, D. Kim, G. Ding, F. Zhao, and
H. Cha. Piggyback crowdsensing (PCS): Energy efficient crowdsourcing of mobile
sensor data by exploiting smartphone app opportunities. In Proceedings of the 11th
ACM Conference on Embedded Networked Sensor Systems, SenSys ’13, pages 7:1–
7:14, New York, NY, USA, 2013. ACM.

[125] N. D. Lane and P. Georgiev. Can deep learning revolutionize mobile sensing? In
Proceedings of the 16th International Workshop on Mobile Computing Systems and
Applications, HotMobile ’15, pages 117–122, New York, NY, USA, 2015. ACM.

[126] N. D. Lane, P. Georgiev, C. Mascolo, and Y. Gao. ZOE: A cloud-less dialog-enabled
continuous sensing wearable exploiting heterogeneous computation. In Proceedings
of the 13th Annual International Conference on Mobile Systems, Applications, and
Services, MobiSys ’15, pages 273–286, New York, NY, USA, 2015. ACM.

[127] N. D. Lane, P. Georgiev, and L. Qendro. DeepEar: Robust smartphone audio sensing
in unconstrained acoustic environments using deep learning. In Proceedings of the
2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing,
UbiComp ’15, pages 283–294, New York, NY, USA, 2015. ACM.

[128] N. D. Lane, M. Lin, M. Rabi, X. Yang, A. Doryab, H. Lu, S. Ali, T. Choudhury,
A. Campbell, and E. Berke. Bewell: A smartphone application to monitor, model
and promote wellbeing. IEEE Press, 2011.

BIBLIOGRAPHY 159

[129] H. Lee, P. Pham, Y. Largman, and A. Y. Ng. Unsupervised feature learning for audio
classification using convolutional deep belief networks. In NIPS-09, pages 1096–1104.
Curran Associates, Inc., 2009.

[130] Y. Lee, C. Min, C. Hwang, J. Lee, I. Hwang, Y. Ju, C. Yoo, M. Moon, U. Lee, and
J. Song. SocioPhone: Everyday face-to-face interaction monitoring platform using
multi-phone sensor fusion. In Proceeding of the 11th Annual International Conference
on Mobile Systems, Applications, and Services, MobiSys ’13, pages 375–388, New
York, NY, USA, 2013. ACM.

[131] D. Li, I. K. Sethi, N. Dimitrova, and T. McGee. Classification of general audio data
for content-based retrieval. Pattern Recognition Letters, 22(5):533–544, 2001.

[132] T. Li. Musical genre classification of audio signals. In IEEE Transactions on Speech
and Audio Processing, pages 293–302, 2002.

[133] X. Li, L. Zhao, L. Wei, M. Yang, F. Wu, Y. Zhuang, H. Ling, and J. Wang. Deep-
Saliency: Multi-task deep neural network model for salient object detection. CoRR,
abs/1510.05484, 2015.

[134] M. Liberman, K. Davis, M. Grossman, N. Martey, and J. Bell. Emotional prosody
speech and transcripts. 2002.

[135] R. LiKamWa, Y. Liu, N. D. Lane, and L. Zhong. MoodScope: Building a mood sensor
from smartphone usage patterns. In Proceeding of the 11th Annual International
Conference on Mobile Systems, Applications, and Services, MobiSys ’13, pages 389–
402, New York, NY, USA, 2013. ACM.

[136] R. LiKamWa, Z. Wang, A. Carroll, F. X. Lin, and L. Zhong. Draining our glass: An
energy and heat characterization of google glass. CoRR, abs/1404.1320, 2014.

[137] F. X. Lin, Z. Wang, R. LiKamWa, and L. Zhong. Reflex: Using low-power pro-
cessors in smartphones without knowing them. In Proceedings of the Seventeenth
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XVII, pages 13–24, New York, NY, USA, 2012. ACM.

[138] K. Lin, A. Kansal, D. Lymberopoulos, and F. Zhao. Energy-accuracy trade-off for
continuous mobile device location. In Proceedings of the 8th International Conference
on Mobile Systems, Applications, and Services, MobiSys ’10, pages 285–298, New
York, NY, USA, 2010. ACM.

[139] X. Liu, J. Gao, X. He, L. Deng, K. Duh, and Y. Wang. Representation learning using
multi-task deep neural networks for semantic classification and information retrieval.
In NAACL HLT 2015, The 2015 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Denver,
Colorado, USA, May 31 - June 5, 2015, pages 912–921, 2015.

[140] H. Lu, A. J. B. Brush, B. Priyantha, A. K. Karlson, and J. Liu. SpeakerSense: Energy

160 BIBLIOGRAPHY

efficient unobtrusive speaker identification on mobile phones. In Proceedings of the
9th International Conference on Pervasive Computing, Pervasive’11, pages 188–205,
Berlin, Heidelberg, 2011. Springer-Verlag.

[141] H. Lu, D. Frauendorfer, M. Rabbi, M. S. Mast, G. T. Chittaranjan, A. T. Campbell,
D. Gatica-Perez, and T. Choudhury. StressSense: Detecting stress in unconstrained
acoustic environments using smartphones. In Proceedings of the 2012 ACM Confer-
ence on Ubiquitous Computing, UbiComp ’12, pages 351–360, New York, NY, USA,
2012. ACM.

[142] H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T. Campbell. SoundSense: Scal-
able sound sensing for people-centric applications on mobile phones. In Proceedings
of the 7th International Conference on Mobile Systems, Applications, and Services,
MobiSys ’09, pages 165–178, New York, NY, USA, 2009. ACM.

[143] H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and A. T. Campbell. The jigsaw
continuous sensing engine for mobile phone applications. In Proceedings of the 8th
ACM Conference on Embedded Networked Sensor Systems, SenSys ’10, pages 71–84,
New York, NY, USA, 2010. ACM.

[144] C. Luo and M. C. Chan. SocialWeaver: Collaborative inference of human conver-
sation networks using smartphones. In Proceedings of the 11th ACM Conference on
Embedded Networked Sensor Systems, SenSys ’13, pages 20:1–20:14, New York, NY,
USA, 2013. ACM.

[145] A. Mayberry, P. Hu, B. Marlin, C. Salthouse, and D. Ganesan. iShadow: Design
of a wearable, real-time mobile gaze tracker. In Proceedings of the 12th Annual
International Conference on Mobile Systems, Applications, and Services, MobiSys
’14, pages 82–94, New York, NY, USA, 2014. ACM.

[146] W. S. McCulloch and W. Pitts. A Logical Calculus of the Ideas Immanent in Nervous
Activity. Bulletin of Mathematical Biology, 5(4):115–133, Dec 1943.

[147] I. McLoughlin, H. Zhang, Z. Xie, Y. Song, and W. Xiao. Robust sound event classifi-
cation using deep neural networks. Trans. Audio, Speech and Lang. Proc., 23(3):540–
552, Mar. 2015.

[148] S. Mittal. A survey of techniques for approximate computing. ACM Comput. Surv.,
48(4):62:1–62:33, Mar. 2016.

[149] D. Mizell. Using gravity to estimate accelerometer orientation. In Proceedings of the
7th IEEE International Symposium on Wearable Computers, ISWC ’03, pages 252–,
Washington, DC, USA, 2003. IEEE Computer Society.

[150] M.-M. Moazzami, D. E. Phillips, R. Tan, and G. Xing. ORBIT: A smartphone-based
platform for data-intensive embedded sensing applications. In Proceedings of the 14th
International Conference on Information Processing in Sensor Networks, IPSN ’15,
pages 83–94, New York, NY, USA, 2015. ACM.

BIBLIOGRAPHY 161

[151] P. Mohan, V. N. Padmanabhan, and R. Ramjee. Nericell: Rich monitoring of road
and traffic conditions using mobile smartphones. In Proceedings of the 6th ACM
Conference on Embedded Network Sensor Systems, SenSys ’08, pages 323–336, New
York, NY, USA, 2008. ACM.

[152] P. Moscato. On evolution, search, optimization, genetic algorithms and martial arts:
Towards memetic algorithms. Technical Report C3P Report 826, California Institute
of Technology, 1989.

[153] S. Nath. ACE: Exploiting correlation for energy-efficient and continuous context
sensing. In Proceedings of the 10th International Conference on Mobile Systems,
Applications, and Services, MobiSys ’12, pages 29–42, New York, NY, USA, 2012.
ACM.

[154] R. Newton, S. Toledo, L. Girod, H. Balakrishnan, and S. Madden. Wishbone: Prole-
based Partitioning for Sensornet Applications. In NSDI 2009, Boston, MA, April
2009.

[155] S. Nirjon, R. Dickerson, J. Stankovic, G. Shen, and X. Jiang. sMFCC: Exploiting
sparseness in speech for fast acoustic feature extraction on mobile devices – a feasi-
bility study. In Proceedings of the 14th Workshop on Mobile Computing Systems and
Applications, HotMobile ’13, pages 8:1–8:6, New York, NY, USA, 2013. ACM.

[156] S. Nirjon, R. F. Dickerson, P. Asare, Q. Li, D. Hong, J. A. Stankovic, P. Hu, G. Shen,
and X. Jiang. Auditeur: A mobile-cloud service platform for acoustic event detec-
tion on smartphones. In Proceeding of the 11th Annual International Conference on
Mobile Systems, Applications, and Services, MobiSys ’13, pages 403–416, New York,
NY, USA, 2013. ACM.

[157] S. Ntalampiras, I. Potamitis, and N. Fakotakis. Acoustic detection of human activi-
ties in natural environments. Journal of Audio Engineering Society, 2012 2012.

[158] I. K. Park, N. Singhal, M. H. Lee, S. Cho, and C. Kim. Design and performance
evaluation of image processing algorithms on GPUs. IEEE Trans. Parallel Distrib.
Syst., 22(1):91–104, Jan. 2011.

[159] T. Plötz, N. Y. Hammerla, and P. Olivier. Feature learning for activity recognition
in ubiquitous computing. In Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence - Volume Volume Two, IJCAI’11, pages 1729–
1734. AAAI Press, 2011.

[160] B. Priyantha, D. Lymberopoulos, and J. Liu. LittleRock: Enabling energy-efficient
continuous sensing on mobile phones. IEEE Pervasive Computing, 10(2):12–15, 2011.

[161] M. Ra, A. Sheth, L. B. Mummert, P. Pillai, D. Wetherall, and R. Govindan. Odessa:
enabling interactive perception applications on mobile devices. In Proceedings of the
9th International Conference on Mobile Systems, Applications, and Services (Mo-
biSys 2011), Bethesda, MD, USA, June 28 - July 01, 2011, pages 43–56, 2011.

162 BIBLIOGRAPHY

[162] M.-R. Ra, B. Priyantha, A. Kansal, and J. Liu. Improving energy efficiency of
personal sensing applications with heterogeneous multi-processors. In Proceedings
of the 2012 ACM Conference on Ubiquitous Computing, UbiComp ’12, pages 1–10,
New York, NY, USA, 2012. ACM.

[163] M. Rabbi, S. Ali, T. Choudhury, and E. Berke. Passive and in-situ assessment of
mental and physical well-being using mobile sensors. In Proceedings of the 13th
International Conference on Ubiquitous Computing, UbiComp ’11, pages 385–394,
New York, NY, USA, 2011. ACM.

[164] L. R. Rabiner. Readings in speech recognition. chapter A Tutorial on Hidden Markov
Models and Selected Applications in Speech Recognition, pages 267–296. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1990.

[165] K. K. Rachuri, C. Mascolo, M. Musolesi, and P. J. Rentfrow. SociableSense: Explor-
ing the trade-offs of adaptive sampling and computation offloading for social sensing.
In Proceedings of the 17th Annual International Conference on Mobile Computing
and Networking, MobiCom ’11, pages 73–84, New York, NY, USA, 2011. ACM.

[166] K. K. Rachuri, M. Musolesi, C. Mascolo, P. J. Rentfrow, C. Longworth, and A. Auci-
nas. EmotionSense: A mobile phones based adaptive platform for experimental social
psychology research. In Proceedings of the 12th ACM International Conference on
Ubiquitous Computing, Ubicomp ’10, pages 281–290, New York, NY, USA, 2010.
ACM.

[167] T. Rahman, A. T. Adams, M. Zhang, E. Cherry, B. Zhou, H. Peng, and T. Choud-
hury. BodyBeat: A mobile system for sensing non-speech body sounds. In Proceedings
of the 12th Annual International Conference on Mobile Systems, Applications, and
Services, MobiSys ’14, pages 2–13, New York, NY, USA, 2014. ACM.

[168] A. Rakotomamonjy and G. Gasso. Histogram of gradients of time-frequency repre-
sentations for audio scene detection. CoRR, abs/1508.04909, 2015.

[169] S. Rallapalli, A. Ganesan, K. Chintalapudi, V. N. Padmanabhan, and L. Qiu. En-
abling physical analytics in retail stores using smart glasses. In Proceedings of the
20th Annual International Conference on Mobile Computing and Networking, Mobi-
Com ’14, pages 115–126, New York, NY, USA, 2014. ACM.

[170] L. Ravindranath, A. Thiagarajan, H. Balakrishnan, and S. Madden. Code in the air:
Simplifying sensing and coordination tasks on smartphones. In Proceedings of the
Twelfth Workshop on Mobile Computing Systems & Applications, HotMobile
’12, pages 4:1–4:6, New York, NY, USA, 2012. ACM.

[171] D. A. Reynolds. Gaussian mixture models. In Encyclopedia of Biometrics, Second
Edition, pages 827–832. 2015.

[172] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and E. Witchel. PTask: Operating
system abstractions to manage GPUs as compute devices. In Proceedings of the

BIBLIOGRAPHY 163

Twenty-Third ACM Symposium on Operating Systems Principles, SOSP ’11, pages
233–248, New York, NY, USA, 2011. ACM.

[173] J. Saunders. Real-time discrimination of broadcast speech/music. In Proceedings of
the Acoustics, Speech, and Signal Processing, 1996. On Conference Proceedings., 1996
IEEE International Conference - Volume 02, ICASSP ’96, pages 993–996, Washing-
ton, DC, USA, 1996. IEEE Computer Society.

[174] E. Scheirer and M. Slaney. Construction and evaluation of a robust multifeature
speech/music discriminator. In Proceedings of the 1997 IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP ’97)-Volume 2 - Volume
2, ICASSP ’97, pages 1331–, Washington, DC, USA, 1997. IEEE Computer Society.

[175] C. Shen, S. Chakraborty, K. R. Raghavan, H. Choi, and M. B. Srivastava. Exploiting
processor heterogeneity for energy efficient context inference on mobile phones. In
Proceedings of the Workshop on Power-Aware Computing and Systems, HotPower
’13, pages 9:1–9:5, New York, NY, USA, 2013. ACM.

[176] H. Shen, A. Balasubramanian, A. LaMarca, and D. Wetherall. Enhancing mobile
apps to use sensor hubs without programmer effort. In Proceedings of the 2015 ACM
International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp
’15, pages 227–238, New York, NY, USA, 2015. ACM.

[177] N. Singhal, I. K. Park, and S. Cho. Implementation and optimization of image
processing algorithms on handheld GPU. In Image Processing (ICIP), 2010 17th
IEEE International Conference on, pages 4481–4484, Sept 2010.

[178] M. Smith and T. Barnwell. A new filter bank theory for time-frequency representa-
tion. IEEE Transactions on Acoustics, Speech, and Signal Processing, 35(3):314–327,
Mar 1987.

[179] J. Sorber, N. Banerjee, M. D. Corner, and S. Rollins. Turducken: Hierarchical power
management for mobile devices. In Proceedings of the 3rd International Conference
on Mobile Systems, Applications, and Services, MobiSys ’05, pages 261–274, New
York, NY, USA, 2005. ACM.

[180] W.-T. Tan, M. Baker, B. Lee, and R. Samadani. The sound of silence. In Proceedings
of the 11th ACM Conference on Embedded Networked Sensor Systems, SenSys ’13,
pages 19:1–19:14, New York, NY, USA, 2013. ACM.

[181] Theano Development Team. Theano: A Python framework for fast computation of
mathematical expressions. arXiv e-prints, abs/1605.02688, May 2016.

[182] E. Variani, X. Lei, E. McDermott, I. L. Moreno, and J. Gonzalez-Dominguez. Deep
neural networks for small footprint text-dependent speaker verification. In ICASSP-
14, pages 4052–4056. IEEE, 2014.

[183] S. Verma, A. Robinson, and P. Dutta. AudioDAQ: Turning the mobile phone’s

164 BIBLIOGRAPHY

ubiquitous headset port into a universal data acquisition interface. In Proceedings of
the 10th ACM Conference on Embedded Network Sensor Systems, SenSys ’12, pages
197–210, New York, NY, USA, 2012. ACM.

[184] D. Wagner, A. Rice, and A. Beresford. Device analyzer: Understanding smartphone
usage. In 10th International Conference on Mobile and Ubiquitous Systems: Com-
puting, Networking and Services, 2013.

[185] G. Wang, Y. Xiong, J. Yun, and J. R. Cavallaro. Accelerating computer vision
algorithms using OpenCL framework on the mobile GPU - a case study. In ICASSP,
pages 2629–2633. IEEE, 2013.

[186] H. Wang, D. Lymberopoulos, and J. Liu. Local business ambience characterization
through mobile audio sensing. In Proceedings of the 23rd International Conference
on World Wide Web, WWW ’14, pages 293–304, New York, NY, USA, 2014. ACM.

[187] Y. Wang, J. Lin, M. Annavaram, Q. A. Jacobson, J. Hong, B. Krishnamachari, and
N. Sadeh. A framework of energy efficient mobile sensing for automatic user state
recognition. In Proceedings of the 7th International Conference on Mobile Systems,
Applications, and Services, MobiSys ’09, pages 179–192, New York, NY, USA, 2009.
ACM.

[188] Z. Wu, T. Kinnunen, N. Evans, J. Yamagishi, C. Hanilci, M. Sahidullah, and A. Sizov.
ASVspoof 2015: the first automatic speaker verification spoofing and countermea-
sures challenge. In INTERSPEECH 2015, Automatic Speaker Verification Spoofing
and Countermeasures Challenge, colocated with INTERSPEECH 2015, September
6-10, 2015, Dresden, Germany, Dresden, ALLEMAGNE, 09 2015.

[189] C. Xu, S. Li, G. Liu, Y. Zhang, E. Miluzzo, Y.-F. Chen, J. Li, and B. Firner.
Crowd++: Unsupervised speaker count with smartphones. In Proceedings of the
2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing,
UbiComp ’13, pages 43–52, New York, NY, USA, 2013. ACM.

[190] R. Xu, H. Säıdi, and R. Anderson. Aurasium: Practical policy enforcement for
android applications. In Presented as part of the 21st USENIX Security Symposium
(USENIX Security 12), pages 539–552, Bellevue, WA, 2012. USENIX.

[191] J. Xue, J. Li, and Y. Gong. Restructuring of deep neural network acoustic mod-
els with singular value decomposition. In F. Bimbot, C. Cerisara, C. Fougeron,
G. Gravier, L. Lamel, F. Pellegrino, and P. Perrier, editors, INTERSPEECH, pages
2365–2369. ISCA, 2013.

[192] B. Yan and G. Chen. AppJoy: Personalized mobile application discovery. In Pro-
ceedings of the 9th International Conference on Mobile Systems, Applications, and
Services.

[193] M. D. Zeiler, M. Ranzato, R. Monga, M. Z. Mao, K. Yang, Q. V. Le, P. Nguyen,
A. W. Senior, V. Vanhoucke, J. Dean, and G. E. Hinton. On rectified linear units

BIBLIOGRAPHY 165

for speech processing. In IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP 2013, Vancouver, BC, Canada, May 26-31, 2013, pages
3517–3521, 2013.

[194] D. Zhang, T. He, Y. Liu, Y. Gu, F. Ye, R. K. Ganti, and H. Lei. Acc: Generic on-
demand accelerations for neighbor discovery in mobile applications. In Proceedings of
the 10th ACM Conference on Embedded Network Sensor Systems, SenSys ’12, pages
169–182, New York, NY, USA, 2012. ACM.

[195] E. Z. Zhang, Y. Jiang, Z. Guo, K. Tian, and X. Shen. On-the-fly elimination of dy-
namic irregularities for GPU computing. In Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS XVI, pages 369–380, New York, NY, USA, 2011. ACM.

[196] I. Zhang, A. Szekeres, D. V. Aken, I. Ackerman, S. D. Gribble, A. Krishnamurthy,
and H. M. Levy. Customizable and extensible deployment for mobile/cloud applica-
tions. In 11th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14), pages 97–112, Broomfield, CO, Oct. 2014. USENIX Association.

[197] Y. Zhang, K. Adl, and J. Glass. Fast spoken query detection using lower-bound
dynamic time warping on graphical processing units. In In Proc. ICASSP, pages
5173–5176, 2012.

[198] M. Zhao, F. Adib, and D. Katabi. Emotion recognition using wireless signals. In
Proceedings of the 22Nd Annual International Conference on Mobile Computing and
Networking, MobiCom ’16, pages 95–108, New York, NY, USA, 2016. ACM.

[199] G. Zhou, J. H. L. Hansen, and J. F. Kaiser. Nonlinear feature based classification of
speech under stress. IEEE Transactions on Speech and Audio Processing, 9(3):201–
216, 2001.

