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Summary

Location-based social networks have attracted the interest of millions of users who can now

not only connect and interact with their friends, as in the case of traditional online social

networks, but can share their whereabouts in real time exploiting GPS sensors embedded

in smartphones with Internet connectivity. Real world places are a core entity of location-

based social networks and as users transit between them, urban mobility is represented

with unprecedented richness in terms of geographic scale and spatial granularity. As

a consequence, location-based services offer new opportunities in the space of mobile

applications, but also the potential to allow large scale empirical validation of theories of

human movement. However, this new data paradigm comes with the sparsity that is a

direct consequence of the heavy-tailed distributions characterising user activity in online

social services.

In this dissertation, we perform an analysis of millions of user movements in 34 large

metropolitan areas around the world. Our initial observation is that there is significant

heterogeneity across cities when considering the statistical properties presented by the

movement of users in the urban setting. We identify the source of this heterogeneity to

be variations in the geographic density of places across different urban environments. In

particular, we discover that in human urban movement it is the relative density between

the origin and the destination place that matters - not their absolute geographic distance.

Next, we address a mobility prediction scenario whose application aim is the recommen-

dation of the next place to be visited by a mobile user in real time. Since the limited

availability of historic information for each user impedes the use of prediction frameworks

that model specifically the movements of an individual, we propose a novel supervised

learning training strategy that relies on information built according to the place prefer-

ences of user collectives. Finally, we highlight that almost two out of three places visited

by users in location-based social networks are new places, not observed being visited by

that user historically. In the light of this observation the problem is set to be the rec-

ommendation of new venues for mobile users to visit in future time periods. We show

how state of the art online filtering algorithms are outperformed by a random walk with

restart method that is able to seamlessly combine multiple data signals and cope with the

sparse representations of users in the service.
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1
Introduction

Location-based services correspond to a relatively recent advancement in the space of the

World Wide Web and, more broadly, Computer Science. This is an evolution tightly knit

to processes driven by the increasingly popular use of computationally powerful mobile

devices, commonly known as smartphones, that have provided the web users with the

ability to access on-line services as they are on the move and, literally, from any place

on the planet where Internet connectivity is present. Prominent representatives of the

class of location-based services are location-based social networks (LBSNs). These are

systems that allow users to connect and interact with their friends on-line, as happens in

traditional on-line social networks, but with the additional feature that these interactions

are focused on real world places.

As millions of users exploit location-based social networks, they generate sequences of dig-

ital mobility traces whose scale in terms of numbers of users involved, geographic reach

and spatio-temporal granularity is unprecedented. This comes into direct contrast with

previous methods used by scientists to collect datasets that describe human movement;

population survey methods employed typically by urbanists have been of high economic

costs and rather static in recording the temporal dimension of movement, while sensor

based methods instrumented by computer scientists in recent years could only be de-

ployed on a small number of participants and for a finite period of time. Furthermore,

datasets which describe movement and are owned by large telecommunication providers

have become only sporadically available for privacy and economic reasons.

But what are really the opportunities offered by the exploitation of mobility datasets

generated in location-based social networks for science, in general, and computer science
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more specifically? There has been extensive literature published that attempts to explain

human movement and migration patterns. Scholarship on human mobility has been multi-

disciplinary in nature and stretches from fields in the social sciences, such as anthropology

and sociology, to areas of natural sciences such as physics. Thus, empirical data on

human mobility sourced from the new generation of mobile web services can be helpful to

compare and validate models and theories that have been enabled by scientists to explain

the motives behind human mobility and even predict the future movements of individuals.

Yet, as data from the mobile web is able to put under scrutiny classical models of human

movement, there is a feedback process that computer scientists can exploit towards the

design and development of a new generation of mobile application and services, in the

context of which, location and human mobility play an important role. Indeed, in order to

extend well-established applications of computer science such as search and recommender

systems and deploy them geographically, we need to understand how the users of these

services decide to move across space. To this end, measuring how factors such as the cost

of distance or the attractiveness of popular places, to give an example, affect the mobility

of individual users is fundamental. Further, it is questionable whether the performance of

algorithms and models that have been successful in the online setting will remain intact

upon their migration to mobile platforms and systems.

Besides the direct effect of human movement on user interaction with mobile applica-

tions, there are challenges that have to do primarily with the characteristics of these

new data and their subsequent integration in computational models. The fact that, for

instance, in location-based social networks data is generated by humans already implies

the potential presence of bursty activity and highly skewed frequency of use distribu-

tions [Bar05, VOD+06]. This in turn can lead to extremely sparse representations of

users in these systems that could have profound implications for the algorithms employed

to provide a mobile service. As a consequence, in this dissertation, my aim will not only

be the empirical validation of past mobility theories in the light of new data and un-

derstanding how these can benefit computer science models, but in addition, I will look

for ways to mine these datasets so as to build appropriate features for machine learning

algorithms to function effectively in the context of human mobility applications.

So far and despite the fact that location-based social networks are at an early stage of ma-

turity, considering that they have not yet reached the order of hundreds of millions of users

similarly to the big players in the market of online social networks, such as Facebook 1 or

Twitter 2, their impact in research is noticeable across many areas of computing. Local

search [SSSH13], urban computing and neighbourhood modelling [CSHS12], spatial social

network analysis [CTH+10, SNLM11], human mobility [CML11], mobility privacy [PZ10]

and natural language processing [BNÓS+12] are a few example cases, amongst an existing

plethora, where the multi-dimensional signal captured by data in location-based services

1www.facebook.com
2www.twitter.com
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has already resulted in important contributions. More relevant to this dissertation will

be applications in the area of mobile recommendations and, in particular, the recommen-

dations of places for mobile users to visit as they explore a city. The commercial interest

of this application area is promising due to its link with location-based advertising and

mobile commerce. In order to realise this interest, however, one has to understand how

mobile users choose to move to places and subsequently manage this data in such a manner

that mobile applications can benefit their users.

1.1 A historic perspective of human movement stud-

ies

In this section I provide a brief, data-centric, view of human mobility studies. I begin

with an introduction to how survey based methods and census datasets initiated empirical

research describing human migration patterns, in Section 1.1.1. Subsequently, I continue

with the description of a more recent case that changed the way scientists would study

movement, that is, location data extracted from communication interactions observed in

cellular networks. As we shall see in Section 1.1.2, the latter, enabled a paradigm shift

to the spatio-temporal scale of acquiring mobility records for large populations and led

to important breakthroughs regarding our understanding of human movement. However,

there were also limitations that mainly related to the accessibility of these data by the

research community. I discuss those topics in more detail next.

1.1.1 Human mobility through traditional survey based meth-

ods and census data

The first modern attempt to understand human movement in formal terms took place

in 1885 when E.G. Ravenstein published his work, The Laws of Migration [Rav85], in

the Journal of the Statistical Society. Being provoked by the remarks of Dr. William

Farr who stated the fact that human migration appeared to go on without any definitive

law [Tob95], Ravenstein analysed census data in the United Kingdom and highlighted

important patterns and regularities of population movements amongst the Irish, British

and Scottish Kingdoms. Ravenstein supported his work empirically with census data

where migration movements of millions of individuals were recorded and, amongst others,

he noted the following:

• Most migration is over a short distance.

• Long range migrants usually move to urban areas.

• Migration increases with economic development.
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These statements were one of the first attempts to frame the understanding of human

mobility in terms of empirical observation. They suggest that distance has a deterring

effect on mobility, that the mass of opportunities represent an attractor for movements

and that economic growth accelerates it (perhaps due to favouring the means to overcome

distance related costs). Since then, a large volume of work aiming to analyse, model and

ultimately understand the process of human migration has appeared [Sja62, Lee66, Gre75,

Zel71]. Datasets collected through surveys of human participants, however, have provided

only a very static viewpoint of human movement. Even today, they may inform us about

the city or country that an individual resides in and, perhaps, the year of this occasion,

but little do they say of the exact places people go to and the dynamics of their visiting

patterns. Thus, traditional work employing census data suffers from limited spatial and

temporal granularity in the description of human movement. While research using census

data still provides unprecedented insight into large scale human migratory patterns, it is

not able to capture a large fraction of human movement activity occurring daily within

and between cities.

But how then can one investigate human mobility in urban environments? First, I note

that the necessity to understand how people move in cities has been motivated by the

process of intensive urbanisation that took place especially in the second half of the

twentieth century. As crowds of agricultural populations rushed into cities resulting in

a sudden increase in their size, urbanists and city planners became confronted with big

challenges ahead of deploying transport infrastructure and providing administrative ser-

vices to citizens. Knowledge about how people use urban spaces [Col94, Dun78, SW91],

how they commute to work [BG77] and where they live became vital at that point. The

principal method to acquire this knowledge has been to conduct population representa-

tive surveys [OW01]. These surveys have made it possible to acquire information about

the origins and destinations of trips in a city [Bec67, Hym69], but also the transport

means employed by commuters. Urban transport modellers in the 1970s exploited origin-

destination matrices of city commuters and laid the foundations of novel mobility theories

whose impact is still evident in today’s research [Haz03, ZRW07].

1.1.2 Mobile Phones as Sensors to study movement

In the early 1990s, the launch of the second generation cellular technology (2G) in Fin-

land signalled a massive change in human communications. Although the mobile phone

was an idea that had been around for a while, it was this time that it began to become

mainstream. It was the first instance in our history when human movement could poten-

tially be tracked with per second accuracy, relatively high geographic precision and at a

massive population scale. When a mobile user initiated a call or sent an SMS, her position

could be recorded at the nearest Base Transceiver Station (BTS) that was handling the

communication event.
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Yet, in parallel to the euphoria echoed by the media and the masses of consumers in

the light of the potential to communicate on the go using mobile phones, there was also

fear. Privacy concerns were raised about the potential misuse of mobile communication

datasets by telecommunication providers. Questions about how long Call Detail Records

(CDRs) could be kept in databases and under what conditions governmental agencies

could have access to them dominated the discussions between legislators, technologists,

corporations and the public. In the meantime, the promising power of human mobility

datasets was also noticed by the scientific community, but due to privacy concerns, as

mentioned above, and also the fact that the data had significant commercial value that

had yet to be realised, telecommunication providers were extremely hesitant to share any

information on call detail records with scientists.

The ice broke years later when call detail records became sporadically available to various

research groups. In 2009 one of the first large scale analyses of human movement using

CDR data was published [GHB08]. A little earlier a work [DBG06], also published in

Nature, provided a large scale study of human mobility spatio-temporal patterns, but in

that case movements were proxied, in a rather creative way, by tracking the spread of

dollar notes in the United States; the assumption was that the movement of money was

a convolution of movements by individuals, thus similar statistical laws should govern

both. The two studies came to verify empirically a power-law statistical distribution

characterising human mobility and measured quantitatively, at the country scale, the

effect of distance on movement. In the mobility context, the power-law process described,

effectively, the frequent existence of short movements and the rare presence of very long

movements. In addition to measuring the impact of distance on movement, in the same

period, call detail records were also used to estimate the predictability of human dynamics

as those are reflected by the mobility patterns of mobile users. Notably, as suggested by

the authors in [SQBB10], the location of a given user could be predicted with an expected

accuracy score of 93%.

However, the study of human movement in the urban setting was still lacking quantitative

evidence; the spatial granularity of call detail records was not standard and was bound

to be accurate only up to a few hundred meters. Despite the fact that the appearance

of cellular data constituted a big step towards the understanding of human mobility on a

large scale (compared to data received from surveys), it did not provide the opportunity

for researchers to shed light on the multitude of movements taking place in cities every

moment by millions of people. For that, a technology that would enable the recording of

movement with spatial granularity on the order of a few tens of metres was required to

emerge.
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1.2 The rise of location-based social networks

In this section I present how location-based social networks, a new type of online social

network where user location and geography acquire a crucial role, present a novel source

of mobility data with several advantageous characteristics when compared to survey or

cellular data described in the previous section. Prior to this presentation I provide a brief

introduction to the systems that preceded LBSNs, online social networks.

1.2.1 The web and online social networks

With the introduction of the World Wide Web in the early 1990s and the emergence

of Internet services, it seemed as if modern societies were transcending the constraints

imposed by the physical world and were entering a digital era where information storage

and exchange was becoming key to everything. Communications such as email let people

interact reliably and conveniently with their peers around the world and commercial

activity moved also online and money could now flow from one party to the other almost

instantaneously. The improvement of web search technology also boosted things along this

direction as it solved the problem of navigating effectively through masses of information.

The perception that people would care more about what was happening in the virtual

universe rather than their real lives was favoured further by the introduction of online

social networks and, in particular, Facebook. Launched in 2004, Facebook, spread like a

forest fire through communities of university students and today counts more than one

billion registered users. The service provided (and still does) the opportunity for users

to generate profiles describing themselves, allowed them to search and connect virtually

to new or existing friends, upload and share multi-media content and, put in brief, it

encapsulated the social life of a person in an online platform of information. From a

new phenomenon, in 2009, Facebook emerged as the site where users spend the most

time [Mas10].

1.2.2 Geography and online social networks

The introduction of smartphones in early 2000 though, signalled a massive transition in

the way people were accessing the web. The image of the Internet user who is sitting at

a desktop machine to access their email account or other online services began to fade

and progressively a new a type of web user emerged. That user was mobile, carrying a

computational device capable of accessing the online world from almost anywhere. In

parallel, software developers went mobile as well and the new, now dominant, ecosystem

of mobile applications came into existence.
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The idea then to implement a service that adapts a social networking platform to the mo-

bile space blossomed. The first online social networks that explicitly use location as their

primary feature appeared in 2008. Foursquare [foua], Gowalla [gow] and Brightkite [bri]

took the lead in this new space and their service was based on a rather simple notion:

share with your friends information about the place where you are. While the services were

greeted by some with skepticism and concerns about the sacrifice of private information

for no apparent gain, the gamification features of the three location-based social networks

together with the thrill of exploring urban space in a completely new way attracted many

early adopters who rapidly formed an enthusiastic user base.

The convergence of the virtual, online, ecosystem with the physical, geographic, space is a

phenomenon still in progress. Despite the fact that the first glimpse in this direction was

(popularly) given by services such as Flickr and Twitter that allowed for the association

of photos and messages (tweets) with geographic information provided by GPS modules

embedded in smartphones, it is the activity of users in location-based social networks

that has brought into existence a completely new paradigm of crowdsourced, large scale,

data with mobile and geographic attributes. These new datasets are expected to have

a profound impact for the study of human mobility and behaviour, but also the ways

we interact and navigate within the physical environment. Moreover, due to its richness,

data generated by these systems not only offers the opportunity to lay new foundations

on our understanding of movement, but, in addition, it paves the way for the computer

sciences and related applications to manifest in a new era where location and geography

acquire a key role.

1.2.3 The importances of places for the study of human move-

ment

If one were to ascribe the novelty of location-based social networks and services to a single

source, then that would be the addition of the notion of a place to these systems. A place,

or venue, in these services is a virtual entity associated with a physically existing place in

the real world. Foursquare users can add information to the Foursquare database about

physically existent places by crowdsourcing information about its geographic coordinates

and type. Typical examples of places in location-based services are train stations, libraries,

coffee shops, restaurants and bars in a city, although the notion has also been associated

with cases that are less expected intuitively; people have been checking in to ferries

sailing in the sea, moving trains or even in outer space. Popular cases have been that of

an astronaut performing a check-in from an international space station [Blo10] or, more

recently, the check-ins sourced from NASA’s Curiosity robot on Mars that maintains an

official Foursquare profile [Blo12].

As users interact with places we learn about their geographic position, the types of activ-

ities, the times that they engage with them and, from a social network perspective, with

7



whom. Hence, the set of places or, put in a more technical jargon, the venue database,

constitutes the backbone of a location-based social network. It feeds internal application

services with data, but also external applications through an API. This database is be-

ing continuously updated with new data points in real time and location-based services

such as Yelp! and Foursquare have already started to capitalise on this process. Notably,

Foursquare currently aspires to become the location layer of the Internet 3 exploiting more

than 3.5 billion check-in records in order to provide geo-aware intelligence to thousands

of developers who are interested in registering activities of their mobile apps with real

world venues. Some of these applications, such as Instagram 4, have evolved to become

extremely popular on their own and, as a result, the million of users they have acquired

produce new data records feeding back to the original location-based service. This data

driven feedback loop constitutes the steam engine of a new ecosystem of smartphone ap-

plications that currently spreads on the mobile web providing useful services that could

range from better map-based urban exploration systems [Dev13b] to food discovery in a

city [Dev13a].

1.3 Thesis and its substantiation

As have discussed in the previous paragraphs, location-based social networks constitute

a novel, online, platform that generate human mobility data qualitatively different from

past datasets in terms of geographic scale, precision and information about the places

users visit. They provide the ability to study, for the first time, the movement of individ-

uals in urban environments and compare observations in them, in a process that could be

seen as a global mobility experiment where no definitive end or number of participants

is provided. Further, the multiple layers of data that concurrently exist in these systems

create a new ecosystem of information with promising implications for mobile web services

and applications.

Consequently, the thesis of this dissertation is that the study of location-based social

networks can progress our understanding about the factors governing human movement in

cities and that appropriate mining of data in these systems can lead to the development

of effective applications and services for mobile users who navigate the urban space.

I substantiate this statement with two closely related threads of research. First, I attempt

to describe human movements in cities in ways that reveal the common attributes of

user behaviour across them, in order to recover underlying universal patterns in the ways

humans choose to visit a location positioned at a certain geographic distance. Along these

lines, I also investigate the impact of urban geography in human movement as it is encoded

3http://marketingland.com/foursquare-wants-to-be-the-location-layer-for-the-internet-40121/
4http://instagram.com/
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through the spatial distribution of places. Next, I employ insights and realisations offered

by the analysis of human mobility in order to build and evaluate prototype applications

that aim to predict user movement and foster the exploration of new places by users in

location-based services.

1.4 Chapters and contributions

The contribution of this thesis is threefold. After a discussion on the potential sources

of bias with respect to LBSN data in Section 3.1.1, I confirm past empirical observations

of human movement with LBSN data. Then, I study the distribution of trip distances of

LBSN users within cities. At this level of abstraction, I identify a model that captures

human mobility in cities in a universal manner, that is, by applying the model with

identical parameters across cities I am able to recover the empirically observed statistical

properties of human movement. Finally, I present and evaluate two application scenarios

for mobile recommendations in location-based social networks. In the first case, the aim

is to predict new, previously unvisited, places for mobile users, and in the second scenario

my goal is to predict in real time the next place in the city to be visited by a user.

I shall begin by introducing, in Chapter 2, an overview of historically related work in

human mobility. As it has been a subject of study in various scientific disciplines (urban

planning, sociology, physics, computer science, etc.) I detail the perspectives and influence

of each of them on the study of human movement. In this context, I will highlight the most

important research questions investigated by scientists in the study of human mobility,

but I will also clarify the novelty of my contributions that will then be described in the

chapters to follow. Finally, with respect to the introduction of background work and

related concepts, I will list the advantages of the data sourced from location-based social

networks and I will provide a broad formalisation of the place recommendation problem

that is of particular interest for this dissertation. I will close with a discussion of how the

understanding of human mobility can benefit mobile applications, and I will present the

difference in the requirements of a place recommendation scenario compared to previous

applications in human migration and transport modelling.

The rest of the dissertation is organised in the following way:

• In Chapter 3 I study human movement in the urban setting. By analysing the

statistical properties of consecutive user check-ins in 34 metropolitan areas around

the globe, I initially note that there are fundamental differences between intra-

city movements and user movement that takes place generally in space, when

the geographic constraints of the urban boundary are not taken into account. In

more detail, a power-law distribution that was employed to model human mobil-

ity in the past cannot explain movements in cities. Furthermore, for the first time
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movements are compared across cities using the same data source. The significant

heterogeneity observed in the mobility patterns of users across different urban en-

vironments has led me to the deeper investigation of movement in the city in order

to identify their causes (cultural variations, differences in transport infrastructure,

etc.). Initially, when I analyse human mobility in cities by looking at the rank-

distance between places (number of places between an origin and a destination),

as opposed to absolute geographic distances, universal patterns across cities emerge.

I have then exploited this observation to model urban movements according to the

rank-distance variable. The single parameter model we devise is able to accurately

capture movements in all cities I examine, and highlights the importance of ge-

ography, as it is encoded by the spatial distribution of places in cities, in human

mobility and its pivotal role as the factor in any observed heterogeneities amongst

them.

• In Chapter 4 I study the problem of predicting the next venue a mobile user will visit,

by exploring the predictive power offered by different facets of user behaviour.I am

interested in predicting a mixture of historically seen and new places in

real time. I initially propose a set of data mining features that aim to capture the

factors that may drive user movements. The features exploit information about tran-

sitions between types of places, mobility flows between venues, and spatio-temporal

characteristics of user check-in patterns. I further extend the study combining all

individual features in supervised learning models. After designing a learning strat-

egy for supervised learning algorithms that effectively deals with sparsity issues in

check-in data, I discover that the supervised methodology based on the combination

of multiple features offers the highest levels of prediction accuracy: Continuous

learning decision trees are able to rank in the top fifty venues one in two

user check-ins, from thousands of candidate items in the prediction list.

Moreover, I observe that the prediction power of the tested algorithms is greatly

affected by temporal factors, an insight that has implications for the development

of more sophisticated prediction frameworks in the future.

• Chapter 5 introduces an alternative application scenario of the thesis; the goal is to

predict new venues (historically unobserved) to be visited by mobile users in order

to foster the discovery of interesting places in the city that are currently unknown to

the user. First, I examine venue discovery behaviour in large check-in datasets from

two location-based social services, Foursquare and Gowalla. By using large-scale

datasets containing both user check-ins and social ties, the analysis reveals that,

across 11 cities, between 60% and 80% of users’ visits take place at venues

that were not visited in the previous 30 days. I then show that, by making

constraining assumptions about user mobility, state-of-the-art filtering algorithms,

including latent space models, do not produce high quality recommendations. Fi-

10



nally, I propose a new model based on personalised random walks over a user-place

graph that, by seamlessly combining social network and venue visit frequency data,

obtains between 5 and 18% improvement over other models.

Finally, in Chapter 7 I summarise the findings and identify directions for future work in

human mobility research and mobile applications.

1.5 Publication List

During my PhD studies I have been involved in many fruitful collaborations that have

yielded 16 published works that span the areas of human mobility modelling, location-

based place recommendations, topic modelling, mobile social networks and urban activity

and neighbourhood modelling. More related to this dissertation, Chapter 3 is based on the

work in [NSL+12]. Salvatore Scellato, Renaud Lambiotte and Cecilia Mascolo provided

support on the design of the experiments, pointed to useful related on work on human mo-

bility models and assisted in the writing of the paper. I carried out the implementation of

the analysis, modeling and evaluation. Chapter 4 builds on [NSMP11a] and [NSLM12a].

I carried out the design, analysis, implementation and evaluation of these works, whereas

the co-authors contributed on the writing of the paper and provided support on refining

technical aspects of the methodologies exploited on the predictive models employed. Fi-

nally, the contributions of [NSLM12b] are described in Chapter 5. Salvatore Scellato, Neal

Lathia and Cecilia Mascolo provided support with the experimental design and writing of

the paper, whereas code development was carried out by me and Salvatore Scellato. All

the studies are listed below.

Papers related to this dissertation

• [NSMP11a] A. Noulas, S. Scellato, C. Mascolo, and M. Pontil. An empirical study of

geographic user activity patterns in foursquare. In AAAI International Conference

on Weblogs and Social Media, 2011.

• [NSL+12] A. Noulas, S. Scellato, R. Lambiotte, M. Pontil, and C. Mascolo. A tale

of many cities: universal patterns in human urban mobility. PloS ONE, 2012.

• [NSLM12a] A. Noulas, S. Scellato, N. Lathia, and C. Mascolo. Mining user mobility

features for next place prediction in location-based services. In IEEE Internationcal

Conference on Data Mining, 2012.

• [NSLM12b] A. Noulas, S. Scellato, N. Lathia, and C. Mascolo. A random walk

around the city: New venue recommendation in location-based social networks. In

IEEE International Conference on Social Computing, 2012.
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Other works during PhD study

• [NSMP11b] A. Noulas, S. Scellato, C. Mascolo, and M. Pontil. Exploiting seman-

tic annotations for clustering geographic areas and users in location-based social

networks. In 3rd Workshop Social Mobile Web, Colocated with Fifth International

AAAI Conference on Weblogs and Social Media, 2011.

• [BNÓS+12] S. Bauer, A. Noulas, D. O Seaghdha, S. Clark, and C. Mascolo. Talking

places: Modelling and analysing linguistic content in foursquare. In IEEE Interna-

tional Conference on Social Computing, 2012.

• [BNS+12b] C. Brown, V. Nicosia, S. Scellato, A. Noulas, and C. Mascolo. Where

online friends meet: Social communities in location-based networks. In AAAI In-

ternational Conference on Weblogs and Social Media, 2012.

• [BNS+12a] C. Brown, V. Nicosia, S. Scellato, A. Noulas, and C. Mascolo. The

importance of being placefriends: discovering location-focused online communities.

In ACM Workshop on Online Social Networks, 2012.

• [SNM11] S. Scellato, A. Noulas, and C. Mascolo. Exploiting place features in link

prediction on location-based social networks. In ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, 2011.

• [SNLM11] S. Scellato, A Noulas, R. Lambiotte, and C. Mascolo. Socio-spatial prop-

erties of online location-based social networks. In AAAI Intenational Confernece on

Weblogs and Social Media, 2011.

• [KNS+13] D. Karamshuk, A. Noulas, S. Scellato, V Nicosia, and C. Mascolo. Geo-

spotting: Mining online location-based services for optimal retail store placement.

In ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2013.

• [ZNSM13] A. Zhang, A. Noulas, S Scellato, and C. Mascolo. Hoodsquare: Exploiting

location-based services to detect activity hotspots and neighborhoods in cities. In

IEEE International Conference on Social Computing, 2013.

• [BNS+13] C. Brown, V Nicosia, S. Scellato, A. Noulas, and C. Mascolo. Social and

place-focused communities in location-based online social networks. In European

Physics Journal B., 2013.

• [NFMM13] A. Noulas, E Frias-Martinez, and C. Mascolo. Exploiting foursquare and

cellular data to infer user activity in urban environments. In IEEE International

Conference on Mobile Data Management, 2013.

• [BNMB13] C. Brown, A. Noulas, C. Mascolo, and V. Blondel. A place-focused

model for social networks in cities. In IEEE International Conference on Social

Computing, 2013.
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2
Human mobility and its importance for

mobile applications

As we have seen in the previous chapter, the analysis and modelling of human mobility

has a history of almost two centuries. The journey began with the seminal work of

Ravenstein [Rav85] and concerned the declaration of a set of principal laws that govern

human migration, which was then recorded through the first census survey reports. Since

then, surveys constituted the primary source for the study of human movement, until the

adoption of mobile phones by the public, towards the end of the twentieth century. As has

been described in Chapter 1, the latter advancement allowed for the recording of mobile

user whereabouts in real time, through call detail records. However, due to their private

status CDRs were not exploited to a great extent by the research community.

Chapter Outline In this chapter, I identify and present in detail the main schools of

thought that have emerged in human mobility modelling during the 20th century and have

been the main drivers of research in the area. In particular, in Section 2.1, I will begin with

the presentation of the so-called gravity models that were inspired by Newtonian physics.

I will then continue with the introduction of the intervening opportunities models which

have been initially theorised by Samuel Stouffer, an American sociologist who was active

in the 1940s. Interestingly, despite their apparent differences, the two models have been

shown to be statistically equivalent under certain assumptions (Section 2.1.3). In light of

the above theories, I present the most recent evolutions of large scale movement analysis.

In Section 2.2.2 I will list the advantages offered by data sourced from location-based
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social networks to the study of human mobility, but I will also highlight how these can

benefit the development of a new generation of mobile applications, and in particular,

location-based venue recommendations. Finally, in Section 2.3 I will provide a broad

formalisation of the place recommendation problem in location-based services and discuss

its relationship to human mobility, migration and transport modelling.

2.1 Dominant trends in human mobility modelling

Before proceeding with detailed explanations of models about human movement, it would

be appropriate to define the problem in a formal manner. In general, mobility modellers

have aimed to capture the statistical properties of movement flows given a certain spatial

environment where movement can take place. A main goal in this context has been the

prediction of the number (or fraction) of movements between an origin and a destination.

Formally, given a set of origin points O and a set of destination points D in space, the

aim is to provide a model that accurately enumerates the number of movements (equiv.

transitions) between a point i in O and and a point j in D.

The specific application scenarios of the theoretical models that aim to achieve the above

goal can vary and sometimes are discipline specific. In urban planning, origins and des-

tinations usually correspond to home locations and employment destinations positioned

in geographic zones i and j respectively. In migration theory, the goal is to model the

number of individuals migrating from one country to another, or equivalently from one

city to another depending on the geographic scale at which movement is studied. In this

thesis, and in particular in Chapter 3, our aim is to model trips between any place in a

city to any other and observe the statistical properties in terms of the frequency distri-

bution of distances that emerges from user movements. However, when considering the

place recommendation scenarios in Chapters 4 and 5, I will refine the level of abstraction

of human mobility, and target prediction of the exact places visited by users.

2.1.1 Gravity models

In analogy to Newton’s law of universal gravitation, the objective gravity models is to

model the mobility flow between an origin and a destination proportionally to their masses

and inversely proportionally to their distance. Formally, given two objects i and j with

corresponding masses mi and mj and geographic distance dij, then the force of attraction

between i and j, given by Fij is equal to

Fij = γ
mi mj

d2
ij

(2.1)
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where γ is a data specific constant. The analogous formulation in the context of transport

modelling [Wil67] would be

Tij = k
OiDj

d2
ij

(2.2)

for a set of origins O and destinations D and where k is again a constant.

2.1.2 Intervening opportunity models

Despite their elegant mathematical form, there is an element of reductionism lying in the

theory behind gravity models. Could it be that humans move like small particles whose

behaviour is simply governed by the physical laws of gravitual attraction? Sociologists

in the 1930s were very concerned about human movement in space [MMR39] and they

were looking for a theory that would sufficiently explain migration patterns at various

geographic scales (city, state, country, etc.). Not surprisingly, their stand was philosoph-

ically different to that of physicists who were seeing human movement from the point of

view of particle diffusion. In December 1940, Samuel Stouffer published a work [Sto40]

that attempted to explain the relationship between human mobility and distance in terms

that placed human decision making, societal factors and cognition at the centre of the

movement process. The theory known as theory of intervening opportunities states that:

The number of persons going a given distance is directly proportional to the number of

opportunities at that distance and inversely proportional to the number of intervening

opportunities. Samuel Stouffer, Theory of Intervening Opportunities, 1940.

Stouffer suggested that the notion of opportunities described in the theory could be

adopted appropriately, depending on the specific domain that the theory is applied to.

In his paper [Sto40], the theory of intervening opportunities was empirically tested on a

census dataset that described the migration movement of families the city of Cleveland,

Ohio, United States. In the study, the spatial distribution of employment opportunities

was known and Stouffer demonstrated how family mobility was driven by this distribution.

In the sketch depicted in Figure 2.1 I provide a toy example describing the theory’s

rationale in a similar empirical context to that of Stouffer; given the origin geographic

position where a family in Cleveland is situated, a set of concentric zones is formed around

it and the location of job opportunities in these zones is recorded. Then the probability

of migrating to a zone of a target job is inversely proportional to the sum of jobs available

in the zones between the origin and the destination zone.
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destination

job

Monday, 24 June 13

Figure 2.1: Sketch reproducing Stouffer’s original approach to empirically verify his theory

of intervening opportunities. On a map of Cleveland, Stouffer plotted the positions of jobs

that were available during the period of investigation. After splitting the territory of the

city into zones, he suggested that the number of families migrating from one zone to

another was inversely proportional to the number of jobs between the origin zone (family)

and the target zone (job).

2.1.3 Gravity and intervening opportunity models: a proof of

convergence

According to the the descriptions of the Gravity and Intervening Opportunities Theories,

their fundamental difference is that while the intervening opportunities model explicitly

takes into account the existence of opportunities between the origin and destination in a

potential journey, Equation 2.2 of the Gravity Theory assumes that only the interaction

between the two points in question matters. Broadly speaking, the existence of third par-

ties cannot influence the flux (volume of trips) Tij between an origin O and a destination

D.

Alan G. Wilson, in his 1967 paper [Wil67], identified the deficiencies of a simplistic version

of a gravity model and reframed it in a more generalisable form. First, he mentioned that

if we double the volume of work trips with origin Oi and also double the number of

work trip destinations Di, the number of trips, Tij, according to Equation 2.2 should

quadruple, whereas the expectation would be for Tij to also double. To express this

argument formally, Wilson added the following constraints:∑
j

Tij = Oi (2.3)
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∑
i

Tij = Dj (2.4)

which effectively guarantee that the number of trips generated at the origin zone Oj

and the number of trips attracted towards the destination zone Dj sum up correctly,

when two constants Ai and Bj are associated with trip production and attraction zones,

respectively. In addition, Wilson provided a more generic representation of the effect of

distance in transport modelling by considering a function f(dij) which could be domain

specific and relaxes the assumption that Tij is inversely proportional to dij that is in turn

raised to a power of 2. The newly introduced mathematical formulation of the gravity

model was then

Tij = AiBjOiDjf(dij) (2.5)

where

Ai = [
∑
j

BjDjf(dij)]
−1 (2.6)

and

Bj = [
∑
i

AiOif(dij)]
−1 (2.7)

This not only provided a more general integration of gravitational theory to transport

models, but it also paved the way for the provision of a new at the time statistical frame-

work, the main contribution of which was that the two models of gravity and intervening

opportunities, initially thought as different, were statistically equivalent [Wil67].

2.1.4 Modern approaches to the modelling of human movement

Up until recently the empirical validation of the gravity or intervening opportunities

theories was poor in terms of geographic and temporal scale. The lack of mobile devices

that could help in tracking human movement at large scale had prevented progress in this

direction. As mentioned first in the previous chapter, even when mobile phones became a

mainstream communication tool the data was not openly available to research scientists,

and thus, the problem persisted. Nevertheless, Brockmann et. al in [DBG06] proposed an

alternative way to trace human mobility with high spatio-temporal accuracy. The rather

creative idea employed by the authors involved the tracing of marked bank notes carried

by humans. In particular, the trajectories of 464 thousand dollar bills were followed

after approximately 1 million reports of their sightings were submitted on a purpose built

website1. The principal assumption made by the authors was that dollar bill movement

represents a convolution of human movements (people carry the bills across space) and,

therefore, is expected to be governed by similar statistical laws.

For each pair of successive reportings at locations xi and xj for a dollar note, the authors

measured the corresponding geographic distance ∆r = |xj−xi|. Subsequently, the authors

1http://www.wheresgeorge.com/
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measured the probability density of ∆r, P (∆r), and found that the following relationship

presents a good approximation for the distribution of location datapoints:

P (∆r) ∝ ∆r−β (2.8)

with β = 1.59 ± 0.02. It was thus hypothesised that the distribution of human dis-

placements (movements) also followed a power-law distribution. A careful inspection of

Equation 2.8 will help the reader understand that a possible interpretation is that P (∆r)

follows a gravity like law, where distance has a decaying effect, and the masses, or put dif-

ferently, the trip volumes between origin and destination are assumed to be unitary. In the

scope of the work of Brockmann et al. [DBG06], the latter presents a reasonable assump-

tion given that there are no fixed sets of origins O and destinations D which correspond

to different geographic zones as stated in the original theory of gravity in transportation

literature. Instead, due to the spatial accuracy of dollar bill sightings which were recorded

in terms of specific latitude and longitude coordinates, then the mass of a potential origin

(resp. destination) can be implied to be equal to 1.0 and then it is assumed that only

distance matters in movement.

Soon after the publication of [DBG06], the first large scale study to model the movement

of humans carrying mobile phones was published [GHB08]. The statistical relationship

described in Equation 2.8 for modelling human mobility was confirmed with a similar

exponent measured now at β = 1.75 ± 0.15. In the study, which involved a sample

of approximately 16 million movements, an exponential cut-off was also proposed and

Equation 2.8 was slightly modified in a new formulation:

P (∆r) = (∆r + ∆r0)−β exp(−∆r

κ
) (2.9)

where ∆r0 and κ where dataset specific parameters, in that case ∆r0 = 1.5 km and

κ = 400 km.

Perhaps due to the fact that these works originated from the physics’ community (that

has traditionally favoured Newtonian formulations on movement), these findings have not

been tested explicitly for an empirical proof of the theory of intervening opportunities.

Most importantly, however, they have only modelled movements at long distances. We

will see how the new generation of datasets from location-based social networks (to be

presented immediately next) will help us not only to look at human movement in its

most common habitat, the city, but also, how they may form the source of data for the

development of novel mobile applications.
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2.2 The importance of location-based social network

data for human mobility

I now explain in more detail the principal attributes of location-based social networks,

the novel characteristics of the datasets generated by their users and argue why they

constitute a qualitatively different paradigm for research on human movement.

2.2.1 Social networks emerging through places

As mentioned earlier in Chapter 1, location-based social networks are, as a concept,

a direct descendant of online social networks. While places are their focus point, an

important element in these system is the user social network. Foursquare, to give an

example, allows users to befriend each other through a number of channels. Besides

those that are typically available in traditional social network platforms and involve the

reception of email recommendations or search mechanisms over an online directory of

users, Foursquare allows for users to meet and connect through places. More specifically,

one can search for people who have checked in at a venue and subsequently make a request

for an online connection with them.

The ability for Foursquare users to meet and connect through places presents an attractive

case study for researchers who are interested in the interplay of human mobility and social

interaction. Numerous models have recently appeared in the literature that aim to predict

human movement through the exploitation of the social connectivity graph [SKB12], or

inversely, models that take advantage of movement preferences to propose generative

mechanisms for the formation of the social network. Some of these works [SNM11] have

specifically targeted applications for location-based services, by exploiting, for instance,

check-in patterns at places in order to recommend friends to LBSN users. While the

Foursquare social network is not a core subject of study in the present dissertation, I will

exploit it to recommend venues to Foursquare users in the two application scenarios that

I consider in Chapter 4 and 5.

2.2.2 Why data from location-based social networks matters

The layers of information produced by these services form a core element of the present

thesis and next I highlight, firstly, the properties that differentiate them from past datasets

of human movement, and secondly, how these properties can shed light on previously

inaccessible knowledge about human mobility. Whenever it will be convenient to refer

to a specific location-based social network using a concrete example, the choice will be

Foursquare. It is currently the most popular location-based service counting more than 35
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million users [GNI13] and most relevant to this thesis as it constitutes its primary source

of data.

• The Check-in. This is the single most central notion in location-based social

networks. When a user is at a place (e.g. Coffee Shop) she can communicate her

presence there by exploiting the check-in feature of the mobile social networking

application. Typically the GPS sensor of the mobile phone is exploited to provide the

service with information about her geographic position that is encoded via latitude

and longitude coordinates. The application then automatically queries a database

with millions of recorded venues from around the world and returns to the user

a list of nearby places. Subsequently the user checks in at the venue where she

currently is and can choose to share this information with her social network, push

it on Twitter or Facebook, or privately store it in her Foursquare profile.

• Venue Database. What makes Foursquare places special are the multiple layers

of information that are associated with them. As also discussed in Chapter 1 the

venue database constitutes the core wheel of these services. Not only has knowledge

become synchronously available about the exact places users go to, but also seman-

tic information about their types (eg, Greek Restaurant or University Lab), user

generated linguistic content such as tips, comments or tags and the list continues

with multi-media content that includes photos and videos, together with geographic,

temporal and social information about user check-ins and meetings. Today there

are numerous mobile applications that exploit parts of this information through

Foursquare’s Venue API2. In terms of scientific research, the output that has been

yielded is also of unprecedented volume [CRH11, SNLM11, NSMP11a, VRA+12,

JTC12]. Besides static content, real time information is also available, such as the

number of people who are checked in to the venue over the past hour (hereNow)

or even special offers available for customers (specials). The latter also highlights

how Foursquare’s strategy of promotion also involves financial incentives to attract

the participation of local businesses and their customers to the service. Overall, the

service enumerates more than 50 million venues globally, which span geographically

the majority of countries and continents around the world. This set is a result of

a seed database that included hundreds of thousands of points of interest (POIs)

when Foursquare was launched and, since then, it has been augmented through

crowdsourcing as users add new venues every day.

• Geographic Accuracy. When a user checks in she declares her presence at a

place. Location-based services provide for the first time the opportunity to record

the geographic position of an individual not only with GPS accuracy (10-20 me-

tres approximately), but also associate her with a specific, real world, venue. This

2https://developer.foursquare.com/
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provides a clear advantage over cellular datasets where information about the accu-

racy of the position of the user is given with respect to the nearest BTS tower and

there is no knowledge about the userséxact location. As noted previously, the latter

is significant to the study of movement within cities, or even neighbourhoods of

those, a perspective that could be previously provided only at a small scale through

surveys [OW01]. As I elaborate in later chapters, this information about places,

besides offering a granular geographic representation of human movement, it may

be used as a proxy to infer the type of activity performed by the user (for instance

having lunch at a restaurant) and this can be utilised in many related applications

including mobile recommendations.

• Global Accessibility. The deployment of a mobile social networking application

takes place on the web, thus anyone at any place in the world can access it given the

presence of Internet connectivity. This is a remarkable paradigm shift in the way

human mobility information can be acquired. With respect to surveys, which could

theoretically provide a researcher with fine grained knowledge about the venue a

user is visiting, location-based social networks allow for the collection of data that

goes beyond the limitations posed by an experimental setting, both in terms of user

participation and duration of the experiment. Moreover, the fact that Foursquare,

and similar services, are globally accessible offers the opportunity to observe move-

ment at long distances (for instance across countries). While this could also be

possible with cellular data, I highlight that in principle mobile providers operate

at a country level and if one would like to see movements beyond national bor-

ders an aggregation process should take place. Thus, location-based services offer

an unprecedented global viewpoint for movement under a single service umbrella.

This matter is especially relevant to the present dissertation as it will allow us to

compare the movements of users across different cities in the world with datasets

that originate from the same system. Further, the geographic scope of Foursquare’s

accessibility is such that it only allows one to observe movement over very long

distances, but it also offers the opportunity to test the validity of proposed mobility

models empirically at different geographic scales and areas. Thus, the universality

of different theories or models, such as those presented in previous paragraphs, could

be tested in various urban settings, countries or continents. In Figure 2.2, I depict

the global spread of millions of Foursquare venues. Despite the bias of check-in

activity towards certain geographic areas, which could be attributed to privacy and

technological adoption variations, the high-resolution recovery of the Earth’s land

schematic pattern, through crowdsourced check-ins, is staggering.

• Publicly Available. Finally, a number of routes through which data sourced from

location-based social networks is publicly available can be identified. Our source
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in the present thesis is Twitter’s Streaming API3 since it represents the most ef-

fective way to access large amounts of data. An alternative route to acquire data

is Foursquare’s own API, yet the corresponding query limits yield much smaller

datasets than Twitter. It is important to note that, in either case, check-ins that

users have set as private are not available. The merits of public access to mobility

data are two-fold; first, the data becomes available to academic researchers and

therefore new analyses, techniques and models are likely to emerge (research inno-

vation), and secondly, research output can be scrutinised by other researchers upon

publication (reproducibility).

The novel characteristics for research in human mobility that have been brought by LBSN

data cannot limited to the above, however. Besides user movements, expressed through

check-ins, other types of data co-exist in these systems. To name a few important ones, the

social network of users is also described in parallel to their movements - the opportunity

to connect with already known friends or even meet new ones at the places they go to is

provided by location-based services. Besides, as users check in to Foursquare venues they

can express their views on this experience with comments pushed on Twitter. Further,

an alternative source of linguistic content, popular in Foursquare, is tips as users can offer

advice to future visitors about interesting things to do (or avoid) at a place. Finally,

users express themselves using a host of features such as likes, photo sharing and videos

that have been popularised, in recent years, through online social networking platforms.

Therefore, location-based social networks are not only promising to help us understand

human movement on its own, but they have also paved the way for the observation of

mobility in conjunction with other important layers of data such as place semantics,

natural language and the social network.

2.3 Place recommendations

The idea of predicting the whereabouts of mobile users has been around since the first

datasets that describe human movement emerged. Numerous prediction frameworks [CSTC12,

SMM+11, SK12] have appeared, the specifics of which depend on the types of mo-

bility datasets that have been available. Up until recently the dominant datasets to

study movement in computer sciences were either Bluetooth contacts, RFID or WiFi

access point sightings characterised by limitations both in geographic scale and user

participants. Indeed, the rise of ubiquitous computing in the past decade has given

rise to many interesting quantitative studies based on human movement and interac-

tions [EP06, CHC+07, HCY10], but the characteristics of the datasets generated in this

context never escaped from the scaling constraints of the experimental/lab setting. Cel-

3https://dev.twitter.com/docs/streaming-apis
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Figure 2.2: Geographic Representation of Foursquare Venues Around the Globe.

lular data has also been employed [SQBB10] to assess the predictability of human move-

ments. The main finding of these works is that human movements present strong peri-

odicity over time, since humans are very likely to return to previously visited locations

and moreover, they are very likely to be at one of their significant spots (either Home or

Work). The observation that human movement is indeed, to some extent, predictable,

together with the mainstream appearance of GPS sensors on mobile phones led to the first

works that specifically address the problem of place recommendations for mobile users.

This problem can be framed in the classical user-to-item recommender system terms; given

a set of users and some information about their past location preferences the goal is to

identify the set of places (items) they are more likely to enjoy and rank them accordingly.

Ranking should take into account information about the mobility profiles of individual

users. A toy example of the place recommendation concept is shown in Figure 2.3, where

our imaginative Foursquare user has checked in to a flower shop and a set of places (right)

need to be ranked and offered to this user as potential future destinations. Formally, in

the place recommendation task, given a set of users U and a set of places L, the goal is to

measure the relevance of a location l ∈ L so that the places a user ui is more likely to go

are put at the top of the recommendation list L̂. In the urban context, where thousands

of potential candidate venues for recommendations may exist, this may prove to be a

challenging task. I will analyze and discuss these challenges further when formulating

different variations of the place recommendation problem in Chapters 4 and 5.
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Figure 2.3: A Foursquare user has checked in at a Flower Shop (and potentially other

places in the past). The goal then of a place recommendation algorithm is to recommend

the most relevant venues in the system for the user in question. This is usually done by

exploiting mobility, social and other information signals.

2.3.1 Human mobility and place recommendations

So far, from an abstract point of view, recommending places to mobile users appears to

have similar aims to those of the two models, gravity and intervening opportunities, that

were presented in Section 2.1. After all, in both human migration or urban transport

and in the place recommendation task the main process corresponds to the prediction of

human movement. As we shall see in the following chapters of this dissertation, analytical

and modelling insights will be drawn from human mobility models to build effective place

recommendation models. Yet, at this point, I list some important differences between the

two tasks:

• User Versus Area Centric View. Recall that the principal aim of the gravity

and intervening opportunity models, in the context of urban transport and human

migration, was the prediction of volume of transitions between sets of origins O and

destinations D. Origins and destinations usually correspond to geographic areas in

a city or a country depending on the geographic scale being examined. On the other

hand, in place recommendations the goal is to predict the whereabouts of a specific

user. Two users can be in the same area, but they may still want to visit different

places depending on their likes. Personalisation is a key concept in recommender

systems and I will study it in detail in Chapters 4 and 5.

• Serendipity. The idea of offering novel items or content to users has been central

to the recommender systems literature [HKTR04]. While the regularity in human

movement allows for the development of prediction frameworks, user preferences

or social connections could also be exploited to recommend new places for mobile

users. Thus, the trade-off between exploration and recurrence is core in mobile rec-

ommendations. In contrast, the migration and transport literature features strictly

24



prediction oriented approaches, since their goal is to model flows of movement for

the design of better urban services, infrastructure and policies.

• Context and Dynamics. Finally, the temporal scale of events in mobile recom-

mendations is different to that of migration modelling. In the former, the dynamics

of time matter a lot and the preferences of users about where they would like to

go change every hour of a day or during the week. In the latter, most studies

concern predictions with a temporal horizon on the order of months or years. The

importance of temporal dynamics for recommendations have also brought the notion

of context into the spotlight of recommender systems research [ASST05]. Context

is a very broad term and is discipline specific; in mobile recommendations refers

usually to information about the current geographic position of the user, the time

recommendations are performed or even the places that are popular nearby.

These differences are highlighted as they have a direct impact on the choice of information

and methodologies (statistical frameworks, prediction models, evaluation metrics, etc.)

that handle it when solving either problem. This will be reflected by the three contribution

chapters of the thesis as both the general problem of human mobility and mobile venue

recommendations will be addressed. Next, I present the composition of this dissertation

and its future outlook.

2.4 Present dissertation and future outlook

In this chapter I have reviewed two classical modelling paradigms from the human migra-

tion and transportation literature. The gravity and intervening opportunities models. As

indicated in Paragraph 2.1.4, recent studies suggest the existence of a universal power-

law distribution P (∆r) ∼ ∆r−β, observed, for instance, in cell tower data concerning

humans carrying mobile phones β = 1.75 [GHB08] or in the movements of “Where is

George” dollar bills β = 1.59 [DBG06]. This universality is, however, in contradiction

with observations that displacements strongly depend on where they take place. For in-

stance, a study of hundreds of thousands of cell phones in Los Angeles and New York

demonstrate different characteristic trip lengths in the two cities [SI10]. This observation

suggests either the absence of universal patterns in human mobility or the fact that phys-

ical distance is not a proper variable to express it. These issues will be revisited again in

Chapter 3, where we compare again the efficacy of these classical models of human move-

ment for datasets sourced from location-based social networks and assess their relevance

with regards to mobility in urban environments.

As pointed in Section 2.2.2, these data allow for the study of human mobility at an

unprecedented scale and with fine geographic representations. This is achieved through

GPS sensors offering accuracy of a few tens of metres in movement records and thanks to
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the Internet reach of location-based services. These advancements also effectively provide

the opportunity to study mobility in cities through a single service (e.g., Foursquare) and

overcome measurement biases that could be induced by variations in the experimental

context (for instance if data from different sources were to be aggregated).

Further, an important application scenario in the context of location-based services that

has been identified in this chapter is that of mobile place recommendations. As noted

in Section 2.3.1, human movement and mobile recommendation services are strongly in-

fluenced by the spatio-temporal dynamics of user behaviour. In Chapter 4 I will build a

supervised learning framework whose aim will be the prediction of user whereabouts in

real time by combining various sources of contextual information available in location-

based social networks. In fact, we will see how the information signals in these systems

can be exploited not only to balance out the disadvantages of sparse user representations,

but also to allow for the development of models that are able to both predict historically

visited venues and to recommend new venues to mobile users.

Finally, in Chapter 5, I will tackle an alternative place recommendation scenario where

our goal is the prediction of the new venues visited by mobile users. With an eye towards

applications such as digital urban exploration and local search, I will consider a family of

recommender system algorithms that has been applied mainly in the online web domain

and assess their performance when deployed geographically. From a computer science

perspective it is important to understand whether filtering algorithms are resilient upon

their migration to location-based services and systems, where factors such as the effect

geographic distance come into play.
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3
Modelling human mobility in urban spaces

As demonstrated in Chapter 2, location-based social networks allow for the observation

of mobile user movement with granular geographic representations and with global scope.

The former property will enable us to inspect mobility within a given urban environment,

while the latter will allow us to perform a comparison across different cities.

The initial focus in the present chapter will be on the properties of collective user move-

ments, such as for instance, the geographic distances observed in the journey trips of

users. Analysing and modelling movement at this level of abstraction, can foster a deeper

understanding of the fundamental processes that drive the mobility of users and, as a

consequence, it can help the design of appropriate application frameworks such as mobile

place recommendations that we investigate in Chapters 4 and 5 of this dissertation.

Movement of people in space has been an active subject of research in the social and

geographical sciences. It has been shown in almost every quantitative study and described

in a broad range of models that a close relationship exists between mobility and distance.

People do not move randomly in space, but instead human movements exhibit high levels

of regularity and tend to be hindered by geographical distance [SQBB10]. The origin

of this dependence of mobility on distance, and the formulation of quantitative laws

explaining human mobility remains, however, an open question especially in the context

of urban mobility in cities, where the availability of large scale data has been scarce.

The answer to this could lead to many applications beyond the scope of location-based

recommendations [ZZXY10, DQC10, SS11] that we examine here, and improve engineered

systems such as cloud computing, enhance research in social networks [JPO06, DC10,
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SNLM11, ECL11] and yield insight into a variety of important societal issues, such as

urban planning and epidemiology [NN08, LHG04, CBB+07].

Chapter Outline. In this chapter, we focus on the analysis and modelling of human

mobility patterns in a large number of cities across the world. More precisely, we make

the following contributions:

• A premier empirical study of human mobility across multiple urban cen-

tres around the globe. We aim to answer the following question: “Do people

move in a substantially varied way in different cities or, rather, do movements ex-

hibit universal traits across different urban centres?”. To do so, we take advantage

of the advent of mobile location-based social services accessed via GPS-enabled

smartphones, for which fine granularity data about human movements is becoming

available. Moreover, the worldwide adoption of these tools implies that the scale

of the datasets is planetary. Exploiting data collected from public check-ins made

by users of the most popular location-based social network, Foursquare [foua], we

study the movements of 925,030 users around the globe over a period of about six

months, and study the movements across 5 million places in 34 metropolitan cities

that span four continents and eleven countries.

• An identification of the key role of density in human movement as dic-

tated by the law of intervening opportunities. In Section 3.1, we discuss how

at larger distances we are able to reproduce previous results of [GHB08] and [DBG06]

with the aim being the empirical validation of the relevance of data sourced from

location-based services to study human movement. Subsequently, in Section 3.2

we focus on urban mobility. We first confirm that mobility, when measured as a

function of distance, does not exhibit universal patterns. The striking element of

our analysis arises in Section 3.3, where we observe a universal behaviour in all

cities when mobility is measured with a different variable to that of geographic dis-

tance. We discover that the probability of transiting from one place to another is

inversely proportional to a power of their rank, that is, the number of intervening

opportunities between them. This universality is remarkable as it is observed de-

spite cultural, organisational and national differences. This finding is in agreement

with the social networking parallel that suggests that the probability of a friendship

between two individuals is inversely proportional to the number of friends between

them [DLN05], and depends only indirectly on physical distance.

• A modelling driven empirical comparison of the intervening opportunities

and gravity theories in human urban movement. Driven by our analytical

findings, in Section 3.4, we propose the use of rank-distance as a core element for

modelling urban movement. We then provide an empirical comparison between the
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rank-distance model and a gravity variant. By using only information about the dis-

tribution of places in a city as input and by coupling this with a rank-based mobility

preference we are able to reproduce the actual distribution of movements observed

in real data. Overall, our analysis is in favour of the concept of intervening opportu-

nities rather than gravity models, thus suggesting that trip making is not explicitly

dependent on physical distance but on the accessibility of resources satisfying the

objective of the trip. Individuals thus differ from random walkers in exploring phys-

ical space because of the motives driving their mobility. Further, while our results

do not exclude the possibility for the development of gravity models that achieve

good fits of urban mobility, we argue that the configuration of parameters in their

context is more complex. Finally, in Section 3.5 we quantify the role of geography

in human mobility in the light of our observations that at the level of abstraction

of aggregate trip distance distribution, the spatial distribution of places it is the

primary source of mobility variations observed across cities.

We close this chapter by presenting in Section 3.4 a detailed mathematical explanation of

the rank-distance model, and in Sections 3.6 and 3.7 the implications of our findings and

related work, respectively, is discussed. In Section 3.8 we summarise our findings.

3.1 Urban movements analysis

In this section we introduce the collection methodology and the properties of the mobility

dataset that we employ in the present and the following chapters of the thesis (unless spec-

ified). Subsequently, in Section 3.1.2, we perform a statistical validation of the collected

data with respect to well established previous work on large scale movement analysis.

While our findings are in line with past observations of human mobility over large dis-

tances, this confirmation does not hold for shorter movements within cities. Motivated

by the latter, we present an in-depth analysis of movements in urban environments in the

sections to follow.

3.1.1 Dataset Description.

We draw our analysis upon a dataset collected from the largest location-based Social

Network, Foursquare [foua]. The dataset features 35, 289, 629 movements of 925, 030 users

across 4, 960, 496 places collected during 5 months (May 27th to November 2nd 2010). We

estimate that this sample contains approximately 20% to 25% of the entire Foursquare

user base at the time of collection 1. Foursquare places or venues are Web 2.0 geo-tagged

entities that match a real venue observed in the physical world and here are represented

1 http://mashable.com/2010/08/29/foursquare-3-million-users/
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through GPS indicated longitude and latitude geographic coordinates. In this context a

movement is the indication of presence at a place that a user gives through the Foursquare

system. In the present work we focus on the 34 most active cities in terms of check-in

numbers in the dataset. We have matched a Foursquare venue to a city by utilising locality

information available for all Foursquare venues. The reader can view summary statistics

for all cities we have experimented with in Table 3.1. The mobility dataset analysed in

the following paragraphs is comprised of check-ins made by Foursquare users and became

publicly available through Twitter’s Streaming API. The collection process lasted from

the 27th of May 2010 until the 3rd of November of the same year. By considering only

consecutive check-ins that take place within the same city we have extracted almost 10

million intra-city movements analysed in Figure 3.2. Detailed statistics including the

number of check-ins and venues in each city can be found in Table 3.1.

Place Semantics, Time and the Social Network. In addition to the information

about user check-in movements and the GPS positioning of Foursquare places, in later

chapters, as we tune the level of abstraction of our analysis to fit application scenarios, we

will make use of metadata about places in location-based social networks. Specifically, we

will exploit semantic information about the categories of places in Foursquare. In [foub]

one can inspect the more than 300 different types of places available in the system to

characterise a venue. This data will be used, for instance, as a proxy to model the

preferences of mobile users in terms of activities they like to perform in the city. Further,

in Chapter 4, as we examine real time aspects of user mobility we regard also the check-in

times of user movements that are available with per second granularity.

As with user check-ins, the collection of social network data was via Twitter. For ev-

ery user we requested her list of followers. For every reciprocal follower relationship

we then generated an edge between two Foursquare users in the dataset. This process

yielded a graph whose giant connected component is comprised 591, 146 nodes and almost

10, 573, 803 million edges between those resulting in a rather dense network. The social

network formed by Foursquare users by observing their relationship on Twitter does not

correspond to the original social network in the actual Foursquare platform. At the time

of data collection, Foursquare did not offer the option to crawl the social network formed

by its user base via its API. Thus, we had to resort to a publicly available version of a

social network for the group of users whose behaviour we explore here. In previous work

it has been shown how the statistical properties of this social network match those of

other location-based social networks [SNLM11].

Considerations on Data Generation and Collection Biases. Before we proceed

with presenting the findings of this chapter, and the thesis, in general, we provide a discus-

sion on potential sources of bias that may associate with datasets collected from location-

based social networks. First, the demographics of the users engaging with location-based
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social networks are not expected to be representative of the world’s human population.

This is an aspect that influences much of the data collected in the context of scientific

experiments as discussed in detail in [HHN10], where the case of WEIRD datasets (partic-

ipants are of Western, Educated, Industrialized, Rich and Democratic origins) is brought

forward. Such an effect may be more intense in the present datasets given that the check-

in data is crowdsourced and location-based social networks are at an early adoption stage.

Second, the way in which users check-in can be influenced by numerous factors such as

social, privacy and cognitives ones. In plain words, a person may go somewhere and

not check in. Despite the fact that there is lack of established scientific conclusions with

respect to the factors that motivate (resp. demotivate) users from checking in, there is

a line of work that attempts to address these issues specifically [LCW+11, CRH11]. It

should be noted that these sources of bias, or similar ones, influence many datasets that

are being used to explore human movement. While the analysis in the sections to fol-

low reveals interesting aspects that are related to human movement, the cautious reader

should always recall that any dataset used as a proxy to human movement is likely to

deviate from the description of the actual human mobility. Last but not least, the fact the

Foursquare data was acquired via Twitter’s streaming API effectively means that we have

only a limited window onto Foursquare user activity; that is, we have access to public

user check-ins pushed on Twitter. Despite that this may constitute an additional source

of bias, the fact that in Chapter 5 we make similar observations between the Foursquare

check-in dataset and the full snapshot of the Gowalla service is encouraging with respect

to the conclusions derived by the experimental analysis to follow.
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Table 3.1: Summary of city statistics

City Name Movements Places Places/km2 Area (km2) < ∆r > (km)

Amsterdam 32934 8847 275.61 21.63 2.29

Atlanta 63220 10090 214.72 19.94 5.37

Austin 60296 9492 199.32 14.06 5.82

Bangkok 45860 7574 248.32 10.81 3.97

Boston 42196 6795 366.94 13.25 1.57

Chicago 185496 23050 315.16 41.94 4.02

Columbus 32388 7463 181.18 8.88 5.42

Dallas 39380 8177 200.8 13.06 5.21

Denver 30695 6123 215.26 12.81 4.67

Houston 47996 11808 168.68 14.63 7.57

Indianapolis 30382 6417 213.02 5.38 6.99

Kuala Lumpur 62595 14223 268.44 30.88 3.18

Las Vegas 82437 11910 260.39 16.63 4.76

London 62837 15760 290.92 30.5 3.32

Los Angeles 86092 18508 220.92 31.5 4.86

Milwaukee 38697 5318 218.77 9.56 3.15

Minneapolis 29572 5482 228.04 11.13 3.1

New York 371502 43681 715.02 58.0 2.24

Orlando 37783 8060 224.56 8.88 5.44

Paris 38392 12648 261.98 35.94 2.77

Philadelphia 54545 10270 293.2 17.31 2.86

Phoenix 34436 8689 183.1 9.44 6.27

Portland 38409 8413 238.34 15.63 3.08

Rio de Janeiro 25808 6788 248.2 12.31 5.99

San Antonio 33516 8237 144.17 6.0 8.35

San Diego 69152 13365 227.26 22.38 5.7

San Francisco 112168 15970 377.64 32.25 2.36

Santiago 56743 10636 235.17 20.69 4.94

Seattle 66423 10410 294.6 20.75 3.61

Seoul 44303 9271 250.76 18.31 4.8

Singapore 79624 15617 316.67 21.31 5.26

São Paulo 52855 14291 224.68 32.56 4.31

Toronto 77548 13870 322.26 24.81 3.59

Washington 71557 10279 325.11 21.31 1.92
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3.1.2 Urban Movements and Power-laws.

In order to confirm the large scale results reported in [GHB08, DBG06], we have computed

the distribution of human displacements in our dataset (Figure 3.1) by measuring the

geographic distance between the consecutive check-ins of a Foursquare users in the dataset:

we observe that the distribution is well approximated by a power law with exponent

β = 1.50 and a threshold ∆r0 = 2.87 (p− value = 0.494). This is almost identical to the

value of the exponent calculated for the dollar bills movement (β = 1.59) [DBG06] and

very close to the 1.75 estimated from cellphones calls analysis of human mobility [GHB08].

With respect to these datasets, we note that the Foursquare dataset is planetary, as it

contains movements at distances up to 20,000 kilometres (we measure all distances using

the great-circle distance between points on the planet 2).
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Figure 3.1: Global movements. The probability density function (PDF) of human

displacements as seen through 35 million location broadcasts (check-ins) across the planet.

The power-law fit features an exponent β = 1.50 and a threshold ∆r0 = 2.87 confirming

previous works on human mobility data. The spatial granularity offered by GPS data

allows for the inspection of human movements at very small distances, while the global

reach of Foursquare reveals the full tail of the planetary distribution of human movements.

At the other extreme, small distances of the order of tens of metres can also be tracked in

the dataset thanks to the fine granularity of GPS technology employed by mobile phones

running these geographic social network applications. Indeed, we find that the probability

of moving up to 100 metres is uniform, a trend that has also been shown in [DBG06] for

a distance threshold ∆rmin. Each transition in the dataset happens between two well

2http://en.wikipedia.org/wiki/Great-circle distance
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Figure 3.2: Urban movements. The probability density function (PDF) of human

displacements in cities (intra-city). For two successive location broadcasts (check-ins)

a sample is included if the locations involved in the transition belong to the same city.

Approximately 10 million of those transitions have been measured. The poor power-

law fit of the data (β = 4.67, ∆r0 = 18.42) suggests that the distribution of intra-city

displacements can not be fully described by a power law. Short transitions, which account

for a large portion of the distribution, are not captured by such process.

defined venues, with data specifying the city they belong to. We exploit this information

to define when a transition is urban, that is, when both start and end points are located

within the same city. Figure 3.2 depicts the probability density function of the about 10

million displacements within cities across the globe. We note that a power-law fit does not

accurately capture the distribution. First of all, a large fraction of the distribution exhibits

an initial flat trend; then, only for values larger than 10 km the tail of distribution decays,

albeit with a very large exponent which does not suggest a power-law tail. Overall, power-

laws tend to be captured across many orders of magnitude, and this is not true in the case

of urban movements. The estimated parameter values via maximum-likelihood [CSN09]

are ∆r0 = 18.42 and exponent β = 4.67 (p− value = 1.0).

3.2 Comparing human movements across cities

Since the distribution of urban human movements cannot be approximated by a power

law distribution nor by a physically relevant functional relation, how can we represent

displacements of people in a city more appropriately? We start by comparing human

movements across different cities. In Figure 3.3, we plot the distribution of human dis-

placements for Houston, San Francisco and Singapore, noting that similar patterns have

been observed across all cases we have considered in the experiments. The shapes of the
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distributions, while different, exhibit similarities suggesting the existence of a common

underlying process that seems to characterise human movements in urban environments.

There is an almost uniform probability of travelling in the first 100 metres, that is fol-

lowed by a decreasing trend between 100 metres and a distance threshold δm ∈ [5, 30]

km, where we detect an abrupt cutoff in the probability of observing a human transition.

The threshold δm could be due to the reach of the borders of a city, where maximum dis-

tances emerge. While the distributions exhibit similar trends in different cities, scales and

functional relation may differ, thus suggesting that human mobility varies from city to

city. For example, while comparing Houston and San Francisco (see Figure 3.3), different

thresholds δm are observed. Moreover, the probability densities can vary across distance

ranges. For instance, it is more probable to have a transition in the range 300 metres

and 5 kilometres in San Francisco than in Singapore, but the opposite is true beyond 5

kilometres. This difference could be attributed to many potential factors, ranging from ge-

ographic ones such as area size, or density of a city, to differences in infrastructures such as

transportation and services or even socio-cultural variations across cities. In the following

paragraphs we present a formal analysis that allows to dissect these heterogeneities.
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Figure 3.3: Urban movement heterogeneities. The probability density function

(PDF) of human displacements in three cities: Houston, San Francisco and Singapore

(for 47, 112 and 79 thousand transitions, respectively). Common trends are observed,

e.g., the probability of a jump steadily decreases after the distance threshold of 100 me-

tres, but the shapes of the distributions vary from city to city, suggesting either that

human movements do not exhibit universal patterns across cities or that distance is not

the appropriate variable to model them.
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3.3 The importance of place density

Inspired by Stouffer’s theory of intervening opportunities [Sto40] that as we recall, from

its introduction in Section 2.1.2, suggests that the number of persons travelling a given

distance is directly proportional to the number of opportunities at that distance and in-

versely proportional to the number of intervening opportunities, we explore to what extent

the density of places in a city is related to the human displacements within it.
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Figure 3.4: City place densities and mean movement lengths. Scatter plot of the

density of a city, defined as the number of places per square kilometer, versus its mean

human transition in kilometres. Each datapoint corresponds to a city, while the red line

is a fit that highlights the relationship of the two variables (R2 = 0.59). A longer mean

transition corresponds to the expectation of a sparser urban environment, indicating that

the number of available places per area unit could have an impact on human urban travel.

First, we define the density of a city in the Foursquare dataset by applying a grid onto

each city using squares of area size equal to 0.25 km2 and filtering out those grid areas

that feature less than five Foursquare venues. Then the density is equal to the number

of places per square km2 averaged across the grid. As a next step, we plot the place

density of a city, as computed with our check-in data, against the average distance of

displacements observed in a number of cities. In Figure 3.4 one observes that the average

distance of human movements is inversely proportional to the city’s density. Hence, in a

very dense metropolis, like New York, there is a higher expectation of shorter movements.

We have measured a coefficient of determination R2 = 0.59 [Nag91]. Intuitively, this

correlation suggests that while distance is a cost factor taken into account by humans,

the range of available places at a given distance is also important. In this context, the

geographic deployment of places could be thought of as a proxy for the distribution of

resources geographically. In a scarce resource environment one may need to travel longer
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Figure 3.5: City area sizes and mean movement lengths. Scatter plot of the area

of a city, measured in square kilometres, versus its mean human transition in kilometres.

Unlike place density, the area of a city does not seem strongly related to the mean length

of its transitions (R2 = 0.19). To measure the area of a city we have segmented the spatial

plane around its geographic midpoint in squares of size 250× 250 m2. The area of a city

has been defined as the sum area of all squares that feature at least five places.

distances to satisfy a need; it may take a few kilometres to get a sandwich in the desert,

yet in the example of the dense metropolis mentioned above hundreds of restaurants may

be packed in a small piece of land and, as a result, one would need to travel a few tens

of metres to get food. Nevertheless, one could doubt these arguments and suggest that

instead it is the area size of a city that is important in movement. After all, a larger

city would allow, by definition, for the observation of longer trips. Hence, as a next step,

we explore whether the geographic area size covered by a city affects human mobility by

plotting the average transition in a city versus its area size (see Figure 3.5). Our data

indicates no apparent linear relationship, with a low correlation R2 = 0.19, thus indicating

that density is a more informative measure. To shed further light on the hypothesis that

density is a decisive factor in human mobility, for every movement between a pair of places

in a city we sample its the rank value. The rank for each transition between two places

u and v is the number of places that are closer in terms of distance to u than v is. We

account for every place w that satisfies that condition and formally we have

ranku(v) = |{w : d(u,w) < d(u, v)}|.

The rank between two places has the important property of being invariant in scaled

versions of a city, where the relative positions of the places are preserved but the absolute

distances dilated. In Figure 3.6 we plot, for the three cities, the rank values observed for

each displacement. The fit of the rank densities onto a log-log plot shows that the rank
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Figure 3.6: Rank distributions in three cities. We observe that the distributions

of the three cities collapse to a single line, which suggests that universal laws can be

formulated in terms of the rank variable. The observation confirms the hypothesis that

human movements are driven by the density of the geographic environment rather than the

exact distance cost of our travels. A least squares fit (red line) underlines the decreasing

trend of the probability of a transition as the rank of a places increases.

distribution follows a linear trend similar to that of a power-law distribution3.

This observation suggests that the probability of moving to a place decreases when the

number of places nearer than a potential destination increases. Moreover, the ranks of all

cities collapse on the same line despite the variations in the probability densities of human

displacements. Using a least squares error optimisation method [LH74], we have fitted

the rank distribution for the thirty-four cities under investigation and have measured

an exponent α = 0.84 ± 0.07. This is indicative of a universal pattern across cities

where density of settlements is the driving factor of human mobility. We superimpose the

distribution of ranks for all cities in Figure 3.7.

Interestingly enough, a parallel of this finding can be drawn with the results in [DLN05],

where it is found that the probability of observing a user’s friend at a certain distance in a

geographic social network is inversely proportional to the number of people geographically

closer to the user.

3.4 Modelling urban mobility

The universal mobility behaviour emerging across cities, shown in Figures 3.6 and 3.7

where we have plotted the probability distributions of the rank value for each transition,

3Strictly speaking a power-law is not well defined for exponent regimes α smaller than 1.
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Figure 3.7: Rank distributions in urban environments. Superimposition of the

probability density functions (PDF) of rank values the thirty-four cities analysed in the

Foursquare dataset. A decreasing trend for the probability of a jump at a place as its

rank value increases is common. The trend remains stable despite the large number of

plotted cities and their potential differences with respect to a number of variables such us

number of places, number of displacements, area size, density or other cultural, national

or organisational ones.

paves the way for a new model of movement in urban environments. If the rank-distance

is a better variable than pure geographic distance in terms of expressing movement in

cities in a manner that effectively reduces variations in measurements across them, then

we may as well integrate it into a human mobility model and empirically verify its efficacy

using Foursquare data. This follows closely the spirit of Samuel Stouffer who validated

statistically the theory of intervening opportunities in the city of Cleveland as we discussed

in Section 2.1.2.

Formalising urban mobility models. We formalise this next, where given a set of

places U in a city, the probability of moving from place u ∈ U to a place v ∈ U is defined

as

Pr[u→ v] ∝ 1

ranku(v)a

where

ranku(v) = |{w : d(u,w) < d(u, v)}|.

In addition to the rank-distance model presented above, we have adopted a gravity-

based model of human urban movement in order to perform a direct comparison with the

alternative popular theory where movement depends on the absolute geographic distance
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between places in cities introduced previously in Section 2.1.1. In this context such

model should incorporate two factors. On one hand, the deterring effect of distance on

movement, and on the other hand, the attractiveness of places due to a gravitational force.

The former factor is captured by measuring the geographic distance, d(u, v), between

two places u and v. To quantify the gravitational mass of a place u, we measure the

number of nearby venues assuming that the denser the area that surrounds a place, the

higher its attractiveness. This has required the use of an additional parameter ru, which

corresponds to the radius of the disc centred on the geographic position of place u. We

can now define the mass mu of u, simply by enumerating the number of places that fall

within the disc’s surface. The probability of a transition between two places u and v in

the gravity-based model is set to be proportional to the product of the places’ masses and

inversely proportional to their geographic distance. Formally:

Pg[u→ v] ∝ mu.mv

d(u, v)b

Agent-based simulations. We run agent based simulation experiments where agents

transit from one place to another according to the probabilities defined by the two mod-

els, respectively. Averaging the output of the probability of movements by considering all

possible places of a city as potential starting points for our agents, we present the human

displacements resulting from the models in Figure 3.8: as shown, despite the simplicity of

the rank model, this is able to capture with very high accuracy the real human displace-

ments in a city. It is interesting to note that the model is able to reproduce even minor

anomalies, such as the case of San Francisco where we have ‘jumps‘ in the probability of a

movement at 20 and 40 kilometres. In contrast, the gravity model does not offer a precise

fit, since small distances are overestimated. A potential explanation for this behaviour

could be given by the fact that in urban environments most places are positioned in a

central, highly dense, core of a city. In this case, not rare in an urban context, the prob-

ability of a transition to a nearby place may rise dramatically when considering a gravity

model, as density reaches a maximum and geographic distances are minimised.

Model parameterisation. Besides comparing the performance of the two models in

the task of fitting the empirical distributions of human movement, it is worth discussing

their parameterisation too. In the case of the rank-distance model, a common parameter

α = 0.84 has been set for the simulations of all cities. That is the empirical average

observed by fitting the distributions of the rank values observed in cities as depicted

in Figure 3.7. Given the small standard deviations observed across cities, it would be

sufficient to observe movements in one city to fit accurately the transitions of others,

provided we have knowledge of the geographic position of their venues. On the other

hand, the identification of the parameters for the gravity model is a more complex task.

Initially, we had to choose a radius ru to define the mass mu of a place u. While this
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Figure 3.8: Fitting urban movements. Probability Density Functions (PDF) of human

movements and corresponding fits with the rank-distance and gravity models in three cities

(Houston, San Francisco and Singapore). In the rank-distance model the probability of

transiting from a place u to a place v in a city, only depends on the rank value of v

with respect to u. In the case of the gravity model, the deterrence effect of distance is

co-integrated with a mass based attractiveness of a place u. The associated mass, mu,

has been defined according to the number of neighbouring places.

would have been easier to perform if we were considering movement across countries, or

across cities, by considering for instance the size of their populations, it is much harder

to define a similar geographic or organisational scope within a city. In our experiments

we tested exhaustively ru values ranging from 0.1 to 1 kilometres (the parameters for the

depicted fit of the gravity model are b = 1.0 and ru = 100 metres). Equally, selecting

an exponent b to control the effect of distance in movements required again a brute-force

exploration of values (we have experimented for values within the range 0.5 to 2.5). We

note that our aim is not to exclude the possibility that more complex gravity models

could be devised achieving potentially better fits of urban movement. In the light of the

evidence that our experiments have provided, the use of a rank-distance variable qualifies

better for divising a universal urban mobility model. Moreover, it is worth noting that the

rank model does not take into account other parameters such as individual heterogeneity

patterns [GHB08] or temporal ones [DBG06] that have been studied in the past in the

context of human mobility and yet it offers very accurate matching of the human traces

of our dataset. Plots with the performance of the models for all thirty-four cities that we

have evaluated can be found in Figure 3.9.
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Figure 3.9: Fitting urban movements for all cities in the Foursquare dataset.

The dominance of the rank-distance model over the gravity case extends to the rest of

the cities (34 in total) we have experimented with in the Foursquare dataset. The results

depicted here correspond to the gravity model with parameters b = 1.0 and ru = 100

metres, and in the case of the rank-distance model an exponent a = 0.84 has been used to

simulate movement in all cities and corresponds to the empirical average of the exponents

resulting from the fit of the rank value distributions.
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Detailed Description of Rank Model’s Computation. We now describe the rank-

based model we have devised with the aim to fit human movements. Our aim is to

calculate the displacement probability distribution over a given city, which is described

by a set of M places U = {u1, u2....uM}. We measure the pairwise transition probability

from a starting place u ∈ U to a destination place v ∈ U as

Puv =
ranku(v)−α∑

u∈U

ranku(v)−α

where, recall that ranku(v) = |{w ∈ U : d(u,w) < d(u, v)}| and we use the convention that

ranku(u) = 0 for every u ∈ U . The above configuration takes into account all places in

the city away from u and suggests a probabilistic setting that the sum of the probabilities

of transition to any destination place is equal to 1.

Elaborating further, we define the probability of observing a movement of length ∆r away

from an initial place u as

Pu(∆r) :=
∑

v:d(u,v)∈[∆r,∆r+ε]

Puv

where ε is some prescribed “resolution” parameter. We can now measure the probability

of observing a transition of length within [r, r+ ε] considering an arbitrary starting place

u ∈ U as

P (∆r) =
1

M

∑
u∈U

Pu(∆r).

We note that the parameter α of the model has been set equal to 0.84 in all cases. This

is the empirically calculated average of the rank value distributions, observed across the

cities of the Foursquare dataset. The parameter ε has been set by binning the x-axis

logarithmically using 100 bins in the range [10−2, 102]. To obtain the Probability Density

Functions (PDF) shown in the figures, we have divided P (∆r) with the size of each bin,

that is [∆r,∆r + ε].

3.5 Controlling urban geography

This analysis provides empirical evidence that while human displacements across cities

may differ, these variations are mainly due to the spatial distribution of places in a city

instead of other potential factors such as social-cultural, organisational, transportation or

related to human cognition. Indeed, the agent based simulations are run with the same

rules and parameters in each city, except for the set of places U that belong to a city, which
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is taken directly from the empirical dataset. The variation in the spatial organisation of

cities is illustrated in Figure 3.10, where we plot thermal maps of the density of places

within cities and in Figure 3.11, where we plot the probability density function that two

random places are at a distance ∆r.

Footline Author PNAS Issue Date Volume Issue Number 1

Figure 3.10: Geographic distribution of places in cities. Gaussian kernel density

estimation (KDE) applied to the spatial distribution of places in three cities (Houston,

San Francisco and Singapore). Each dark point corresponds to a venue observed in the

Foursquare dataset encoded in terms of longitude and latitude values. The output of the

KDE is visualised with a thermal map. A principal core of high density is observed in

the three cities, but point-wise density and spatial distribution patterns may differ.
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Figure 3.11: Probability density function (PDF) of observing two randomly

selected places at a distance ∆r in a city. We have enumerated 11808, 15970

and 15617 unique venues for Houston, San Francisco and Singapore respectively. The

probability is increasing with ∆r, as expected in two dimensions, before falling due to

finite size effect.
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Both figures highlight large heterogeneities in the distribution of places across cities.

The rank-based model can cope with these heterogeneities as it accounts for the relative

density for a given pair of places u and v. These differences in the geographic distribution

of Foursquare venues across cities have enabled us to examine further how the geography

of a city, encoded by the longitudinal positions of its settlements, impacts human mobility.

Could we then alter the spatial distribution of settlements in a city and quantify the effect

of this process on human movement?

Randomising the geographic coordinates of places. The methodology we have

put forward to demonstrate this is based on the spatial randomisation of places, U , of

a city. We do so by iterating through all places in U and randomizing the coordinates,

latu, longu, of a place u with probability Prand. A new pair of latitude and longitude

coordinates is chosen, (latu′ , longu′), by considering a uniform sample in a predefined

range, where latu′ ∈ [latu ± 0.1] and longu′ ∈ [longu ± 0.1]. In Figure 3.12, we present

the Kullback-Leibler Divergence (KL-Divergence), DKL(H||R), between the empirically

observed distribution of human displacements, H, and the distribution R obtained by

the rank-distance model for different values Prand. The KL-Divergence [SK51] is a non-

symmetric measure of the difference between two probability distributions and is formally

defined as

DKL(H||R) =
∑
i

H(i) ln
H(i)

R(i)

The reader may observe that as the probability of randomizing the position of a place

increases, the quality of the fit attained by the rank-distance model, on average, drops.

This observation becomes statistically significant only for Prand ≥ 0.7. We note that any

alternative randomisation process which, instead, preserves the relative density between

all pairs of places (or Prand = 0.0 equivalently) would not have an impact on the perfor-

mance of the model on the original set of places U . That is expected as the probability of

a transition in the rank-distance model is dependent exclusively on this factor (provided

that the exponent alpha remains unchanged and equal to 0.84 as it is the case in all sim-

ulations). Overall, this analysis highlights the impact of geography, as expressed by the

spatial distribution of places, on human movements, and confirms at a large-scale the sem-

inal analysis of Stouffer [Sto40] who studied how the spatial distribution of employment

opportunities in the city of Cleveland affected the migration movements of families.
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Figure 3.12: Effect of place coordinate randomisation on the performance of

the rank-distance model. On the y-axis we present the KL-divergence, DKL(H||R),

between the empirically observed distribution of displacements in a city H and R which is

the one obtained by the rank-distance model. On the x-axis the probability of randomisa-

tion, Prand, is depicted. Prand = 0 corresponds to the case that the original distribution of

displacements within a city is maintained, while the opposite extreme where Prand equals

1.0 means that all places have been randomized. The error bars correspond to standard

deviations across cities.

3.6 Discussion and implications

The empirical data on human movements provided by Foursquare and other location-

based services allows for unprecedented analysis both in terms of scale and the information

we have about the details of human movements. The former means that mobility patterns

in different parts of the world can be analysed and compared across cultural, national or

other organisational borders. The latter is achieved through better location specification

technologies such as GPS-enabled smartphones, but also with novel online services that

allow users to lay out content on the geographical plane, such as the existence of places

and semantic information about those. As those technologies advance our understanding

on human behaviour can only become deeper.

In this chapter, we have focused on human mobility in a large number of metropolitan

cities around the world to perform an empirical validation of past theories of the driving

factors of human movements. As we have shown, Stouffer’s [Sto40] theory of intervening

opportunities appears to be a plausible explanation for the observed mobility patterns of

users in location-based social networks. The theory suggests that the distance covered by

humans is determined by the number of opportunities (i.e., places) within that distance,
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and not by the distance itself. This behaviour is confirmed in our data where we observed

that physical distance does not allow for the formulation of universal rules for human

mobility, but a universal pattern emerges across all cities when movements are analysed

through their respective rank values: the probability of a transition to a destination place

is inversely proportional to the relative rank of it, raised to a power α, with respect to a

starting geographical point. In addition, α presents minor variations from city to city.

Our approach opens avenues of quantitative exploration of human mobility, with sev-

eral applications in urban planning and computer science. The identification of rank as

an appropriate variable for the deterrence of human mobility is in itself an important

observation, as it is expected to lead to more reliable measurements in systems where

the density of opportunities is not uniform, e.g. in a majority of real-world systems.

The realisation of universal properties in cities around the globe also goes along the line

of recent research [LBW07, BW10] on urban dynamics and organisation, where cities

have been shown to be scaled versions of each other, despite their cultural and histori-

cal differences. Contrary to previous observations where size is the major determinant

of many socio-economical characteristics, however, density and spatial distribution are

the important factors for mobility. Moreover, the richness of the dataset naturally opens

up new research directions, such as the identification of the needs and motives driving

human movements, and the calibration of the contact rate, e.g. density- vs. frequency-

dependent, in epidemiological models [MJSB09]. Finally, we note that there may be a

strong demographic bias in the community of Foursquare users. While this is an inher-

ent characteristic of many telecommunications services and corresponding datasets, it is

encouraging that the analysis and models developed in the context of the present work

demonstrate strong similarities across multiple urban centres and different countries.

3.7 Related work

As we have discussed in Chapter 2, in classical studies, two related but diverging view-

points have emerged. The first camp argues that mobility is directly deterred by the

costs (in time and energy) associated wit physical distance. Inspired by Newton’s law

of gravity, the flow of individuals is predicted to decrease with the physical distance be-

tween two locations, typically as a power-law of distance [Wil67, ES]. Besides distance,

more complex versions of gravity models may also consider a parameter that captures

the “volume” between the starting point and the destination of a trip. These so-called

“gravity models” have a long tradition in quantitative geography and urban planning and

have been used to model a wide variety of social systems, e.g. human migration [Lev10],

inter-city communication [GMKB09] and traffic flows [JWS08]. The second camp argues

instead that there is no direct relation between mobility and distance, and that distance

is a surrogate for the effect of intervening opportunities [Sto40]. The migration from ori-

gin to destination is assumed to depend on the number of opportunities closer than this
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destination. A person thus tends to search for destinations where to satisfy the needs

giving rise to their journey, and the absolute value of their distance is irrelevant. Only

their ranking matters. Displacements are thus driven by the spatial distribution of places

of interest, and thus by the response to opportunities rather than by transport impedance

as in gravity models. The first camp appears to have been favoured by practitioners on

the grounds of computational ease [Eas93], despite the fact that several statistical studies

have shown that the concept of intervening opportunities is better at explaining a broad

range of mobility data [Mil72, KEHS73, Wad75, FR85, CB05]. This long-standing debate

is of particular interest in view of the recent revival of empirical research into human

mobility. Our work has studied two versions of these two diverging schools of thought on

human movement. While our present findings support the theory of intervening opportu-

nities due to its elegance in modelling movements in a simple way (as opposed to a less

straight forward parameterisation of the corresponding gravity model), we most certainly

cannot derive definitive conclusions as there is still room for more empirical studies that

will consider both alternative modelling formulations and new datasets. Besides, in the

light of this discourse one should recall the proof about the models’ statistical convergence

presented by Alan Wilson in [Wil67] and discussed in detail in Section 2.1.3.

The current study also shares the interests in determining the universal laws governing

human mobility and migration patterns of [SGMB12]. We concentrate on modelling

movement at the city scale, using the distribution of places in cities while the radiation

model presented in [SGMB12] exploits population densities to model larger scale mobility

patterns across states or municipalities. In fact, its applicability in the urban setting has

been doubted empirically recently in [YG13].

3.8 Summary

In Section 2 we presented the fundamental mechanics of the most popular theoretical

models in the literature of human mobility; the gravity and intervening opportunities

models. As discussed, their main difference lies in the former’s suggestion that movement

between places depends only on the absolute distance between them, whereas in the latter

case, the relative density of opportunities between a trip’s origin and destination matter.

In this chapter, we have empirically reviewed the two models by conducting a large scale

study in 34 cities around the world. Using a check-in dataset from location-based social

networks, we initially revealed the key role of density in human movement. The denser

an urban environment is, the shorter is the expected trip length in that environment.

Base on this insight, we have subsequently demonstrated how the rank-distance vari-

able allows for an elegant representation of movement in cities that effectively dissects

the heterogeneity observed when geographic distance is employed to measure trip length

frequency distributions. Equipped with these analytical observations, we employed the

48



rank-distance as the core element of an agent based human mobility model. The fact

that the model was able to reproduce accurately the real mobility patterns of Foursquare

users in cities has confirmed the plausibility of the theory of intervening opportunities in

urban mobility. Without excluding the case that a gravity based model could present an

equivalent alternative, we have argued that its parameterisation is not straightforward.

In the next chapter we will refine the level of abstraction at which we observe human

mobility. Instead of aiming to model emergent properties in human mobility from a

complex system perspective, we will attempt to predict the exact places visited by mobile

users through the development of an application oriented framework. In addition, we

will assess how the rank-distance compares to absolute geographic distance when they are

being integrated as features into machine learning algorithms.
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4
Next place prediction in location-based

services

In Chapter 3 we studied the mobility patterns of users in location-based social networks by

examining the statistical properties of their movements in urban environments. We have

seen how the density of places between an origin and a destination, the rank-distance,

matters greatly and is, in fact, a more informative variable than absolute geographic

distance when modelling human mobility in the city. In this chapter, we will fine tune

the level of abstraction at which we treat human movement and instead of targeting the

modelling of the general statistical properties of user trips in the city, we will focus on

the prediction of the exact place a user visits next given their current geographic position

and time. Put more generally, we are aiming to predict the place where the next check-in

of the user will occur.

Insights about the type and time of users’ visits can greatly improve the development

of recommendation systems. For instance, advertisers who want to push offers to users

would greatly benefit from knowing the next location a user is going to visit, so to offer the

right coupon or the right recommendation in a timely manner. Location-based services

that target on venue recommendations can also benefit from effective predictions of where

mobile users will go next. However there are many challenges involved in the prediction

of the next visited location, relating to user preferences and place properties as well as the

spatio-temporal context in which movement occurs. More technically, a major challenge

posed in this context is to rank all the potential target places in the prediction scenario,

which could easily contain thousands of candidates, so that the actual place visited next
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by the user is ranked as highly as possible. This represents a highly imbalanced prediction

scenario, where a single correct instance has to be found (the place a user is going to)

amongst thousands of candidate instances (all places in the city).

Chapter Outline In the work to be presented in the following sections, we follow

a methodology that focuses on interpreting why users choose to visit a place. Without

making causal claims, our goal is to see movement through the lens of the different signals

of information that are available in location-based services. In addition to focusing on

the interpretability of user mobility prediction, our goal is to achieve high prediction

performance. We will see that Foursquare users are likely to visit new venues with a

probability above 60% (roughly two out of three times). Adding to this the observation

that the user movement information is extremely sparse with only a few check-ins per user,

then exploiting probabilistic frameworks which simply exploit historical information to

make predictions is not a plausible direction to consider. We will thus see that quantifying

how the different layers of data available in location-based services play a role in user

movement can not only help us in understanding it better as a process, but also in

building powerful mobility prediction models.

Specifically, in this chapter, we make the following contributions:

• A formulation of the factors that drive user movement in location-based

services. First, we extend the analysis conducted in Chapter 3 on the check-in

dataset of Foursquare users by inspecting the spatio-temporal dynamics of their

movements. Driven also by the conclusions drawn by previous literature in human

mobility, we define a set of prediction features that exploit different information

dimensions of user mobility: these include information tailored specifically to an

individual user, such as historical visits or social ties, and features extracted by

mining global knowledge about the system such as the popularity of places, their

geographic distance and user transitions between them. We employ a set of fea-

tures that leverage explicitly temporal information about users’ movements. We

assess the predictability of individual features and we discover that the most ef-

fective features are those which leverage the popularity of target venues and user

preferences. Moreover, by assessing the mobility prediction features across different

evaluation metrics an interesting duality pattern in their performance emerges; fea-

tures built on personalised user information are superior in predicting historically

visited venues, whereas, movements towards new venues are better predicted when

employing features that mine global information about mobility in the system.

• An effective training strategy for applying supervised learning methods

in the next check-in prediction problem. We combine the predictive power of

individual features in a supervised learning framework. By training two supervised

regressors, a ridge linear regression [LCVH92] model and a continuous learning
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decision tree [Qui92], on past user movements, we demonstrate how a supervised

approach can significantly outperform single features in the prediction of future user

movements, indicating that user behaviour in location-based services is driven by

multiple factors that may act simultaneously. Notably, the decision tree model ranks

consistently one in two user check-ins in the top 50 predicted venues. Furthermore,

our supervised training strategy is able to offer predictions even for users with little

check-in data (the majority of users); the proposed training methodology is built

on information collected by groups of users moving in a city and is based on a

technique of implicit label extraction that teaches supervised learning models what

are the good (preferred) and the bad (non preferred) places for users to go in the

city.

• Offering insights on the temporal variations in movement prediction. We

study the performance of features and classifiers over time, finding that prediction

performance is higher over lunchtime and weekdays. In all cases, a strong temporal

periodicity is apparent in the prediction task, but features based on the geographic

distance amongst places achieve higher scores at nighttime, unlike other features.

This shows how the factors influencing human mobility can vary over time and

highlights the importance of adding spatio-temporal context to the prediction task.

In the following sections, we begin by formulating the next check-in prediction problem

(Section 4.2.1). Subsequently, we define twelve mobility prediction features (Section 4.2.2)

and evaluate their performance individually (Section 4.3) and in a supervised learning

framework (Section 4.4). We close with a discussion of the implications of our findings

followed by related work and a summary.

4.1 Data and preliminary analysis

We employ the same dataset used in Chapter 3 comprised of publicly-available check-

ins crawled via Twitter’s streaming API1. Table 3.1 shows the 34 cities with the highest

number of check-ins observed in the dataset: New York, Chicago and San Francisco top

the list with 371, 185 and 112 thousand check-ins respectively. The table also includes

the numbers of places that have been checked into in the cities as well as the average

distance between consecutive check-ins, which ranges from 1.9 to approximately 6 kilo-

metres. These values reflect the geographic distribution of check-ins in each city, as well

as the urban sprawl of different areas. The analysis we present next concerns the full

dataset (i.e., all cities and users in Foursquare), as we measure aggregate statistics, but

the mobility prediction algorithms are evaluated for the set of the 34 active cities, that is,

1https://dev.twitter.com/docs/streaming-api
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cities with at least 25, 000 check-ins. The choice to focus on the top cities has been moti-

vated by the fact that the supervised learning algorithms shown in Section 4.4.2 require

the provision of sufficient data during the learning phase and our models are trained on

a per city basis for reasons whose details we clarify in Section 4.4.1.
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Figure 4.1: Complementary Cumulative Distribution Function (CCDF) of (a) number of

check-ins per user and (b) number of check-ins per place in the Foursquare dataset.
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Figure 4.2: Complementary Cumulative Distribution Function (CCDF) of (a) spatial

distance and (b) time elapsed between consecutive user check-ins.

With respect to user engagement in the Foursquare service as reflected by the collected

dataset, the number of check-ins made by users is highly heterogeneous: the probability

distribution exhibits a heavy tail, with about 50% of users having fewer than 10 check-

ins. In particular, about 15% of users have only a single check-in contained in the entire

dataset. A similar pattern arises when considering the number of check-ins made in each

place: only 10% of places have more than 10 check-ins. The Complementary Cumulative

Distribution Function (CCDF) of the number of check-ins per user and per place are

shown in Figures 4.1(a) and 4.1(b). The distribution of check-ins per place, which is

indicative of the popularity of Foursquare venues, is highly skewed and provides, already,

a strong signal that exploiting this information in order to rank venues in a city may be

a promising direction to predict the next place a user will move to. However, we will
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show that popularity alone, as with distance, does not guarantee maximum prediction

performance.

In order to analyse user movements between venues, we have to consider only users who

have more than one check-in (85% of the dataset users). For those remaining, we focus on

the sequence of check-ins they make over time and study two aspects: the spatial distance

between two consecutive check-ins and the amount of time elapsed between them. The

data reveals the importance of both space and time in determining where the user will

check in to next.

The distribution of time intervals between consecutive check-ins is shown in Figure 4.2(b).

Longer intervals are less likely than shorter ones, meaning that sequences of more frequent

check-ins might arise, together with long periods of inactivity. This reveals that users

exhibit bursts of check-ins that can be mined to understand how they choose where to

go next. There are two different trends that become prominent: the first is formed by

consecutive check-ins within 1440 minutes (a day) and a second, steeper trend when

consecutive check-ins happen across different days. As consecutive check-ins become

separated by longer time intervals they might become also less related; hence, we will

focus our prediction efforts on check-ins that happen within 24 hours of the previous one.

Finally, Figure 3.3 highlights the heterogeneity observed in distance between check-ins

across different cities. While smaller distances appear to be more probable in all cities,

the effect of distance at longer ranges can greatly differ between cities with different urban

and spatial properties. As a consequence, we will frame the next venue prediction problem

as a separate problem in each city for reasons we detail in Section 4.4.1.

4.2 Next check-in venue prediction in Foursquare

In this section, we formalise the Next Check-in Problem. Given the current check-in of

a user, we aim to predict the next place in the city that the user will visit, considering

thousands of candidate venues in the prediction list (a sample of venues in the centre

of London is depicted in Figure 4.3). Subsequently, we will propose a set of features

that leverage upon a wide spectrum of user mobility patterns in Foursquare, in order to

effectively predict the whereabouts of mobile users.

4.2.1 The next check-in problem

Notation and problem formulation

We define a set of users U and a set of locations L. Each check-in c by u ∈ U is defined

as a tuple {l, t}, where l ∈ L represents a venue and t is the check-in’s timestamp. The

total set of check-ins is denoted as C and the set of check-ins for a specific user u as Cu.
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Tuesday, 9 April 2013

Figure 4.3: Spatial distribution of Foursquare venues in the area of central London. In

the next check-in prediction task, given the appearance of a mobile user at one of the

places in the city, thousands of places need to be ranked appropriately so as to predict

the next location a user will check in to.

We then formalise the next check-in prediction problem as follows. Given a user u whose

current check-in is c (to venue l′ at time t′), our aim is to rank the set of venues L so that

the next venue to be visited by the user will be ranked at the highest possible position in

the list. According to the setting described above, the next check-in problem is essentially

a ranking task, where we compute a ranking score r̂ for all venues in L.

Filtering venues by city

We constrain the selection of candidate venues to the set of places L within a given a city,

decreasing dramatically the cardinality of the prediction set with respect to the entire set

of Foursquare places. This is computationally desirable, since we decrease the number

of potential venue targets from the order of millions, observed globally, to the order of

thousand venues usually included in a city (see Table 3.1). This approach is justified, if

one bears in mind that almost 99% of consecutive check-ins feature a distance smaller

than 10 kilometres, as shown in Figure 4.2(a), suggesting that the vast majority of user

activity in Foursquare occurs within the urban boundary. Further, this choice allows us

to avoid requiring the introduction of distance as an explicit parameter (for instance if

we were to filter the prediction list by applying a bounding box around the user’s current

position) and we can examine its effect as a prediction feature in an unbiased way.
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4.2.2 Mobility prediction features

We now describe in detail the set of prediction features employed to tackle the next

check-in problem. The twelve features we mine here can be loosely grouped into different

categories depending on the source of mobility information exploited. Formally the three

categories are:

• User Mobility Features that mine data straight from the target user.

• Global Mobility Features that are formulated based on the behaviour of groups

of users in the city.

• Temporal Features that seek to exploit temporal information from check-ins at

venues.

For all cases, we note as t′ and l′ the time and location of the current check-in respectively.

We set t′ as the current prediction time and we compute the ranking scores of all features

assuming knowledge up to that time.

User Mobility Features

This class refers to features tailored to the check-ins generated by the user under predic-

tion or by her social network. We aim to capture the likelihood that a user will return to

a place visited in the past, but also the likes of the user in terms of types of places she

likes to hang out.

Historical Visits. By measuring the number of past visits of user u at a target venue

k, we are aiming to assess to what extent the next check-in of a user is likely to emerge

at a place that has been visited by the user in the past. Formally we have

r̂k(u) = |{(l, t) ∈ Cu : t < t′ ∧ l = k}| (4.1)

We will see, in Section 4.3 when we evaluate the features, that there is a high chance of

users visiting new places, however, the probability of returning to previously seen venues

remains high (around 30%) and constitutes a strong signal of a user’s probable where-

abouts, especially in the case of active users.
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Categorical Preferences. Another source of information based on historical behaviour

is the number of check-ins user u has performed at a place that belongs to category z. In

this way, we identify the importance of different categories of places (cinema, coffee shop,

football stadium, etc.) for a given user and rank them accordingly:

r̂k(u) = |{(l, t) ∈ Cu : t < t′ ∧ zl = zk}| (4.2)

We note that we subsequently rank venues that belong to the same category by their

popularity in terms of number of check-ins. Thus between coffee shops for instance, those

with most check-ins are ranked more highly. This feature corresponds to a content filter-

ing based approach, a popular strategy in the literature of recommender systems.

Social Filtering. Previous works [CML11, SKB12] have suggested a strong relationship

between the places users visit and those visited by their friends. Thus we build the

corresponding feature, considering a user u and his set of friends Γu. We rank a target

venue k by summing the total number of check-ins that any friend v of the user has

performed at place k:

r̂k(u) =
∑
v∈Γu

|{(l, t) ∈ Cv : t < t′ ∧ l = k}| (4.3)

As expected for users who have not got any friends in the system there is no utility in

this case. However, knowledge of the whereabouts of friends can be very useful in the

cold start prediction scenario, where a user joins the system, declares social connections

but has yet to check in to any venue.

Global Mobility Features

Now, we demonstrate how we can exploit global information about the check-in patterns

of Foursquare users going beyond an individual user and her social network. In this

category we will include popularity and geographic features together with features that

exploit transitions between venues. Our choice to seek information sources that do not

immediately relate to the patterns observed about the movements of the user under pre-

diction stems from our willingness to predict venues that the user has not visited before.

Past approaches in mobility prediction have been mainly focused on the development of

frameworks that depend on historical data and do predictions only on previously visited

places for a given user. Yet, in location-based social networks there are thousands of real

world places a user may visit. This corresponds to a novel class of predictions and an

important characteristic of location-based social networks that we will address specifically

in Chapter 5.
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Popularity. The distribution of check-ins per place (see Figure 4.1(b)), which is in-

dicative of the popularity of Foursquare venues, is highly skewed and provides, already,

a strong signal that exploiting this information in order to rank venues in a city may be

a promising direction to predict the next place a user will move to. In response to this

observation we define the corresponding feature by counting the total number of check-ins

performed by the total set of users U in the dataset to a venue k:

r̂k(U) =
∑
u∈U

|{(l, t) ∈ Cu : t < t′ ∧ l = k}| (4.4)

In a lot of recommender systems item popularity is considered to be a very strong base-

line predictor and in the evaluation Section 4.3 we will see that this is also the case here.

Nonetheless, we will also see how this baseline is clearly outperformed by more sophisti-

cated prediction methods.

Geographic Distance. The role of geographic distance in human movements has been

investigated in various works using mobile phone based datasets [DBG06, GHB08] and, as

also has been studied in this dissertation (Chapter 3 and Figure 4.2(a)) it is also important

in location-based social services. Considering the current location l′ of user u we measure

the distance dist(l′, k) to all other places based on their geographic coordinates. Venues

are subsequently ranked in ascending order so the nearest place will be at the top of the

prediction list.

r̂k(l
′) = dist(l′, k) (4.5)

Rank Distance. Similarly to geographic distance, we define for the next place predic-

tion problem, rank distance that we initially investigated in Chapter 3. We may recall

that the rank distance measures the relative density between the current place of the user,

l′, and all other places. Formally, considering all places l ∈ L we define

r̂k(l
′) = |{l ∈ L : dist(l′, w) < dist(l′, k)}| (4.6)

which in plain words translates to the enumeration of venues that are geographically closer

to l′ than the destination k. Our assumption here is that the movement of people is not

based on absolute distance values, but rather by the density of opportunities or resources

nearby. This approach has been motivated by Stouffer’s theory of intervening opportu-

nities presented in the literature on human migration [Sto40] and described in detail in

Chapters 2 and 3. It is worth mentioning that the ranking scores output by the geographic

distance and rank distance features are equal (since geographic distance reduces it to a

ranking task such as the one dealt with here). Yet, as we will see in Section 4.4, when
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Origin Venue Category Destination Venue Category P10
t P∗t

Train Train Station 0.48 0.30

Terminal Airport 0.46 0.17

Gate Airport 0.45 0.22

Moroccan Theme Park 0.39 0.06

Train Station Train 0.38 0.22

Rental Car Airport 0.36 0.18

Plane / In-flight Airport 0.33 0.19

Tram Airport 0.33 0.19

Cineplex Mall 0.30 0.08

Plane Airport 0.28 0.15

Bridge Highway / Traffic 0.28 0.10

Lab University 0.26 0.09

Surf Spot Beach 0.25 0.06

Trade/Tech School Other - Buildings 0.25 0.07

Emergency Room Hospital 0.25 0.08

Hotel Bar Hotel 0.24 0.07

Engineering University 0.24 0.07

Movie Theater Mall 0.24 0.06

Other - Travel Highway / Traffic 0.23 0.11

Taxi Highway / Traffic 0.23 0.09

Table 4.1: Top-20 Activity Transition Probabilities for consecutive check-ins by a user.

P 10
t refers to check-ins that took place within 10 minutes of each other and P ∗t for the

transition probability without considering a temporal threshold.

the two features are incorporated in machine learning models in the light of optimisation

criteria they are not equivalent. This has important implication for the integration of

distance measurements in location-based social networks and we shall discuss them in

detail in Section 4.4.

Activity Transitions. Sequences of human activities are not random, as for instance

we may visit the supermarket after work or go to a hotel after landing at an airport.

The non-uniformity in the probability of transiting from one Foursquare venue type to

another can also been seen in Table 4.2.2 where we plot the highest transition probabilities

from one type of place to another in the system. As a consequence, we are defining the

corresponding feature which enables us to capture this signal in Foursquare check-in data.

Formally, by writing as a tuple, (m,n), the places m ∈ L and n ∈ L involved in two
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Figure 4.4: Stacked plot of the 10 most popular categories over weekdays and weekends.

Popularity decreases bottom-up.

consecutive check-ins, with zm and zn being their corresponding categories, we have

r̂k(l
′) = |{(m,n) ∈ Lc : zm = zl′ ∧ zn = zk}| (4.7)

where Lc denotes the set of tuples for places involved in consecutive transitions before

current prediction time t′.

Place Transitions. By definition of the next check-in problem we seek to predict con-

secutive transitions of users between venues. Thus, we build a feature that directly exploits

this information, by measuring the direct transitions between all pairs of venues in the

city. Accordingly, the rank score of a target venue k is obtained by enumerating the

past transitions observed by any user from the current location l′ to location k, which we

formally define as

r̂k(l
′) = |{(m,n) ∈ Lc : m = l′ ∧ n = k}| (4.8)

This is one of the currently deployed recommendation techniques of the Foursquare ap-

plication [Eng12](people who went to the place where you are, they also went to place X ).

Recall that during data collection there were no recommendations featured in Foursquare

and therefore the results to be seen in the following paragraphs are not biased from this

point of view.

Temporal Features

Time has been an important dimension in systems where human behaviour is central.

Here, by exploiting the fact that every Foursquare check-in is timestamped with per

second accuracy, we define time aware features that capture information both about user
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activity in terms of visiting categories of places, but also temporal patterns of visits to

specific places.

Category Hour. In Figures 4.4(a) and 4.4(b) we plot the number of check-ins across the

ten most popular categories of places observed during weekdays and weekends respectively.

The two curves present considerably different patterns. On weekdays activity presents

three peaks: in the morning when people go to work, at lunchtime, and between 6pm

and 8pm when they commute, return home or go to malls and bars. On the other

hand, during weekends user activity presents a smoother evolution course, reaching a

long lasting plateau between 12pm and 10pm. Another difference to note between the

two is that category Corporate/Office disappears from the top set of user activities and

is substituted by leisure related activities such as American (Food) and Hotel, while

categories such as Bar and Mall also show increased preference rates among users. In

both cases, however, checkins at the Home category show a continuous rise throughout

the day, with a steeper increase at 6pm during weekdays.

This shows that Foursquare user activity is driven by temporal rhythms both on a daily

and on a weekly basis (Figure 4.4). In the light of these observations we formulate features

that enable the realisation of these patterns. More specifically, given that zk denotes the

type of the target place k, we define the Category Hour popularity as the sum of past

check-ins at a place of type zk in a given hour h of the day.

r̂k(t
′) = |{(l, t) ∈ C : zl = zk ∧ tod(t) = tod(t′)}| (4.9)

where tod(t) ∈ [0, 1 . . . 24] returns a value corresponding to the hour of the day of time t.

Category Day. Similarly, we set Category Day popularity as the sum of check-ins at a

place of type z at a given hour of a week:

r̂k(t
′) = |{(l, t) ∈ C : zl = zk ∧ tow(t) = tod(t′)}| (4.10)

where tow(t) ∈ [0, 1 . . . 167] returns a value corresponding to the hour of the week of time

t. While the only difference between Category Day and Category Hour is their temporal

granularity (24 hours of the day versus 168 hours of the week respectively), there is

a trade-off between specificity and ability to generalise in a prediction setting that we

are willing to explore in the context of Foursquare check-in data. In general, higher

dimensional formulations in machine learning imply a more sophisticated and informative

model. Nonetheless this advantage is traded off with the requirement for more training

data, an issue that is known as the curse of dimensionality [HTF03].

Place Day. A spatio-temporal snapshot of the collected corpus is depicted Figures 4.5(a)

and 4.5(b), where user activity in New York is shown for morning and night respectively.
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(a) Morning (b) Night

Figure 4.5: New York in the morning and at night. We show the 8 eight categories of the

top hierarchical level: Arts & Entertainment (red), College & Education (black), Shops

(white), Food (Yellow), Parks & Outdoors (green), Travel (cyan), Nightlife (magenta),

Home/ Work/ Other (blue).

A circle represents a venue and its radius its poularity in terms of number of checkins.

Each color corresponds to one of the 8 general categories introduced by Foursquare (de-

scribed in caption). The mosaic created by user check-in data highlights the diversity of

human activity across the spatial plane.

In general, user check-ins at places are known to have characteristic temporal signatures as

discussed in [YSL+11], where information about temporal visiting patterns are exploited

to infer the semantic tags of places. Thus, as with venue categories, we also define the

temporal check-in activity at specific venues. We measure the number of check-ins place

k has during a day of the week (Place Day) defined as:

r̂k(t
′) = |{(l, t) ∈ C : l = k ∧ dow(t) = dow(t′)}| (4.11)

where dow(t) returns the day of the week of time t.

Place Hour. A similar definition follows for the number of check-ins that place k has

at a given hour of a day (Place Hour), aiming to capture weekly and daily patterns,

respectively:

r̂k(t
′) = |{(l, t) ∈ C : l = k ∧ tod(t) = tod(t′)}| (4.12)

Foursquare uses trending places information 2 in its local search engine, in order to pro-

mote in real time venues where a lot of users have recently (past hour) checked in. Effec-

2https://developer.foursquare.com/docs/venues/trending
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tively this corresponds to venue popularity features that are time aware. We note that due

to the sparsity (approximately 300 categories compared to millions of venues) of check-in

data on a per place basis in Foursquare, here we do not use the 168 hour granularity

formulation as we have done for venue categories.

4.3 Evaluating mobility features

We now evaluate the performance of each individual prediction feature. We first describe

the evaluation metrics we adopt; then, we compare the performance of each feature across

these metrics. Finally, we assess how prediction performance changes over time.

4.3.1 Methodology and metrics

Given each user check-in eligible for prediction, we have a set L of candidate places to

rank. The features compute a numeric value r̂k for each candidate venue k, which are

subsequently used to produce a personalised ranking of the venues. We then write as

rank(k)3 the rank of venue k, obtained after sorting in decreasing order all venues in L

according to r̂k. We aim to measure the extent to which the future venue that will be

visited is highly ranked by the prediction algorithms. We use two metrics to measure the

performance of the features and algorithms employed for the prediction of the next place.

First, the Percentile Rank [HKV08] (PR) of the visited place k: PR = |L|−rank(k)+1
|L| . The

PR score is equal to 1 when the place that will be visited next is ranked first and it linearly

decreases to 0 as the correct place is demoted down the list. The Average Percentile Rank

(APR) is obtained by averaging across all user check-in predictions: this measure captures

the average normalised position of the correct instance in the ranked list of instances. We

also use prediction accuracy to assess the performance when using different prediction list

sizes N . In this case, we successfully predict the next check-in venue if we rank a venue in

the top-N places. Average accuracy is the fraction of successful instances over the total

number of prediction tasks, which we note as Accuracy@N. Features that achieve high

APR scores do not necessarily also excel in terms of accuracy. The implications regarding

the duality in the predictive performance of machine learning features across different

evaluation metrics will be discussed in the paragraphs to follow.

3For a venue k, rank(k) is the position of the venue in the prediction list and should not be confused

with the notion of rank-distance introduced previously.
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4.3.2 Feature based venue prediction

APR results

The APR results for all features are presented in Table 4.2. From the class of User

Mobility features, we can distinguish the Categorical Preference feature which achieves

a score of 0.84, which is considerably higher than the Historical Visits (APR = 0.68)

and Social Filtering (APR = 0.61). This provides an indication that the types of places

users tend to visit (cinema, nightclub, coffee shops etc.) can be highly informative about

user mobility preferences and could be employed in mobile applications such as place

recommendation systems.

With respect to features mined exploiting Global Mobility patterns of Foursquare users,

Place Popularity which ranks venues according to the number of past check-ins is the most

promising predictor with an APR score that averages 0.86. This is the highest APR score

across all features and confirms our observations in Section 4.1 (Figure 4.1(b)) about

the highly skewed distribution of visit frequencies at Foursquare venues where a few hub

venues absorb a large fraction of user movements. The Geographic Distance and Rank

Distance attain an average score 0.78, highlighting that spatial distance is an important

factor in the way users decide which venue to visit next. Continuing in the same class of

features, the Activity Transition and Place Transition features achieve lower scores with

APR = 0.60, though remaining higher than the Random Baseline which would achieve

0.50.

We close the APR score analysis by looking at the performance of features that exploit

Temporal Information about the check-in patterns of Foursquare users. The Place

Hour feature, which ranks target venues according to the frequency of visits by any user

observed in the past at the current check-in hour, achieves the highest score, 0.79. The

Place Day ranking, which instead ranks venues by the past number of visits at the day

of the current user check-in, follows closely with an APR = 0.76, perhaps due to its

lower temporal specificity (day of week instead of hour of day). However, both features

signify that temporal activity around venues constitutes a source of high quality signal in

the venue prediction task. Finally the Category Hour and Category Day features trail in

performance with scores 0.56 and 0.57 respectively and offers only a marginal improvement

over the random baseline.

The effect of prediction list size

The APR scores denote how well, in general, a prediction feature ranks the next visited

venue amongst all candidate venues L. However, in the context of a real mobile application

where a finite set of places may be recommended to a user, due to interface or other
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Feature APR ACC@10 ACC@50

Random Baseline 0.5 0.0001 0.0005

User Mobility

Historical Visits 0.68 0.30 0.36

Categorical Preference 0.84 0.006 0.05

Social Filtering 0.61 0.17 0.24

Global Mobility

Place Popularity 0.86 0.07 0.16

Geographic Distance 0.78 0.08 0.19

Rank Distance 0.78 0.08 0.19

Activity Transition 0.60 0.03 0.06

Place Transition 0.60 0.17 0.20

Temporal

Category Hour 0.56 0.01 0.02

Category Day 0.57 0.01 0.03

Place Day 0.76 0.07 0.16

Place Hour 0.79 0.09 0.20

Table 4.2: Average APR, Accuracy@10 and Accuracy@50 results for all mobility

features.
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Figure 4.6: Feature Predictability. Mean Accuracy for all features when they are being

tested on an individual basis for different prediction list sizes N.

constraints, one would be interested to examine how prediction approaches perform when

the size of the prediction list N is limited.
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Figure 4.7: Feature Weekly Predictability. Average Percentile Rank for all features

for different hours of a week. On average, distance- and popularity-based features outper-

form the rest. Strong daily periodicities are also observed: notice the yellow circles and

red squares which correspond to noon and dinner times respectively.

We have evaluated all algorithms across various top-N list lengths using the Accuracy@N

metric. We show the full set of results in Figure 4.6 and we report the results of

Accuracy@10 and Accuracy@50 in Table 4.2. The principal observation is that features

that rank low in APR can potentially demonstrate good performance in accuracy terms,

in contrast to the results presented in the previous paragraph.

Overall, the results in Figure 4.6 suggest features tailored specifically to User Mobility

patterns, such as Historical Visits and Social Filtering, dominate in accuracy for list sizes

smaller than N = 60. In particular, Historical Visits continues to perform well over

larger list sizes, up to N = 100. We note that both features had relatively low APR

scores. On the other hand, features that harvest Global Mobility information, such as

Place Popularity or Geographic Distance, fail to achieve high accuracy scores for small

N values. This duality in the performance of the various predictors can be explained by

the fact that some features can predict exactly the next place a user is going to when, for

instance, the user returns to a previously visited place or visits places that their friends

go to. However, the same features fail to rank appropriately the thousands of previously

unseen by the user. This explains the low APR scores achieved by features personalised to

the user (User Mobility class of features); they are completely agnostic in ranking new

venues and, thus, the mean scores observed for these data points are biased to very low

values for a large fraction of user check-ins. We shall see though that the heterogeneities

observed in the performance of features will be dissected when we will combine them in

a unifying supervised learning framework in Section 4.4.

An exceptional case with respect to performance across metrics is the case of the Place

Transition feature. Despite being mined from Global Mobility information it achieves
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a relatively high accuracy score, unlike most other features that belong to that class. An

explanation for this performance behaviour is that Place Transition exploits the relative

popularity of venues with respect to the current location of the user. Then the fact that

each venue is, in principle, connected to only to a small subset of venues in the city allows

for the emergence of a very accurate prediction mechanism. This also confirms that there

is a strong signal generated by the sequences of visits made by mobile users to Foursquare

venues.

Finally, with regard to the class of features that exploit Temporal information about

places, we note that the performance of the Place Day and Place Hour features are in

line with features such as Geography Distance, Activity Transitions and Place Popularity,

which begin with small accuracy values but constantly improve for larger values of N

and do thousands of times better than the random baseline as shown in Table 4.2 for

Accuracy@10 and Accuracy@50.

Predictability over time

We have demonstrated the overall performance of various features in the light of two

different metrics, APR and Accuracy@N. Another interesting aspect to consider is how

well the different prediction strategies perform at different temporal instants throughout

the day or the course of a week. Figure 4.7 compares the performance of the various

features by showing the temporal evolution of the APR score on a weekly basis. To

retrieve those scores we have measured performance at different hours of the week. Given

that the check-ins of each user are timestamped with per second granularity, we simply

retrieve the hour of the corresponding prediction task and we assess how predictability

evolves over time. Overall, we note that the effectiveness of each feature over time is not

constant: predictions are more accurate at noon and less accurate in the evening. This

suggests that people might be more habitual during the day and more likely to alter their

regular patterns and try something new in the evenings.

Interestingly, in the cases of Geographic Distance and Rank Distance performance is in-

verted with a clear implication: users are more likely to cover shorter distances at night

between consecutive check-ins. Further, the variation between the minima and maxima

in the temporal results is more prominent for some features. More specifically, features

such as Historical Visits and Place Transition score significantly lower over the weekend,

whereas Categorical Preference, Place Popularity and the distance based features have a

more stable behaviour. Finally, an interesting case in that respect is also the performance

of Place Day, whose APR score rises over the weekend highlighting how knowledge of the

temporal patterns of venue visits becomes prominent during this period. We will discuss

the implications of the temporal variability of machine learning features in the next place

prediction task in Section 4.5.
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4.4 A Supervised learning approach to venue predic-

tion

In this section, we combine the individual prediction features presented previously into a

supervised learning framework. Our aim is to exploit the union of individual features in

order to improve predictions, assuming that user mobility in Foursquare is driven by mul-

tiple factors acting synchronously. After discussing a novel training strategy for machine

learning prediction models in the next place prediction setting, we will see how the per-

formance of individual features can be outperformed by unifying prediction frameworks.

These are able to attain good performance in light of both evaluation metrics employed

here, APR and Accuracy@N.

4.4.1 Training Strategy: Learning to rank from populations of

mobile users.

To predict the next check-in venue of a user we train supervised models assuming knowl-

edge up to prediction time t′. For every check-in that took place before t′, we build a

training example x which encodes the values of the features of the visited venue (e.g.,

popularity, distance from previous venue, temporal activity scores) and whose label y is

positive. Then, we retrieve a negative labelled input by sampling at random across all

other places in the city. Essentially, we are aiming to teach the model what the crucial

characteristics are that would allow the differentiation of places that attract user check-ins

from those that do not. This method of training a model by providing feedback in the form

of user preference judgements has been established in the past [CSS99] and corresponds

to an effective reduction of the ranking problem to a binary classification task. We choose

to train supervised regression models that compute a real valued numeric score for each

instance; this will subsequently allow us to rank target venues. A potential alternative

would be the use of a probabilistic classifier that would return for each input a probability

score and then places could be ranked accordingly.

Justification and implications

The proposed training strategy to learn across movements of user collectives has been mo-

tivated by a number of factors. Building a model on a user by user basis suffers from the

extreme sparsity of the check-in data. The of User Mobility features evaluated above,

which directly exploit information about the user, offer a relatively good performance, but

constrain the prediction task to only a handful of venues amongst the thousands of poten-

tial targets in the city. Further, the binary classification labelling of the training instances

is a result of the need to resort to implicit user feedback since in the Foursquare dataset
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Figure 4.8: Toy example of the learning to rank venues process in a binary classification

setting. Exploiting thousands of user movements in a city, machine learning models are

able to learn the feature based representations of places preferred (respectively ignored)

by Foursquare users.

there were not explicit user to venue ratings as it happens typically in recommendation

settings. The absence of ratings provided by mobile users makes it difficult to exploit

learning to rank approaches [Liu09] that are explicitly designed to address ranking tasks

in recommender systems. Finally, we note that we have trained the supervised models

on a per city basis as this has experimentally yielded better results than training across

the general Foursquare user population. This could be viewed as a very broad form of

personalisation as models are trained on groups of users who check in in the same urban

environment as opposed to training on the global set of Foursquare users.

4.4.2 Supervised learning algorithms.

We consider two different supervised models to learn how feature vectors x correspond

to positive and negative labels: linear ridge regression and M5 decision trees [Qui92].

The choice of a linear and a non-linear model respectively, has been motivated by the

need to investigate what relationship holds amongst the features studied in the previous

paragraphs in the light of the next place prediction problem; linear models are by definition

less complex, yet many real world problems and systems are better solved exploiting non-

linear representations of input features.

We have used the corresponding implementations that are publicly available through the

WEKA machine learning framework [WF05]. As hinted already, the linear model assumes

that the relationship between the vector x of input features and the output label y is linear.

The goal is to estimate a vector w that minimises the error between actual and predicted
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Figure 4.9: Average accuracy obtained by the supervised learning algorithms using linear

regression and M5 model trees for different recommendation list sizes.

outputs, formally

min
w
‖xTw − y‖2 + γ‖w‖2

with γ being the regularisation parameter set here equal to 10−8, its default value in

WEKA and close to optimal in cross-validation testing. The M5 model tree is an approach

based on continuous decision-tree learning [Qui92]. The principal advantage offered by

M5 trees is their ability to produce continuous numerical outputs, rather than binary

categories as usually inferred by decision trees. This is desirable in the present context

as we want to rank venues according to real valued scores. That is achieved by creating

a decision tree which splits learning instances according to their features: on each leaf,

a subset of the features contained in x is used in a linear regression model to output a

numeric score. Typically, nodes in decision trees employ a threshold on a certain feature

to split the training set T . Unlike other decision trees where the information gain criterion

is used to choose the attribute on which to split, M5 model trees split on the attribute

which maximises the expected error reduction (i.e., the attribute that yields the most

homogeneous branches upon splitting). Formally, the standard deviation reduction (SDR)

is defined as

SDR = sd(T )−
∑ |Ti|
|T | × sd(Ti)

where T is the set of training examples that reach the node and T1, T2... are the sets that

result from splitting the node to the chosen attribute and sd(T ) returns the standard

deviation for the set of instances belonging to training set T .
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Figure 4.10: Temporal evolution of APR scores (a) and average accuracy (b) obtained by

the supervised learning algorithms using linear regression and M5 model trees.

4.4.3 Results

We are now presenting the prediction results obtained when we train and test the two

supervised learning models. The M5 trees have the best performance across all mod-

els, with an APR of 0.94 and a clear performance margin compared to all single feature

prediction strategies that achieve, at best, 0.86 when venues are ranked according to

Place Popularity. On the other hand, the linear regression model achieves an APR score

equal to 0.81 which ranks it lower than the popularity and categorical preference features.

If we consider the performance of the models in terms of prediction accuracy (see Fig-

ure 4.9), we notice that M5 model trees dominate with Accuracy@10 equal to 0.31 and

Accuracy@50 equal to 0.51. In the latter case, the next place visited by the user is ranked

in the top 50 positions of the prediction list one out of two times on average, which is

remarkable performance if one considers the sheer number of places being ranked in a

city. Compared to the Historical Visits feature that does best in terms of accuracy, M5

model trees present consistently better performance: Historical Visits offer good accuracy

scores which, however, reach an upper bound when prediction list size N = 10, whereas

for larger N values no improvement is observed. As the reader may notice by inspecting

Figure 4.9, M5 model trees accuracy performance ceases to increase rapidly only when

N = 100. That means that their predictive power is not biased by a small set of candidate

venues as in the cases of Historical Visits and Social Filtering. The linear model presents

similar trends in terms of how its accuracy scores improve relative to list size N , but it

fails to achieve high absolute scores, although it still does better than Historical Visits

for N bigger than 50. Overall, M5 model trees attain peak performance both in APR and

Accuracy terms, showing not only that a supervised approach which combines multiple

features is more effective, but also that this combination is more effective in a non-linear

embedding such as that of decision trees.

Finally, Figure 4.10 plots the prediction performance of the combined approaches over the
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week, both using APR (Figure 4.10(a)) and prediction accuracy (Figure 4.10(b)). Model

trees excel in terms of prediction accuracy (shown here for N = 50, with all N shown

in Figure 4.9), scoring above 0.5 in general, denoting that one in two user check-ins are

successfully predicted. The evolution of temporal predictability presents similar patterns

to those observed for individual algorithms. In the morning and noon prediction accuracy

nears 0.65, whereas at night the performance drops almost by 25%. Notably, accuracy also

drops during weekends, as the Historical Preferences and Place Transitions algorithms,

which also score highly in this metric also did (see Figure 4.7). This signifies that the

predictability of user movements may decrease at given times, perhaps when they are

more likely to deviate from their regular mobility patterns by making more randomised

choices of places, as we have also indicated in Section 4.3.2 in the evaluation of single

features. Interestingly, the APR scores of the supervised learning algorithms, as shown

in Figure 4.10(b), present a more robust performance over time, with smaller variations

on a daily basis and equally good performance during the weekend. This observation

supports the idea that, although, supervised models drop in accuracy performance (as

also do the corresponding features being integrated in them), they continue ranking the

venues visited by mobile users relatively high in the prediction list during temporal periods

such as weekends and night when users are more likely to deviate from their standard

behaviour.

Distance versus rank-distance

In Chapter 3 we have shown how the rank-distance presents a better alternative to Geo-

graphic distance for modelling movement in cities. Our goal in that chapter was to model

cities through a common variable, that would dissect any heteregoneity observed in the

aggregate frequency distribution of movements in urban environments. Further, as dis-

cussed in Section 4.2.2, the two features yield the same scores since Geographic Distance

becomes effectively equal to Rank Distance in the venue ranking task. Given these ob-

servations, we delved deeper into the comparison of the two features (variables) and we

measured their relative importance when integrated in machine learning models.

Learning algorithms typically make use of an optimisation criterion in order to assess the

relevance of a given feature. A very common metric established in information theory

and is employed very often in decision tree models is the Information Gain (also known as

Mutual Information) [Qui86]. The variable X with the highest information gain IG(X,α)

for a value α is elected to generate a new branch in the tree. In Table 4.3, we present the

average information gain values measures for the training sets available by the 34 cities

we evaluate. As we observe the two distance features are correlated, however when they

are put together Rank Distance appears stronger suggesting that the relative density

between two places li and lk may be a more informative measure compared to their

absolute distance. While difference in the absolute values are apparent across cities we

73



note that Rank Distance was ranked higher than Geographic Distance in all cases.

Feature Average Information Gain Standard Deviation

Popularity 0.310 0.030

Place Hour 0.225 0.032

Rank Distance 0.223 0.043

Historical Visits 0.204 0.031

Geographic Distance 0.204 0.045

Place Day 0.175 0.031

Social Filtering 0.121 0.043

Place Transition 0.100 0.023

Categorical Preference 0.090 0.015

Category Day 0.054 0.021

Category Hour 0.027 0.013

Activity Transition 0.026 0.022

Table 4.3: Average Information Gain scores for each feature and Standard Deviations

measured across the 34 cities in the dataset.

4.5 Discussion and implications

Mobile location-based services present new challenges, as they reveal not only where

users are but also an additional layer of information about the physical places they visit.

Thus, service providers can now access data about the multitude of factors that may

influence users when deciding which place to visit, ranging from personal interests, social

influence, spatial proximity, and temporal context. This makes it possible to extend

existing techniques beyond the prediction of spatial trajectories, computing instead the

exact place a user will visit. However, together with the new opportunities offered by the

additional information layers included in these data, also come challenges.

First, predictability can be more difficult, as prediction algorithms need to be more precise

to compute the exact venue a user will be at - amongst thousands - instead of generic

geographic positions. Our approach has explored this trade-off: thanks to the extensive

data available about users’ movements, many different predictive features can be defined

and mined to compute how likely a user is to visit any given place. Yet, each single feature

offers only a limited window on user behaviour and, thus, is not able to provide a single

good answer to the prediction task. We have shown that an effective way to address this

problem is to train supervised models that can exploit the combined power of multiple

features. Furthermore, due to the extreme sparsity in user check-in data, the training

set built for the supervised learning task requires the combination of data mined from

multiple users in the city.
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Second, as our analysis has demonstrated (Section 4.1), most users in these systems have

few check-ins. Being able to keep those users engaged is a key issue in location-based

services. Many of the features we have mined in the present work that do not employ user

specific information could be exploited to improve recommendations or content delivered

to this particular class of users. This strategy effectively corresponds to a solution of the

cold start problem [SPUP02] in the context of mobile place recommendations.

Third, our observations highlight that not only does user predictability change over time,

but also that the way different factors drive user mobility may have temporal variations.

For instance, users tend to move towards more geographically proximate venues over night

and they are less likely to visit their historically observed venues during the weekend. This

has two important consequences. First, new models that capture and reproduce mobile

user behaviour need explicitly to include and exploit these temporal variations. Second,

service providers and application developers who aim to offer place recommendation, or

any other system that benefits from foreseeing future places visited by users, have to

take into account that different facets of user behaviour dynamically and heterogeneously

influence users’ movements. The supervised learning models presented in this chapter

combine features in a static temporal representation (all features are incorporated with

the same weighting over time). If time were to be incorporated in this context, for example

by building different models for different hours of the week, then larger quantities of

training data would be required. While this was not feasible during informal experiments

conducted using the present Foursquare dataset, future efforts for the creation of more

dynamic models in light of better data are not to be ruled out.

Finally, it is important to note our strategy has been to train machine learning models in

an off-line manner and subsequently test them on-line on a per user check-in basis. This

represents a scheme that guarantees quick computational responses by processing only

input of a handful of features encoding information about past user check-ins and the

current place of the user. This is because the next check-in prediction scenario requires

a quick and dynamic computational response in terms of computing venue rankings in

real time. Approaches such as matrix factorisation and random walk models are not

specifically tailored for on-line scenarios and in this context could hurt the quality of

service provided to the user. We will see however how these families of algorithms perform

in a more static prediction setting during Chapter 5 when we attempt to predict the new

venues visited by mobile users in future temporal periods.

4.6 Related work

Even though location-based services have only recently enjoyed mainstream popularity,

they have already attracted research efforts thanks to the new wealth of social and spa-

tial data they offer [CCLS11]. In particular, the additional information coming from the
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places visited by users has been successfully used to improve social link prediction sys-

tems [SNM11]. A recent work presents a mobility model that combines social and spatial

factors to reproduce user movements [CML11]. The main difference between this work

and our approach is that we focus on the places visited by users to extract features, while

the statistical model in [CML11] ignores places and does not offer insights into the im-

portance of different factors as space and time vary. A different approach that exploits

social networking information to infer the current location of a user has been proposed

in [SKB12]. In this case the authors propose a supervised learning model based on the

places visited by a user’s friends and they test via cross validation. Instead, our super-

vised models consider a much larger set of candidate places and, thanks to our longitudinal

data, we train them in a more realistic prediction setting on past check-ins, testing on

future movements (as opposed to a standard statistical cross-validation performed by the

authors in [SKB12]). This also makes our approach suitable for prediction on new users

with few or zero check-ins or friends.

Several predictive frameworks for mobile users have been designed and tested, often with

the aim of forecasting future mobile traffic load. A large category of prediction frame-

works are based on Markov models [NN08, LD04], while other methodologies include

sequence pattern matching [MPTG09] and time series analysis [SMM+11]. An interesting

related work that exploits multivariate nonlinear timeseries has recently been presented

in [DDLM12]. In that work, information about the movement of friends, or generic users

whose mobility is correlated to that of the user under prediction, is exploited to predict

movement. The exploitation of information beyond the target user makes it possible to

predict movements towards new locations similar to the present work. Also using cellular

data, the authors in [IBC+12] model human mobility at a metropolitan scale. It should

be highlighted that in both [DDLM12] and [IBC+12] mobility prediction takes place at

the level of geographic coordinates (ie, latitude and longitude values) and not in terms of

exact venues as the present work.

While the approaches mentioned above only focus on location prediction, more recent

work takes advantage of the user-generated knowledge about places to build location

and activity recommender systems [ZZXY10]. The problem of recommending places and

events to mobile phone users has also been investigated, adopting predictive features

such as place popularity and geographic distance [FCSP06, QLC+10]. Our problem is

different to spatial mobility prediction, as we focus on places and not on spatial areas.

Furthermore, we adopt a supervised learning framework rather than probabilistic models,

leveraging the large amount of data available on location-based services to learn complex

patterns. This allows us to focus our attention on the distinctive predictive power of

social, local, individual and temporal data.
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4.7 Summary

In Section 2 we discussed how urban planners and transportation modellers have tradi-

tionally posed the problem of predicting mobility flows between areas in a city or between

cities in a country depending on the geographic scale being investigated. As noted in

Section 2.3.1, while these traditionally posed problems bear similarities to the problem

of mobile venue recommendations, the latter requires the development of user centric,

personalised approaches.

The challenge in the context of mobile venue recommendation however, is the extremely

sparse data available on a per user basis in these systems. This difficulty becomes more

apparent in the next place recommendation problem since a single venue has to be pre-

dicted considering thousands of places in a city that a mobile user could choose to check

in to. Driven by our findings in the analysis we have performed on location-based social

network data in this dissertation, but also on conclusions from the literature on human

movement, we have mined numerous signals about user venue preference in Foursquare.

Subsequently we have presented a learning strategy that exploits venue preferences by

user collectives in order to integrate mobility features in supervised learning frameworks.

Despite the inherent challenges, the unified approach has yielded prediction scores that

are relevant for mobile applications that require knowledge of visit patterns of individual

users. The temporal perspective put on the prediction task and the subsequent results

suggest how our modelling efforts in this chapter present only the first step towards more

sophisticated dynamic models that are able to balance the factors driving user movements

in a temporally aware manner.



78



5
New venue discovery in the city

In the previous chapter we developed a host of machine learning features and a supervised

learning framework for the prediction of the next place to be visited by a user in location-

based social networks. The prediction space in that case involved a mixture of historically

visited and unvisited venues by a target user. The accuracy scores of the algorithms

have, however, hinted that a large fraction of visits occurs at new places; specifically, in

Section 4.3 we observed that historical knowledge about a user’s profile can, on average,

allow the correct prediction of only a third of check-ins. Further, in typical recommender

systems settings the goal has been the prediction and subsequent recommendation of new

items to users which could be, to name a couple of well known examples, new movies or

new products, in the cases of Netflix [BL07] or Amazon respectively. The aim there has

been to foster user exploration into a space of new items, offering this way new experiences

to the individual, but also potentially large return of investment to the merchant. It would

therefore be of interest for researchers and practitioners, in the space of recommender

systems and mobile applications, to see whether prediction algorithms that have worked

successfully in the online setting can be migrated to the geographic domain gracefully

and, moreover, what would be the technical prerequisites and performance implications

upon this transition.

The most prominent problem that challenges building a recommender system in this

setting is that the relationship between check-in, social, and spatial data—in terms of

understanding how these properties relate to people discovering new places to visit—

remains unclear. This has two implications: first, while recommender systems have been

proven to excel in web settings [AT05], they have historically operated with ordinal rating
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data where spatial properties tend not to matter and users have the ability to provide

negative feedback. Instead, check-in data only counts users’ visits to venues, which are also

inherently spread over geographic space. Second, recommender systems have traditionally

operated under the sole assumption of like-mindedness (i.e., historically similar users will

continue to have shared preferences). Instead, there are a wide range of reasons why

mobile users may want to visit a place (e.g., visiting friends, attending an event, touring

culturally significant locations); applying the state-of-the-art in web recommendation to

this new context will inevitably exclude a host of features that this data contains.

Chapter Outline In this chapter, we tackle the problem of building a recommender

system for previously unvisited venues from behavioural, social, and spatial data. To do

so, we seek to answer the following questions:

• How often do people tend to visit new places? In Section 5.1, we analyse two

datasets from check-in services. We discover that between 60-80% of users’ check-

ins are to venues that have not been visited in the previous month; these datasets

contain granular representations of irregular behaviour beyond daily routines.

• What assumptions do web recommender system algorithms make about

human mobility? After formalising the new venue recommendation problem in

Section 5.2, in Section 5.2.2 we describe a host of algorithms—ranging from content-

based, social, and collaborative filtering (with neighbourhood and latent space

models)—that have been used to build web recommender systems. We demon-

strate that each method has a unique underlying assumption about how people

move, which necessarily excludes alternative information signals when computing

recommendations. Furthermore, we show that none of these methods outperform a

simple popularity baseline.

• How can recommendation quality be improved by combining the different

sources of data? In Section 5.3 we propose a generalisable method based on a

personalised random walk with restart on a user-place network. It seamlessly and

simultaneously combines all the available signals into a high-dimensional graph: such

structure takes into account the variety of means through which users are exposed

to new venues.

Finally, through an extensive evaluation, we discuss how our approach based on random

walks obtains between 5 and 18% improvement over those machine learning algorithms

used in web contexts (Section 5.4).

In the sections to follow, we first describe the publicly available check-in data that we

collected for 11 cities across the world (Section 5.1.1) in two location-based social networks.

The nature of the problem we are about to tackle has allowed for the employment of an
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additional dataset sourced from the erstwhile rival of Foursquare in the location-based

service arena, Gowalla 1. We analyse the properties of our data sets and we investigate

to what extent users visit new places when they use these location-based services. Our

main finding is that a large fraction of the visited places are new places, which highlights

the importance of offering high quality recommendations of new venues in those systems.

(Section 5.1.3).

5.1 New venue mobility analysis

Next, we begin with the description, in Section 5.1.1 of the additional dataset that we em-

ploy specifically for the purposes of the present chapter, Gowalla2. Then in Sections 5.1.2

we formalise necessary notation for the next paragraphs and, finally, in Section 5.1.3 we

motivate our approach by performing a thorough analysis on the ways users in location-

based social networks visit new places over monthly temporal periods.

5.1.1 Dataset Description

The check-in data we employ in this chapter spans two different popular location-based

services: Foursquare and Gowalla. We restrict our analysis to the 11 most popular cities

across both services: this allows us to (a) focus on where these services are most used

and (b) restrict our prediction space to areas with the highest venue availability, which

maximises the number of candidate venues that can be recommended. Since, we have

already introduced the Foursquare service in previous chapters (see Section 3.1.1) we

focus on the description of Gowalla.

Gowalla is a location-based social service created in 2009, which has been discontinued

since its acquisition by Facebook at the end of 2011. The Gowalla dataset is a complete

snapshot of the service obtained in August 2010, collected via the public API. The entire

dataset contains 12,846,151 check-ins made by 216,734 active users, that is, users with at

least one check-in made since they joined the service; these check-ins took place across

1,421,262 million venues over about 18 months. It also contains all social links between

users, which amounts to 736,778 friendships.

Each check-in contains the following fields: the unique user id, the date with accuracy

limited to the day of the check-in, its geographic location encoded as latitude and longi-

tude coordinates and the venue’s category. In order to assign places from the two venue

databases to a specific city we have followed the following methodology. Foursquare

venues specify locality information (city, province, street), available through the service’s

1en.wikipedia.org/wiki/Gowalla
2The Gowalla dataset does not contain information about time or sequence of check-ins and hence

was not suitable for the analysis conducted in the previous chapters.
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City N M C 〈cu〉 〈cl〉
Austin 2144 3758 15665 7.3 4.2

Boston 3830 2763 14730 3.8 5.3

Dallas 2418 3338 13779 5.7 4.1

Denver 2097 2342 10402 5.0 4.4

London 7242 6609 24778 3.4 3.7

Los Angeles 8178 6918 32025 3.9 4.6

New York 16131 16554 93309 5.8 5.6

Paris 3091 4345 13086 4.2 3.0

San Francisco 6493 6478 31070 4.8 4.8

Seattle 3493 4398 20128 5.8 4.6

Seoul 9491 4284 35540 3.7 8.3

Table 5.1: Average properties observed in Foursquare over a period of one month: total

number of users (N), places (M) and check-ins C, average number of check-ins per user

(〈cu〉) and per place (〈cl〉).

City N M C 〈cu〉 〈cl〉
Austin 4008 13110 76151 19.0 5.8

Boston 1050 5214 15026 14.3 2.9

Dallas 3494 14586 52403 15.0 3.6

Denver 1139 3188 10219 9.0 3.2

London 2139 13510 39696 18.6 2.9

Los Angeles 2868 12172 34659 12.1 2.8

New York 2659 10903 32467 12.2 3.0

Paris 480 1875 4165 8.7 2.2

San Francisco 3199 13389 47128 14.7 3.5

Seattle 1595 8090 26538 16.6 3.3

Seoul 336 2222 3973 11.8 1.8

Table 5.2: Average properties observed in Gowalla over a period of one month: total

number of users (N), places (M) and check-ins C, average number of check-ins per user

(〈cu〉) and per place (〈cl〉).

API, thus the assignment was straightforward. In the case of Gowalla, we have assigned

a place to a city if it lies within 30 km of its geographic centre.3 This procedure allows

us to compare spatially similar sets of places across the two services.

3The geographic centre has been set according to the median latitude and longitude values across the

city’s places in the Foursquare dataset.
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Figure 5.1: Complementary Cumulative Distribution Function of the number of check-

ins per user and per-place 1-month of Foursquare (a, c) and Gowalla (b, d) data. Each

distribution is normalised with respect to the average value. We consider 1 month of data,

but the probability distributions do not change significantly across different snapshots.

5.1.2 Notation

We now introduce the notation that we will use in the next paragraphs. We consider

a sample of check-in data over a pre-determined temporal period. Each such temporal

snapshot t contains a set U of N of users (N = |U |) and a set L of M places (M = |L|),
with each place belonging to a category crowdsourced by the services’ users. We represent

by cij the number of check-ins that user i has made at place j. The entirety of a user’s

check-ins in the sample are represented by the vector ~ci = (ci1, ci2, . . . , ciM). We use Φj

to indicate the set of users who have checked in at place j and Θi for the set of all places

where user i has checked in.

Social ties between users are represented as an undirected graph G = (V,E), with the set

of nodes V = U and the set of edges E composed of pairs of users who are present in each

other’s friend lists in snapshot t. We denote with Γi the set of users connected to user i

in graph G, with |Γi| being the number of friends of i in the snapshot.
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5.1.3 The Importance of New Places
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Figure 5.2: Fraction of visited places that were not visited in the last 30 days and fraction

of check-ins to such new places, for cities in Foursquare (a) and Gowalla (b).

We now examine a number of properties that the datasets share and study how check-ins

to places are distributed. We discover that users tend to visit places they have not visited

in the past: between 60% and 80% of check-ins occur at places which were not visited

before by an individual user.

Tables 5.1 and 5.2 present the basic properties of the Foursquare and Gowalla datasets

respectively during the same month (August, 2010). The 11 cities differ widely in terms

of monthly users: Foursquare has about 22, 000 active users each month in New York but

only 3, 200 in Denver; Gowalla’s most popular city, instead, is Austin (where the company

was launched) with about 4, 000 active users.

In general, Gowalla has a smaller number of users and places in each city compared to

Foursquare, which reflects the latter’s overall popularity. However, the average number of

check-ins per user is higher in Gowalla: this could be due to the fact that our Foursquare

dataset only contains a sample of user check-ins, namely those which were pushed to

Twitter. The average number of check-ins per place, though, remains comparable across

the two services.

When considering the entire temporal duration of the two datasets, 18 months in Gowalla

and 5 months in Foursquare, there are about 10% of users and 25% of venues with only a

single check-in in Gowalla; similarly, 20% of users and 35% of venues have a single check-

in in Foursquare. This skew in the popularity of places and in user activity is reflected

also in single cities. In fact, although each city exhibits different levels of user activity,

the normalised distributions of check-ins across users and places are strikingly similar,

as reported in Figure 5.1(a) and Figure 5.1(b). When each distribution is normalised by

dividing each sample by the average value, all distributions collapse to a similar heavy-

tailed pattern. In particular, about 80% of users have fewer check-ins than the average
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Figure 5.3: Average probability of visiting a new place as a function of the number of

places visited by users. A decreasing trend can be observed: this suggests that more

active users are less likely to visit a new venue. The noise at the tail appears due to the

low number of users with more than 50 check-ins.

across all cities, both in Gowalla and Foursquare. Similar patterns appear when consider-

ing the normalised distribution of check-ins at each place, presented in Figure 5.1(c) and

Figure 5.1(d). Overall, the tail of each distribution reaches values of up to thousands of

check-ins: a bulk of users with low activity coexists with a few extremely active users.

In Figure 5.2 we consider two monthly samples of the data, taken over two consecutive

months t and t+ 1; we then define as Ψt
i = Θt+1

i \Θt
i the set of new places visited by user

i in sample t + 1. Then, we compute for each city across Foursquare and Gowalla two

quantities: the probability Pv that a visited venue was not previously visited

Pv =

∑
i

‖Ψt
i‖∑

i

‖Θt+1
i ‖

(5.1)

which is effectively the ratio of the sum of newly visited places by any user over the set

of total set of places visited in month t + 1. We also measure the probability Pc that a

check-in takes place in one of these new places defined as:

Pc =

∑
i

∑
j∈Ψt

i

cij∑
i

∑
j∈Θt+1

i

cij
(5.2)

which in plain words translates to the ratio of the sum of all check-ins in new venues over

the sum of check-ins that occurred at any venue during month t+ 1.

Between 80% and 90% of visited places are new places, while between 60% and 80%

of check-ins happen at these new venues. This demonstrates how recommending new,
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unvisited places to users has a pivotal value, as they often seek to discover new locations.

More in detail, we explore how this probability changes for users with a different number

of visited places in Figure 5.3. Users who have a history of 10 visited places or less, have

80% probability of visiting a new place. As we consider more active users, who have

checked in to several places over the last 30 days, this fractions drops significantly, yet it

remains relatively high even for these active users.

We proceed next by formalising the task of recommending new venues to users as a

prediction problem.

5.2 New venue recommendation

We begin by introducing the problem of new venue recommendation (Section 5.2.1).

We then describe a number of algorithms that are suitable for the task, with a partic-

ular focus on the assumptions that they make about human mobility (Section 5.2.2):

popularity baselines capture herding behaviour; content-based filters assume that people

will only be interested in a small set of venue categories; nearest-neighbour and ma-

trix factorisation-based collaborative filtering compute recommendations under the like-

mindedness assumption; social filters model users exclusively based on their friends; lastly,

spatial-filtering, by pruning candidates on physical distance, is tailored towards those who

will not venture outside a pre-defined geographic space.

5.2.1 Problem Formulation

We formally define the new venue recommendation problem as follows: given a sample of

check-in data taken over a time period t, a set of users U and their check-ins across a set

of venues L, we aim to predict the values of the set Ψt
i = Θt+1

i \ Θt
i, that is, the set of

new places visited by each user i in next time period (t+ 1). Thus, we couple a training

data set to a test data set which belongs to the following and non-overlapping temporal

period. Note that we only predict check-in values for locations and users that have already

previously appeared in our data at least once. A toy example for the prediction task we

solve can be seen in Figure 5.4. Our imaginative user, little Amy, has check-in in a Bakery,

a Hostel and a Casino, amongst others, in her first month since she joined Foursquare

(resp. Gowalla). Can we then predict the new places that she would like to visit in the

following month?
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Figure 5.4: In the new venue recommendation problem, given a user and her historically

observed venue preferences, we are aiming to predict the new places she would be willing

to visit during a future temporal period.

5.2.2 Recommendation Strategies and their assumptions about

human movement.

We now describe the set of algorithms that we examined for the new venue prediction

problem; the following section will outline our random walk-based method.

Visiting Popular Venues The first (non-personalised) baseline ranks each user’s un-

visited venues based on their historical popularity: the popularity score r̂k of place k is

computed as:

r̂k =
∑
i∈U

cik (5.3)

In doing so, this method assumes that the likelihood of checking in is proportional to

how many people have checked in before; users will check in at the most popular places.

Recall, in fact, that Figure 5.1 showed the highly skewed distributions of user check-ins

at venues; there are a few venues that receive the majority of the check-ins, while many

places remain relatively unvisited.

Venue Category preferences drive User Mobility The next method is a content-

based filtering approach [PB07]. The Foursquare data contains 313 place categories4,

whereas the Gowalla data contains 293. Given a user, we rank all the categories based on

the number of check-ins made by the user in venues of each kind. Then, we populate a

4https://developer.foursquare.com/docs/venues/categories
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list of recommendations by ranking unvisited venues according to their category; within-

category venues are further ordered by their popularity. The underlying assumption is that

user preferences can be captured in a succinct group of categories. This method further

differs from global popularity by taking a first step into learning from user preferences: for

example, users who frequently visits coffee shops will be recommended the most popular

coffee shop, rather than the most popular venue in the city.

Following Friends The availability of users’ social ties allows for the possibility of

recommending venues visited by friends. The social filtering approach we consider ranks

venues by summing the number of check-ins performed by a user’s friends at each place.

Formally, the socialnet score for a user venue pair is:

r̂ik =
∑
j∈Γi

cjk (5.4)

which operates solely on user i’s set of friends Γi check-ins to place k. This approach

is based on the assumption that users will exclusively visit the places visited by their

friends and builds on research exploring the interplay between human mobility and social

factors[CML11, SNLM11, WPS+11]; the discovery of new events will thus propagate

socially.

Staying Close to Home Previous work has suggested that the home location of a

user may constitute a good predictor of mobility and social event attendance [QLC+10].

Since we do not know the exact location where users live, we set their “home” location

to the venue where they check in most frequently; we then rank potential new venues at

increasing distance from the identified home. Although we may not infer their actual

home location, this method assumes that capturing the locality that users tend to frequently

visit will increase the likelihood of finding new venues. In other words, people will go to

places near those that they already visit.

Like-Mindedness and Similarity Collaborative Filtering (CF) has, to date, been

the focal point of recommender system algorithm research [AT05]. Recommendations

are computed based on the assumption that historically like-minded users will continue

to have shared preferences in the future. Users are represented as a vector of check-ins

that they have historically made to places, and items are viewed as a set of check-ins by

users. In other words, these techniques assume that all the important information (both

relating to preference as well as spatial dependencies) will be captured in the check-in

frequency data. There are three approaches that we consider here: a user-based k-Nearest

Neighbour, a item-based approach (which we denote placenet), and matrix factorisation

based on the Singular Value Decomposition of the user-venue check-in data.
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User-based kNN directly compares user profiles to quantify the extent to which pairs of

users check in at the same venues. We measure the similarity sij between a pair of users

i and j based on the cosine similarity of each users’ check-in vectors. With this similarity

matrix at hand, we can compute kNN recommendations for each user. Given a user i we

compute a prediction score r̂ij for place j as the sum of a baseline estimate and weighted

mean of normalised check-ins to that venue by similar users:

r̂ij =
c̄j
|Φj|

+

∑
n∈U

((cnj − c̄n)× sin)∑
n∈U

sin
(5.5)

The baseline estimate is the average check ins to venue j (c̄j) divided by the number of

unique users to have visited place j (|Θj|); i.e., the average number of check-ins per user

to that venue. Neighbour check-ins are first normalised by subtracting each user’s mean

check-ins, (cnj − c̄n), and then weighted by the shared similarity with user i.

An alternative neighbour-based approach is to compute similarity across pairs of venues

(rather than users) [SKKR01]: this variation captures the complementary assumption

that places are similar if visited by the same users. To model this idea in the context

of new venue recommendations, our aim is to connect two places when they are visited

by the same users and assign a weight to this connection by considering the number of

distinct users that visit both. We thus form a graph, which we call the placenet, whose

nodes are places and the edge weight pjk between places j and k is defined as:

pjk = |Φj ∩ Φk| (5.6)

This graph allows us to rank a place j according to the sum of the weights that connect

it to the set of places visited by a user i:

r̂ij =
∑
k∈Θi

pkj (5.7)

Finally, we also examine the effectiveness of using a CF algorithm based on a latent factor

model MF. We represent the relationship between users and places as a matrix R, whose

dimensionality is N ×M : that is, each row represents a user and each column represents

a place, with rij = cij. This method maps both users and places to a joint latent factor

space of dimensionality F � N,M , such that check-ins are modelled as inner products

between vectors in that space. User i is associated with a row vector pi ∈ RF and place

j is associated with a column vector qj ∈ RF . The estimate for the number of check-

ins made by user i at place j is thus r̂ij = piqj. We learn the mapping from users and

places to latent vectors by minimising the regularised squared error E over all the existing

check-ins:

E =
∑
i∈U

∑
j∈Θi

(cij − piqj)
2 + λ(‖pi‖2 + ‖qj‖2) (5.8)
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where the constant λ regularises the learned parameters, whose magnitudes are pe-

nalised. We adopt a stochastic gradient descent optimisation algorithm to minimise the

error [Fun06]. In our implementation we set F = 20, since we have found this value to be

a reasonable trade-off between scalability and accuracy: higher values of F provide only

diminishing returns.

5.3 A Random walk around the city

Each method that we have presented above leverages one unique aspect of the data:

CF approaches capture like-mindedness and venue similarity, social filtering computes on

friends’ data, and spatial filtering considers solely physical distance. In this section we

aim to achieve a better recommendation quality with an approach that can automatically

combine each of these features: we define a network which connects places and users

and we perform personalised random walks with restart to compute recommendations for

individual users.

5.3.1 Random Walk Models

A random walk over a linked structure is based on the idea that the connections between

items encode information able to rank them in a useful way; as the random walker jumps

across the graph’s nodes according to transition probabilities, it will spend a different

amount of time on each node: under certain assumptions, the random walk will approach

a steady-state, resulting in a vector of steady-state probabilities for each node. These

probabilities represent the desired output of a random walk model and are a function of

both the structure of the network and of the transition probabilities assigned to links. A

notable example in this domain is the use of PageRank [PBMW99] to rank Web pages.

Personalised versions of PageRank have been designed in order to alter the ranking ac-

cording to other factors, such as the topic of a page [Hav02] or users’ preferences. More

generally, a random walk with restart can be adopted to personalise rankings: at any step

there is a constant probability of jumping back to a target node, thus nodes that are closer

to the target tend to be ranked more highly than distant nodes, providing a personalised

view of the network [TFP06].

In a random walk over a network, the transition probabilities can be arranged in a matrix

Q = αW + (1 − α)R, formed by two factors, a structural one and a random one: W

encodes the transition probabilities according to the network structure, while R models a

random probability of jumping to any other node. The parameter α is used to tune the

behaviour5. The steady-state probability of node i is pi, and the steady-state probability

vector p can be defined as the solution of the matrix equation p = pQ. A popular

5It is usually set to α = 0.85 [PBMW99].
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Figure 5.5: Visual representation of the graph formed by users and venues in a city. A

random walk with restart algorithm is applied and returns a personalised recommendation

list of venues for a given user.

approach to compute p is to repeatedly iterate this equation until the vector converges,

exploiting the sparsity of Q to reduce memory requirements.

5.3.2 Recommending with Random Walks

We represent the data as an undirected graph whose nodes are users and venues. A toy

representation of the graph is shown in Figure 5.5. A user i is linked to venue j if cij is

non-zero; furthermore, a user is linked to another user if the pair are friends. This graph

is used to define the structural transition matrix W which contains a uniform transition

probability for each edge. For every user i we define a random walk with restart : at every

step there is a constant probability of jumping back to the node of the user. In each

case, the matrix R encodes the probability of randomly jumping back from every node to

the node of the user. In order to compute predictions for user i we compute the steady-

state probabilities of the related random walk: then we rank each place in decreasing

order of steady-state probabilities. This favours places that are more connected to the

user: through friends, through visited places or through any combination of factors. The

restart probability maintains the random walk in the user’s neighbourhood, thus biasing

recommendation results towards venues that are more connected, in any sense, to the

user. This simultaneously promotes places with several connections (i.e., popular) that

are also reachable through friends and through already visited places. This feature is

referred as rwr.
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5.3.3 Weighted version

We also introduce a weighted and directed version of the random walk approach, denoted

as wrwr, where each link is annotated with a weight that biases the transition probabilities,

rather than having uniform probabilities on all the links going out from a node. Further,

weights between two nodes can be different in opposite directions. A link from user i

to user j is weighted as 1
|Γi| ; each friend of user i is given an equal weight, inversely

proportional to the total number of friends. A link from user i to place k is weighted

as cik
‖Θi‖ , or proportionally to the user’s check ins to that venue over the total number of

check-ins for that user. Finally, a link from place k to user i is weighted as cik
‖Φk‖

, or the

user’s check-in frequency at that place over the total number of check-ins for that place.

All weights are normalised so that they represent transition probabilities: this is achieved

by computing the sum of all the weights on the links going out from a node and then

dividing every weight by this value.

5.4 Evaluation

We now evaluate the recommendation algorithms and compare results across predictors,

datasets and cities. In Section 5.4.1, we describe our experimental methodology and the

three metrics that we use to evaluate recommendation quality. The results in Section

5.4.2 then show that the sole method to outperform a popularity-based baseline is the

Random Walk approach; finally, we discuss the implications of our results in Section 5.5.

5.4.1 Methodology and metrics

We partition the check-in data temporally into multiple training/test splits (each consist-

ing of 30 consecutive days) in order to obtain cross-validated results. We then filter any

check-in cij from each test set if the training set has a non-zero entry for cij, i.e., if the

user has already visited the venue. We note that users with no check-ins in the test set

are not included in the performance evaluation. The output of each prediction algorithm

is a per-user personalised ranked list of venues.

We use three metrics to quantify the quality of these recommendations. The first two,

Precision@N and Recall@N, convert the outcome of each predictor into binary values:

either the user will visit the top-N venues and will not visit venues ranked below N.

Precision (p) and Recall (r) are measured as proportions of true positives (tp), false

positives (fp), and false negatives (fn):

p =
tp

tp+ fp
; r =

tp

tp+ fn
(5.9)
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Method APR Precision@10 Recall@10

Random 0.500 0.000 0.003

Popular 0.772 0.026 0.089

Activity 0.772 0.025 0.087

Home 0.617 0.008 0.026

Social 0.607 0.015 0.049

kNN 0.557 0.003 0.011

PlaceNet 0.663 0.026 0.077

MF 0.719 0.004 0.014

RW 0.783 0.028 0.094

Weighted-RW 0.771 0.025 0.088

Table 5.3: Foursquare Results: Average APR, Precision@10 and Recall@10 results.

Since each algorithm outputs an ordered list, we also verify the extent to which the

ranking reflects users’ interests; i.e., that venues that are highly ranked are indeed those

that will be more frequently visited. To do so, we first define the interest i that a user u

has in a venue s as the proportion of times that the user checks into that venue during

the test period. We then define ranku,s as the percentile ranking of venue s for user u

in the ranked list of venues; if ranku,s = 1, then the venue appears first in the list, while

ranku,s = 0 implies that the venue was the last in the list. We combine these with each

user’s interest in the station interestu,s and average the results to measure the Average

Percentile Ranking (APR):

APR =

∑
u∈U

∑
s∈L

iu,s × ranku,s∑
u∈U

∑
s∈L

iu,s
(5.10)

In the following sections, we report and discuss the empirical results we obtained following

the above methodology and metrics.

5.4.2 Results

In order to put the following results into an appropriate context, we also compare them

to a random predictor, which simply shuffles the candidate set of unvisited venues for

each user. In this case, APR results are 0.5 and both Precision and Recall are near zero.

We further note that better results are obtained with higher APR, Precision and Recall

values.
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Method APR Precision@10 Recall@10

Random 0.500 0.002 0.001

Popular 0.722 0.043 0.090

Activity 0.720 0.032 0.073

Home 0.660 0.023 0.042

Social 0.582 0.029 0.054

kNN 0.574 0.005 0.012

PlaceNet 0.662 0.043 0.077

MF 0.657 0.009 0.025

RW 0.768 0.048 0.095

Weighted-RW 0.756 0.045 0.095

Table 5.4: Gowalla Results: Average APR, Precision@10 and Recall@10 results

Performance across methods

Tables 5.3 and 5.4 show the APR, Precision@10 and Recall@10 for the Foursquare and

Gowalla datasets, respectively. The most eminent result is that nearly all methods, in-

cluding social filtering and all (kNN and MF) versions of collaborative filtering—which were

supposed to better model users’ preferences— fail to outperform the popularity-based

baseline. The Activity predictor, which ranks venues based on the categories of the

venues visited by each user, also ranks amongst the top performing approaches. The ran-

dom walk variants are the only approaches that outperform popularity, and are amongst

the top performing methods for both datasets: rwr achieves an improvement of 5% in

Foursquare and of 18% in Gowalla with respect to popularity, the best performing

among the other methods.

In general, the three metrics agree with each other in terms of algorithms’ relative perfor-

mance, with one exception. When considering Precision and Recall, both placenet and,

to a lesser extent, socialnet achieve results similar to the best four methods. This differ-

ence between APR and Precision/Recall is due to the fact that placenet and socialnet

are the only two methods that do not rank all the available places, but only a subset of

places specific to the target user. As their recommendation lists may thus contain fewer

items, they are penalised in the APR score, which is agnostic to list size, but they benefit

in Precision and Recall, where list size is important.

Performance across cities

Although there are performance variations across cities, our method based on a random

walk consistently outperforms the other approaches. This observation is reflected in Table

5.5, which presents the APR scores for popularity and rwr achieved across different cities

94



Foursquare Gowalla

City popularity rwr popularity rwr

Austin 0.765 0.778 0.825 0.856

Boston 0.796 0.804 0.687 0.747

Dallas 0.753 0.768 0.752 0.802

Denver 0.767 0.800 0.715 0.764

London 0.736 0.738 0.689 0.756

Los Angeles 0.788 0.804 0.719 0.758

New York 0.808 0.815 0.720 0.758

Paris 0.735 0.744 0.729 0.796

San Francisco 0.792 0.800 0.780 0.817

Seattle 0.762 0.782 0.736 0.774

Seoul 0.790 0.774 0.590 0.619

Average 0.772 0.783 0.722 0.768

Table 5.5: APR achieved by the popularity and rwr prediction methods across cities in

both datasets. For each service we highlight the city with the best APR score.

in both services; we observed a similar pattern for the Precision and Recall metrics (not

shown). Moreover, this analysis suggests that there is no strong correlation between the

individual city statistics presented in Tables 5.1 and 5.2, such as the number of active

users and places, and the prediction performance. One outlier seems to be Seoul in

Gowalla, with much lower performance: this might be due to the fact that this case has

the lowest level of user activity across all the considered cities. On the other hand, New

York in Foursquare and Austin in Gowalla, which are the cities with most check-ins in

the corresponding datasets, show the best performance.

Furthermore, the results obtained across the two datasets agree with one another; this

is a notable result since both systems have different interfaces and incentives for user

participation. We must note that no location recommendation engine was put in place

by either service during the data collection period. The most prominent difference in

performance is obtained with the home distance feature, that is consistently better in

Gowalla than in Foursquare across all the performance metrics. This could be due to the

fact that the average number of user check-ins in Gowalla is higher than that observed in

Foursquare, thus allowing the “home” location inference to be more accurate. In addition,

in Gowalla, when the entirety of user social links and check-ins are present, the random

walk models achieve a larger performance gain, as they are able to exploit higher quality

data to build the network structure.
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Figure 5.6: Average APR of the best approaches for users with a different minimum

number of visited places in the training snapshot in Foursquare (a) and Gowalla (b).
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Figure 5.7: Average Precision@N obtained by each algorithm on all cities for various

values of N in Foursquare (a) and Gowalla (b).

Impact of user activity

We have discussed how users who have visited more places tend to visit fewer new places,

as presented in Figure 5.3. Thus, we investigate how prediction performance changes

when we consider users with progressively higher amount of visited places. We filter out

users who have visited less than a certain number of places in the train snapshot and we

compute how the average APR over all the remaining users changes when we progressively

increase the minimum number of visited places. As shown in Figure 5.6, where we depict

some of the best performing methods, prediction performance decrease as we focus on the

most active users. A noticeable difference is the placenet feature, which achieves better

results when we filter out less active users, while overall its performance hardly competes

with the best methods. However, as the vast majority of users have visited only a few

places, any improvement for active users is not likely to impact the performance across

the entire user base.
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Figure 5.8: Average Recall@N obtained by each algorithm on all cities for various values

of N in Foursquare (a) and Gowalla (b).

Impact of recommendation list size

Finally, we explore the effect of a varying recommendation list size on the final perfor-

mance. As the number of venues recommended to a user increases Recall tends to improve,

while Precision might suffer. In Figure 5.7 we plot the average Precision@N obtained by

each algorithm on all cities: we find that Precision decreases as we increase list size, with

the different features maintaining their relative ranking in performance. Similarly but

with an opposite trend, Recall@N quickly increases as the recommendation list grows

larger, as depicted in Figure 5.8; again, the dominating features outperform the others

over the entire range of list size. This analysis highlights the trade-off between Precision

and Recall that each feature faces: real systems should tune their results according to

what users require.

5.5 Discussion and implications

The data that we obtained has a number of characteristics that differentiate it from the

typical recommender system scenario. An important difference is that while in other

scenarios users reveal their preferences through ordinal ratings, in our case check-ins only

capture numeric frequencies: as a consequence, there is no negative feedback provided by

users. Furthermore, the data is highly sparse, with many users and venues having a single

check-in. At the same time, across both datasets there are few places with extremely

high numbers of check-ins, while the majority of them have only a few user check-ins.

Thus, there is a high heterogeneity across how users check in at places, with some venues

reaching high levels of popularity. This may go some way towards explaining the high

performance of popularity-based recommendations.

The previous section also uncovered that the worst performing algorithms for this task

were the ones that are typically associated with recommender systems (i.e., nearest neigh-
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bours and matrix factorisation). There are a number of reasons why this may be the case.

First, check-in data may not be sufficient to fully capture users’ preferences. In fact, unlike

web ratings, it leans towards capturing habitual behaviour well and does not allow for neg-

ative feedback. Second, like-mindedness may not suffice to model why people visit venues;

the random-walk approaches outperform standard collaborative filtering algorithms by si-

multaneously leveraging several sources of data, encoding them in the network structure.

Another interpretation to the fact that that collaborative filtering has under performed

in this context is the extreme sparsity observed in the check-in data (very few check-ins

per user) as discussed in Section 5.1.3. Finally, it is worth noting that computing mobile

recommendations using a random walk is not tied to the datasets employed in the present

work: it is generalisable to any situation where signals of user preference can be encoded

into a graph.

5.6 Related work

There is a wide range of research on the data mining algorithms that form the basis of

recommender systems [AT05]. From a data mining perspective, these systems take as

input a set of users’ preferences, such as ratings, and aim to predict the preference val-

ues for items that have yet to be rated, and fall under the umbrella term collaborative

filtering. In recent years, work has centred around datasets from the web, namely movies

(e.g., Netflix [BL07]) and music (Yahoo Music6); these datasets have characteristic fea-

tures (such as high sparsity) that pose challenges to the design of accurate preference

estimators. Matrix factorisation has become a popular approach for collaborative recom-

mender systems [BK07], due to its robustness in the face of sparse data; moreover, hybrid

composites of predictors have recently been awarded for their ability to improve rating

prediction [Kor09].

While, historically, users’ ratings were considered the sole necessary input data for building

recommender systems, there is increasing attention to a variety of other signals that may

aid learning algorithms’ accuracy. These include temporal features of the data [Kor09]

and social network links between users [Gol08]. This broad approach, which relies on aug-

menting recommendation systems with a more granular picture of the (social, temporal,

spatial) setting of the users, has been named context-aware recommendation [AT05]. In

the domain that we investigate here, recent work has used both sensors and user-activity

data to improve recommendations. For the former, GPS data has been used for location

and travel recommendation [ZZXM09], and mobile phone call records have been used for

social event recommendation [QLC+10]. The latter group, instead, includes using geo-

tagged photos for itinerary recommendation, mining interesting locations, and inferring

users’ trips [PG09]. The data that we examine in this chapter, which is based on explicit

6http://kddcup.yahoo.com
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check-ins to locations, falls into this latter category (although GPS sensor data may be

used to validate the check-in).

The recent literature, overall, reflects the success of online recommender systems; it is

clear that smartphones, as they gain greater traction and popularity, will be the bridge

that enables recommender systems to be used in the wild as much as they are used

online. However, whether algorithms that have been successful online can be applied

to these new domains remains an open question: here, by investigating one facet of

location recommendation, we have shown that state-of-the-art collaborative filtering can

be outperformed by a hybrid model that aggregates and learns from a range of data about

users.

5.7 Summary

In this chapter we have provided a framework that integrates movement and social infor-

mation to recommend new venues for mobile users. Effectively, we have solved a specialised

version of the problem encountered in Chapter 4, where our goal had been the prediction

of a mixture of historically visited and not visited venues, by tailoring it appropriately in

the classical new item recommendation setting.

We have seen how popular online recommender algorithms such as Matrix Factorisation

or k-Nearest Neighbour approaches have failed to model accurately the preferences of

mobile users, as they were not able to outperform a popularity based ranking strategy

that has been the most powerful of all baselines. We have also presented a graph-based

random walk with restart model which has provided superior prediction performance that

remained consistent in the vast majority of cities that we tested using two datasets from

Foursquare and Gowalla, respectively. These findings suggest that random walk models

may be more effective in the context of mobile recommendations due to their resilience

in extremely sparse data representations that are common in these systems.

Next, we summarise the findings of this and the previous chapters of this dissertation and

project on directions for future work.
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6
Reflections and outlook

Human mobility, due to its important role in numerous economical, societal and be-

havioural processes, has been a core subject of study in multiple disciplines. Social sci-

entists, ecologists, geographers and urbanists have long been long theorising with models

that aim to explain migration trends, home to work commuting patterns or resource con-

sumption norms in ecosystems. Despite the large number of manuscripts published, there

has been a lack of datasets of appropriate scale and geographic granularity to allow an

extensive validation of theoretical models.

The rise of computational social science in the past three decades has brought a revolution

to large scale empirical studies about the structure and dynamics of social networks.

The recent introduction of geographic social networks, driven by the proliferation of the

mobile web, is expected to bring advancements of a similar scale in all academic fields

where human movement studies are central. The digital breadcrumbs that are laid on the

geographic plane by millions of users every day can not only help the validation validation

of proposed theories, but also constitute a novel primary resource for the development of

new mobile application and services. This represents a foundation for the cities of the

future; urban exploration, local search and information discovery are envisioned to be

powered by data streams emerging from ubiquitous technologies deployed in the city.

In this dissertation I have taken a step forward in both the abstract modelling of human

mobility and the development of frameworks that could support mobile applications. I

have empirically tested the plausibility of two theories on human migration with data

from 34 cities around the world. I then proposed two different application scenarios

for the recommendation of venues to mobile users. In all cases, I have exploited the
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rich, granular geographic representations and multiple layers of information available in

datasets generated by users in location-based social networks.

6.1 Summary of contributions

A classic question in the studies of human mobility has been the measurement of the

deterring role of distance in movement. While empirically-backed insights into migration

patterns within or across countries had been offered in the past, there was lack of evidence

concerning the role of distance in the context of urban mobility. In Chapter 3 I aimed to

shed light on this problem by analysing the distribution of distances in a large set of urban

centres around the world. I have seen how when two cities are compared by looking at the

absolute geographic distances of trips within them, then strong heterogeneities become

apparent. However, when the same data is transformed so that each trip is characterised

by the relative density between the respective origin and destination, then a universal

pattern emerges. This finding has led towards the devising of a new model for urban

movements that reveals the important role of geography. Indeed, the representation of

the human cognitive factor in the agent based model presented is common across all cities.

The only difference in the model’s input between any two cities is the spatial distribution

of places in them, and thus, any apparent variation in movements should arise from this

element.

The study of the abstract properties of human movement in terms of frequency distribu-

tion of distances has treated movement in cities as a complex system where the interaction

of individuals with places gives rise to large scale properties that govern the urban system

and are common across urban environments. These studies favour our deeper understand-

ing of the process of movement in cities, but in the sphere of real mobile applications and

services one needs to refine our abstraction and model mobility in a more detailed manner.

The first step in this respect was taken in Chapter 4, where our goal was the the prediction

of the next place where a mobile user will check in in real time. A major challenge in this

context has been to incorporate appropriately multiple signals available about movement

in these systems in order to rank effectively the thousands of candidate places where a user

could go to in the city. The sparse representations of user movements and preferences,

in terms of number of data points available per user, has also been a catalyst in the

modelling approach I have followed to solve this problem. Since the generation of a model

that exploits knowledge only about a single user has been prohibitive in this context, I

have resorted to a learning method which trains a prediction model using information on

the check-ins of user collectives. A non-linear decision tree model has offered good results,

predicting the next place to be visited by a user one in two times, greatly outperforming

individual features such as historical venue preferences or venue popularity. Further, the

large temporal variations in the performance of various prediction features has suggested
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the need for future models that will be able to incorporate these dynamics in order to

build more accurate recommender systems, or indeed to build any application that could

benefit from knowledge of the exact whereabouts of mobile users over time.

Subsequently, in Chapter 5, I have treated a specialised version of the movement prediction

problem where the aim has been the prediction of new venues to be visited by mobile

users in future time periods. The formulation of this problem has been tailored according

to the classical recommender system setting where new items are being recommended

to a target user based on their past preferences. Our analysis there has shown how in

location-based services users check in to new places with higher than expected probability,

highlighting this way the importance for the deployment of mobile application that foster

urban exploration and discovery of new venues and activities in the city. After reviewing

a number of web filtering algorithms that were previously employed in the online domain,

I designed new versions of them for their exploitation in the setting of mobile place

recommendations. Our results have suggested that the extremely sparse representations

of human movements in location-based social networks have inhibited the performance

of these recommendation algorithms which have failed to outperform a simple popularity

based baseline. To deal with this challenge, I have proposed an alternative random walk

with restart model that seamlessly combines social and user to place preference signals in

order to provide effective recommendations for all users.

6.2 Future directions

The identification of the rank-distance variable as a means to view movement in cities in

a universal manner and the isolation of the spatial distribution of places in a city as the

source of the variations observed in movements across urban environments have strong

implications with respect to future studies in human mobility and behavioural studies in

general. These may become more apparent if we imagine movement as a process composed

of two factors; human cognition being represented by the probability of travelling from

an origin to a destination, and geography being represented as the set of places and their

geographic coordinates.

Primatologists and behavioural scientists have argued in the past that animal, and by

extension human, mobility is driven by a spatial cognition system embedded in the hip-

pocampal part of the brain [OB05, JWM+13]. It is thus a possibility that human nav-

igation is governed by mental processes that have been shaped through evolution over

thousands of years. In that respect, our findings in Chapter 3 that support a universal

cognitive response in city movements do not come as a surprise. From an evolutionary

perspective, the way the mammalian brain is wired is likely to be similar for humans

who live in different countries or cities, and therefore their behavioural responses when

interacting with space are expected to be similar. In terms of future work it would be in-
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teresting to investigate whether this hypothesis holds for our navigation in virtual spaces,

for instance when we move from one web page to another. In a recent work [WL12]

that studied navigation patterns of Wikipedia web visitors it was pointed out that the

probability of transiting from one Wikipedia article to another was inversely proportional

to their semantic rank-distance. In the light of this evidence and our findings in this

dissertation it would be interesting to explore the parallel of human navigation in virtual

and physical spaces. Such studies could not only reveal important information about the

way our brain and spatial cognition system functions, but also could help towards the

design of better navigation environments perhaps both for urban and web spaces.

In addition to human cognition, our work has highlighted the important role of geography

in movement. While there has been a large volume of research focusing on movement,

little attention has been paid to the growth patterns of cities. In [MAB+98] the authors

proposed a spatial percolation model to simulate urban growth in the United Kingdom,

while in [MNR98] different classes of urban forms are being identified for cities. Data about

places and urban activities that becomes available through location-based services could

augment our understanding about city size and shape patterns. Figure 2.2 is indicative of

the scale at which these data are available. We now have the opportunity to quantify the

urban sprawl of the whole planet through the same lens. It would therefore be interesting

to answer questions about the possible existence of universal patterns in the way humans

organise urban settlements.

While our findings in Chapter 3 have the potential to ignite new pathways of research on

human mobility in various disciplines, the implications of the two applications scenarios

I have considered in Chapters 4 and 5 are more closely related to advancements in the

areas of mobile computing, applied machine learning and the computer sciences in general.

First, the next place prediction task described in Chapter 4 has brought forward the

importance of the temporal dimension for frameworks that target the modelling of user

movement in the city. We have seen that users are more likely to move over short distances

during nighttime and that they will deviate from their regular visitating patterns with

higher chance during the weekends. Models that explicitly take into account how different

factors govern human movement over time are expected to yield more accurate predictions

of user whereabouts. Besides time however, it is questionable whether all users are being

influenced by the forces of attraction or repulsion to (resp. from) places in the same ways.

For instance I have described how the popularity of places is a strong predictor of human

movement, but it is unlikely that all users are being influenced by it in the same way.

Therefore, personalisation methods that account for differences in the ways that various

groups of users attach to places could be another direction to explore so as to achieve

better quality recommendations through the delivery of relevant content to mobile users.

Finally, the observation that users in location-based social networks prefer to check in at

new venues supports the understanding that urban exploration and the discovery of new

activities in the city are an important priority for mobile users. Therefore, algorithmic
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models and filtering methods that exploit effectively the multi-dimensional information

signal available from user activity in mobile systems and web applications are expected

to stay at the forefront of academic research in order to support applications such as

mobile activity recommendations and local search. The latter is in fact a new source

of competition for tech giants such us Microsoft, Google and Facebook amongst many

start-ups, which currently invest a lot in areas related to geo-commerce [Rep13].

6.3 Outlook

The arrival of a new generation of mobile web services and applications has generated

large amounts of mobility data of unprecedented geographic scale and spatial granularity.

Moreover, mobility data is now becoming available in parallel to other layers of information

including social interactions between users, natural language expressions of users or the

distribution and consumption of digital content across time and space using smartphone

devices. The fact that every piece of online information is now being geo-tagged brings

not only new opportunities to answer important research questions or offer better services

for users, but comes with challenges that concern the general case deploying computer

science services on the geographic plane. It will take some time until the streams of Big

Data are fully digested by academics, government institutions and industry, and when

this happens, as history teaches, more data and more questions shall emerge.

In this dissertation, I have attempted to take a step towards a better understanding of

human urban movement and the development of effective frameworks for mobile recom-

mender systems. Besides the strictly quantitative aspects of our findings that may be

volatile in light of future experimentations with new types of data or algorithmic meth-

ods, I hope that the approach I have taken in modelling movement by positioning the

places of a city at the centre of the process, will inspire researchers in various academic

disciplines and also practitioners in the area when they design their own models or build

new applications.
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