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Abstract

The vast majority of mobile ad hoc networking research
makes a very large assumption: that communication can
only take place between nodes that are simultaneously ac-
cessible within in the same connected cloud (i.e., that com-
munication issynchronous). In reality, this assumption is
likely to be a poor one, particularly for sparsely or irregu-
larly populated environments.

In this paper, we present the Context-Aware Routing
(CAR) algorithm. CAR is a novel approach to the provision
of asynchronous communication in partially-connected mo-
bile ad hoc networks, based on the intelligent placement of
messages. We discuss the details of the algorithm, and then
present simulation results demonstrating that it is possible
for nodes to exploit context information in making local de-
cisions that lead to good delivery ratios and latencies with
small overheads.

1 Introduction

Mobile ad hoc networks represent the purest form of de-
centralised systems and, therefore, they impose many chal-
lenges to cooperative communication. As a consequence,
much ad hoc network research has focused on the inves-
tigation of fundamental algorithms for routing on which
almost everything else relies. However, in order to make
the problem tractable, almost all research on routing algo-
rithms makes the oversimplistic assumption that it is only
meaningful to attempt to exchange messages within con-
nected clouds of nodes, in other words, that all communi-
cation is synchronous in nature. This assumption is overly
constrained if one considers that there is a strong require-
ment for communication that is asynchronous in nature, as
argued above. In such a case, the delay tolerant character
of the traffic allows useful communication to still occur by
using nodes moving between disconnected groups of nodes
(clouds) to transport messages from one cloud to another.
Thus, it is perfectly possible that two nodes mayneverbe
part of the same connected cloud and yet may still be able
to exchange delay tolerant information by making use of

predicted mobility patterns as an indicator of which other
nodes might make good carriers for this information.

In the absence of special information, the problem of
predicting which nodes might make good carriers in ad hoc
networks is a very challenging one. Likely future mobil-
ity patterns must be inferred from past mobility patterns,
but this alone is inadequate; parameters such as remaining
battery lifetime are also key in determining which potential
carriers are most likely to result in successful delivery. In
this paper, we consider what types of information are avail-
able to nodes in deciding on a carrier. We use this analysis
in the design of a Context-aware Adaptive Routing algo-
rithm (CAR), a general framework for the evaluation and
prediction of context information, aimed at achieving effi-
cient and timely delivery of messages. Using simulations,
we explore the performance of the CAR algorithm with re-
spect to epidemic routing [13] and flooding. Whilst, in the
developed world, synchronous communication (in the form
of phone and Internet) is generally cheap and easy to come
by, there are several real scenarios in less developed parts of
the world in which different portions of a logical network
are physically disconnected [4, 12].

This paper is organized as follows. Section 2 presents
our approach. The details related to the evaluation of con-
text information are discussed in Section 3. The description
of the simulations carried out to evaluate CAR is provided
in Section 4, together with an analysis of the results. Fi-
nally, in Section 5 we compare CAR with previous work in
this area.

2 Context-aware Routing for Mobile Ad Hoc
Networks

The Context-Aware Routing algorithm is built on the as-
sumption that the only information a host has about its po-
sition is logical connectivity information. In particular, we
assume that a host is not aware of its absolute geographical
location nor of the location of those to whom it might de-
liver the message. Although this information could poten-
tially be useful, and, indeed, we plan to examine its utility
in the near future, it is currently unreasonable to assume the
existence of GPS for all potential application domains for



this technology. Another basic assumption is that the hosts
present in the system cooperate to deliver the message. In
other words, we do not consider the case of hosts that may
refuse to deliver a message.

The delivery process depends on whether or not the re-
cipient is present in the same cloud as the sender. If both
are currently in the same connected portion of the net-
work, the message is delivered using the underlying syn-
chronous routing protocol to determine a forwarding path.
In the remainder of this paper we assume that a proac-
tive routing protocol is used (in our simulations we em-
ployed DSDV [10]). Reactive protocols require different
approaches to optimisation that would simply confuse the
presentation and so are deemed to be outside the scope of
this particular work.

If a message cannot be delivered synchronously, the best
carriers for a message are those that have the highest chance
of successful delivery, i.e., the highestdelivery probabili-
ties. The message is sent to one or more of these hosts using
the underlying synchronous mechanism. Delivery probabil-
ities are synthesized locally from context information such
as the rate of change of connectivity of a host (i.e., the like-
lihood of it meeting other hosts) and its current energy level
(i.e., the likelihood of it remaining alive to deliver the mes-
sage). We definecontextas the set of attributes that describe
the aspects of the system that can be used to optimize the
process of message delivery. Since we assume a proactive
routing protocol, every host periodically sends both the in-
formation related to the underlying synchronous routing (in
DSDV this is the routing tables with distances, next hop
host identifier, etc.), and a list containing its delivery prob-
abilities for the other hosts. When a host receives this in-
formation, it updates its routing tables. With respect to the
table for asynchronous routing, each host maintains a list
of entries, each of which is a tuple that includes the fields
(destination, bestHost, deliveryProbability). In this paper,
we choose to explore the scenario in which each message
is placed with only a single carrier rather than with a set,
with the consequence that there is only a single list entry
for each destination. When a host is selected as a carrier and
receives the message, it inserts it into a buffer. The size of
this buffer is important, and represents a trade-off between
storage overhead and likely performance.

3 Prediction and Evaluation of Context

The general problem from the point of view of the sender
of a message is to find the host with the best delivery prob-
ability, as calculated using the predicted values of a range
of context attributes. Instead of using the available context
information as it is, CAR is optimized by usingpredicted
future values for the context, so to have more realistic val-
ues. The process of prediction and evaluation of the context
information can be summarized as follows.

• Each host calculates its delivery probabilities. This process is
based on thepredictionof the future values of the attributes
describing the context (see Section 3.2) and on thecompo-
sition of these estimated values using multi-attribute utility
theory [7] (see Section 3.1). The calculated delivery prob-
abilities are periodically sent to the other hosts in the con-
nected cloud as part of the update of routing information.

• Each host maintains a logical forwarding table of tuples de-
scribing the next logical hop, and its associated delivery
probability, for all known destinations.

• Each host uses local prediction of delivery probabilities be-
tween updates of information. The prediction process is used
during temporary disconnections and it is carried out until it
is possible to guarantee a certain accuracy. Morever, in the
case of hosts within reach, the interval between update ship-
ment is based on the possibility or not to make accurate pre-
dictions. In other words, hosts send updates only when the
evolution of the mobile scenario follows a certain trend. This
is done by evaluating the sampled values of context informa-
tion.

• If a host does not store any information about the message
recipient, it sends the message to the host in the cloud that
has the highest mobility (or it keeps the message if it has the
highest mobility). In other words, the message is stored by
the host that in average meets the highest number of hosts
and so that has the highest probability to get in reach with
the recipient.

• If the carrier, while moving, meets a host with a higher de-
livery probability, the message is transferred to the host with
the higher delivery probability.

3.1 Local evaluation of context information

There are several techniques that can be used to combine
and evaluate the multiple dimensions of context in order to
decide which nodes are the best candidates for carrying a
particular message. The simplest is to allow application de-
velopers to define a static hierarchy among the predicted
context attributes.

A possible alternative to this method is to use goal pro-
gramming, exploiting the so-calledpreemptive methodol-
ogy. With respect to a single attribute, our goal is to max-
imize its value. The optimization process is based on the
evaluation of one goal at a time such that the optimum value
of a higher priority goal is never degraded by a lower prior-
ity goal [11]. However, in general, the definition of static
priorities is inflexible. For more realistic situations, we
expect to need to attempt simultaneous maximization of a
range of different attributes, as opposed to using a prede-
fined hierarchy of priorities.

Significance-based evaluation of context-aware infor-
mation The priority based technique just mentioned seems
too simplistic because, in general, our decision problem in-
volves multiple conflicting objectives [7]. For example, if
we wish to determine which host has the best delivery prob-
ability, considering both the battery energy level and the rate
of change of connectivity, it may happen that the host char-



acterized by the highest mobility has scarce residual battery
energy and vice versa. In general, maximization across all
parameters will not be possible and, instead, we must trade
off the achievement of one objective (i.e., the maximization
of a single attribute) against others.

The context information related to a certain host can be
defined using a set of attributes(X1, X2, ..., Xn). Those at-
tributes denoted with a capital letter (e.g.,X1) refer to the
set of all possible values for the attribute, whereas those
denoted with a lower case letter (e.g.,x1) refer to a par-
ticular value within this set. In the remainder of this sec-
tion we will use the classical notation of utility theory. Our
goal is to allow each host locally to associate a utility func-
tionU(x1, x2, ..., xn), representing the delivery probability,
with every other host.

Our aim is to maximize each attribute, in other words,
to choose the host that presents the best trade-off between
the attributes representing the relevant aspects of the system
for the message delivery.The combined goal function used
in the Weights method can be defined as

Maximise{f(U(xi)) =
n∑

i=1

wiUi(xi)}

wherew1, w2, ...wn aresignificance weightsreflecting the
relative importance of each goal.

It is worth noting that, in our case, the solution is very
simple, since it consists in the evaluation of the function
f(U1, ..., Un) using the values predicted for each host and
in the selection of the hosti with the maximum such value.
Autonomic adaptation of the utility function As it stands,
the utility function weights are fixed in advance, reflecting
the relative importance of the different context attributes.
However, such a formulation is still too static, since it fails
to take into account the values of the attributes. Thus, for
example, a small drop in battery voltage may be indicative
of the imminent exhaustion of the battery; consequently, it
would be useful to reduce the weight of this attribute non-
linearly to reflect this.

In general, we wish to adapt the weights of each param-
eterdynamicallyand in ways that are dependent on the val-
ues of those parameters. In other words, we need a runtime
self-adaptation of the weightings used for this evaluation
process that could be categorized as a typical autonomic
mechanism [1]. A simple solution to this problem is the
introduction of adaptive weightsai into the previous for-
mula, in order to modify the utility function according to
the variation of the context.

Maximise{f(U(xi)) =
n∑

i=1

ai(xi)wiUi(xi)}

ai(xi) is a parameter that may itself be composite. For our
purposes, we define it to have three important aspects that

help to determine its value, though the model could easily
be expanded to incorporate other aspects deemed to be of
importance:

a) Criticality of certain ranges of values,arangei
(xi)

b) Predictability of the context information,
apredictabilityi

(xi)
c) Availability of the context information,

aavailabilityi
(xi)

We now compose theai weights as factors in the follow-
ing formula:

ai(xi) = arangei
(xi) ·apredictabilityi

(xi) ·aavailabilityi
(xi)

Adaptive weights related to the possible ranges of values as-
sumed by the attributesWe can model the adaptive weights
arange(xi) as a function whose domain is[0, 1]. For exam-
ple, with respect to the battery energy level (modeled using
the percentage of residual battery energy), we would use
a monotonically decreasing (though not necessarily linear)
function to assign a decreasing adaptive weight that is, in
turn, used to ensure that the corresponding utility function
decreases as the residual energy tends towards zero.

Adaptive weights related to the predictability of the con-
text informationIn general, it is possible to exploit differ-
ent statistical attributes for the analysis of time series. One
could, for example, use theautocorrelation functionto de-
scribe the degree of association between values of the time
series at different lags. In short, this gives a measure of
the predictability of the context information. Furthermore,
there are clear guidelines for adapting the use of the auto-
correlation function for non-stationary data with both trends
and seasonal variations.

In building the autocorrelation function, we first consider
the auto-covariance of the time series at lagk. Thelag rep-
resents the time difference (in terms of the number of sam-
ples) between the two instants being considered. Therefore,
we use theautocorrelation coefficientρk, at lagk defined
as follows

ρk ≡ Cov(Xt, Xt+k)/V ar(Xt)

It is worth noting that is possible to prove that0 ≤ |ρk| ≤ 1.
The absolute value ofρk is exactly 1 for a perfect autocorre-
lation, whereas an autocorrelation coefficient close to zero
(either positive or negative) indicates little or no correlation
between two samplesXt andXt+k (i.e., the impossibility
of making predictions). In the case of a so-called random
series, for a large numbern of samples, the value ofρk is
approximately equal to 0. We therefore determine parame-
ter apredictabilityi thusapredictabilityi = |ρk|. An interest-
ing issue is the choice of the value of the lagk. It is possible
that autocorrelation signals will drift slowly over time and,
consequently, the value ofk will also need to change to re-
flect this. However, we expect the underlying processes that



determine the nature of the original signal to change slowly
if at all.

Thus, in order to adapt the lag value to retain a strongly
correlated signal, we adopt a very simple adaptive tech-
nique. At the initial instantt0, k is set to 1. This is
increased, up to a value ofkMAX , if the autocorrela-
tion coefficient is below a given lower bound threshold
ρstrongCorrLB . The process wraps on reachingkMAX , set-
ting the value ofk back to unity in order to ensure that
the entire space is searched. If, on the other hand, the au-
tocorrelation coefficient exceeds an upper bound threshold
ρstrongCorrUB , k is decreased until it reaches the value 1.
We can summarize these concepts using the following up-
date equation for the lagk:

k(t+1) =

{
1 if t = t0 or k(t) = kMAX

k(t) + 1 if ρ(t) ≤ ρstrongCorrLB , k(t) < kMAX , t 6= t0
k(t)− 1 if ρ(t) > ρstrongCorrUB , k(t) ≥ 1, t 6= t0
k(t) otherwise

Adaptive weights related to the availability of the context
informationIt is unreasonable to assume that all context at-
tributes have the same degree of availability. Thus, we ex-
pect to have a time-varying set of attributes available whose
values are known or predictable. Attributes may drop out of
this set if meaningful values can no longer be predicted for
them, since the information on which the prediction would
have been based is too old. The simplest approach to this
problem is to ensure that missing context information car-
ries an adaptive weightai equal to 0:

aavailabilityi
=

{
1 if the context information is currently available
0 if the context information is not currently available

Formally, to date, we have implicitly assumed that a
static set of attributes will be defined. However, it is worth
noting that, using this approach, we can dynamically incor-
porate new attribute values, simply by assuming that they
were always there, but had zero weight foraavailabilityi

.

Automatic adaptation of the refresh period of routing ta-
bles and context information In wired networks, routing
table state update is often done on an unvarying regular ba-
sis as well as on a by-need basis. However, this approach is
wasteful in mobile ad hoc environments. Thus, we consider
how to adapt the rate of context information dissemination
by noting that we already know that such information is pre-
dicted by recipients and that such predictions are likely to
be most accurate when the signal on which they are based
is most predictable. Thus, a possible function for the deter-
mination of refresh time is given by:

t(x1, x2, ..., xn) = c
n∑

i=1

|ρki
|

where c is a constant of proportionality.

There are several possible extensions of this model. For
example, one might wish to take account of the absolute
value of a parameter in determining update rates. Thus, for
example, as battery energy levels decline, one might wish
to update information increasingly less frequently despite
the consequent unpredictability at the other end, in order
to conserve remaining energy. If information at the recipi-
ents becomes totally outdated, thenaavailabilityi

will be set
to zero for all our attributes and the result is that we will
not be likely recipients of messages to transfer, which is in
line with the behavior we would expect. Thus, we could
replace the simple constant in the above equation with a
generic function of values of individual attributes. Like-
wise, we could obtain a more refined model associating dif-
ferent weights with the autocorrelation coefficient for each
attribute in a way similar to that applied previously for com-
posing the utility functions for evaluating which host has the
best message delivery probability.

3.2 Prediction of the context information attributes us-
ing Kalman filters

Kalman filter prediction techniques [6] were originally
developed in automatic control systems theory. These are
essentially a method of discrete signal processing that pro-
vides optimal estimates of the current state of a dynamic
system described by astate vector. The state is updated us-
ing periodic observations of the system, if available, using
a set ofprediction recursive equations.

Kalman filter theory is used in CAR both to achieve more
realistic prediction of the evolution of the context of a host
and to optimize the bandwidth use. As discussed above, the
exchange of the routing tables that store the delivery proba-
bilites is a potentially expensive process, and unnecessarily
so where such information is relatively easily predictable.

If it is possible to predict future values of the attributes
describing the context, it is possible to update the delivery
probabilities stored in the routing tables, even if fresh infor-
mation is unavailable. Fortunately, it is possible to express
this prediction problem in the form of a state space model.
We have a time series of observed values that represent con-
text information. From this it is possible to derive a predic-
tion model based on an inner state that is represented by a
set of vectors, and to add to this both trend and seasonal
components [2]. It is worth noting that one of the main
advantages of the Kalman filter is that it does not require
the storage of the entire past history of the system, making
it suitable for a mobile setting in which memory resources
may potentially be very limited.

4 Simulation and Results
We evaluated the CAR algorithm by using the OmNet++

discrete event simulator [14]. In order to obtain credible re-
sults and to test the peculiar characteristics of our protocol,
it was also necessary for us to develop a new group mobility



model, that will be presented in Section 4.
Description of the simulationFor reasons of space and

in order to allow for fair comparison with existing research,
we report results based on simulations that use only part of
the full generality of the CAR algorithm. Thus, we simu-
lated the CAR model using a utility function based on the
evaluation of two attributes: (i) the change rate of connec-
tivity and (ii) the probability of being located in the same
cloud as the destination. We made the assumption that these
factors have the same relevance, so assigned them the same
weights in the evaluation of the overall utility (i.e.,wi =
0.5). Moreover, we also assumed that all the possible val-
ues in the range had the same importance (i.e,arangei

(xi)
= 1) and that the the values of attributes are always avail-
able during the simulation (i.e.,aavailabilityi

(xi) = 1).
The change rate of connectivity attribute is locally calcu-
lated by examining the percentage of a node’s neighbors
that have changed their connectivity status (connected to
disconnected, or vice versa) between two instants. The co-
location attribute measures the percentage of time that two
hosts have been in reach. To calculate it, we periodically
run a Kalman filtering process, assuming that the value is 1
if the host is currently in reach or 0 if not. Clearly, the resul-
tant predicted values will be in the range[0, 1] and they will
directly express an estimation of the probability of being in
reach of the host in the future.

We implemented a simplified version of the DSDV pro-
tocol [10] in order to simulate and test the synchronous de-
livery in connected portions of the network, as described
in Section 2. Each host maintains arouting and context
information tableused for asynchronous and synchronous
(DSDV) routing. Each entry of this table has the following
structure:

(targetHostId, nextHopId, dist, bestHostId, delProb)

The first field is the recipient of the message, the second
and the third are the typical values calculated in accordance
with the DSDV specification, whereas the fourth is the iden-
tifier of the host with the best delivery probability, the value
of which is stored in the last field. The overhead due to the
addition of this field to the standard format of routing tables
of DSDV is negligible. It is worth noting that all the auto-
nomic mechanisms, such as the variable refresh period of
routing tables, described previously, were implemented.

We also simulated flooding and the epidemic protocols
in order to provide comparators for the performance of the
CAR solution. The implementation of the epidemic proto-
col follows the description presented in [13].

We evaluated the performance of each protocol sending
100 messages with a simulation time equal to 300 seconds.
The messages were sent after 40 seconds, in order to allow
for the settling of initial routing table exchanges, and the
intervals between each message were modeled as a Poisson

process, withλ = 5s−1, and the consequence that all mes-
sages are sent in about 20 seconds. The sender and receiver
of each message are chosen randomly.

In the CAR simulation, each message has a field that is
similar to atime to livevalue that is decreased each time
that the message is transferred to another host (the initial
value being 15). Moreover, in this case, we also introduced
a split horizonmechanism to prevent messages from being
retransmitted unnecessarily. The buffer for each node was
set to 20 messages, unless otherwise specified.

The one key aspect of the simulation not yet addressed is
that of the mobility model. Clearly, the random way-point
mobility model, which is used extensively in such studies,
largely for reasons of simplicity, does not accurately reflect
human behaviour and annihilate the effect of the prediction
since movement is entirely random. Consequently, we de-
vised a new group-based mobility model [9]. This is pre-
sented briefly in the following section.

Mobility model Mobility models that assume that indi-
viduals move independently of one another in random ways
are unrealistic in terms of the deployment scenarios for ad
hoc networks that are most commonly expounded. For ex-
ample, on a battlefield, it would be indicative of a very trou-
bled army if each soldier were to move randomly with re-
spect to all others. Thus, we have developed a new model
with a form of hierarchical clustering that better reflects the
ways in which collections of people are structured at an or-
ganizational level and, consequently, the ways in which they
move [9]. Thus, we introduce the concept of a collection of
nodes, which has its own motion overlaid on a form of ran-
dom motion within the cloud. By parameterizing this model
differently, we can represent different archetypes: for exam-
ple, one would expect to use different parameters for an aca-
demic who spends her life traveling between home and the
university, interacting with a very closed set of people, as
opposed to a salesman who travels much more extensively
and interacts less discriminatingly. A host that belongs to a
cloud moves inside it towards a goal (i.e, a point randomly
chosen in the cloud space) using the standard random way-
point model. When a host reaches a goal, it also implicitly
reaches a decision point about whether to remain within the
cloud, and, if leaving, to where it should go. Each of these
decisions is taken by generating a random number and com-
paring it to a threshold (which is a parameter of the model).
It is worth noting that clouds also move towards randomly
chosen goals in the simulation space.

Simulation Configuration 50% of the hosts are initially
placed randomly in a cloud, whereas the others are posi-
tioned randomly in the simulation area. Each cloud is de-
fined using a squared area with a side length of 200 m. In
other words, we randomly select the point(minX,minY )
that, together with the length of the side, defines the cloud
area. For these simulations, there is only a single level



of cloud. Every host is characterized by two values,
Pescape, indicating the probability of escaping from the cur-
rent cloud, andPescapeCloud describing the probability of
choosing a new goal in the space between clouds. Each
cloud moves with a random speed (with a value in the range
1-2 m/s); moreover, each host moves with a randomly gen-
erated different speed (with a value in the range 1-3 m/s).
It is worth noting that the movement of a host is the re-
sult of the composition of these speeds. In our simulation,
the positions of all the hosts and clouds are updated every
second. When a cloud reaches its goal, a new goal is cho-
sen in the simulation space. When a host reaches its goal,
a threshold probabilityPescapeThreshold is generated ran-
domly (its range is clearly[0, 1]). If its Pescape is greater
than PescapeThreshold the new goal is chosen outside the
current cloud, else inside. If outside, we randomly gener-
atePescapeCloudThreshold and compare it toPescapeCloud

to determine whether or not the goal should be chosen in
some other cloud or in the open space between clouds. For
those hosts that are already outside a cloud, the choice of a
new goal is done in an analogous way.

Analysis of resultsIn this subsection we will analyze the
results of our simulations, comparing the performance of
CAR with the flooding and epidemic protocols. We will dis-
cuss the variation of some performance indicators as func-
tions dependent on the density of hosts (i.e., the number of
the hosts in the simulation area) and the size of the buffers
used to store messages in both the epidemic and CAR.

In Figure 1.a, there is a comparison between the deliv-
ery ratios of the three protocols in each of three different
scenarios (with 16, 24 and 32 hosts). In all cases, the num-
ber of messages that may coexist within a node’s buffer is
unconstrained.

CAR achieves a performance between that of flooding
and epidemic routing, as expected. Flooding suffers from
the inability to deliver messages to recipients that are in
other clouds when the messages are sent but is here simply
as a comparator to demonstrate the numbers of messages
being delivered that cannot be delivered directly, because
the recipient is in a cloud different from the cloud of the
sender. The epidemic protocol can be considered optimal
in terms of delivery ratio, simply because each message is
propagated to all accessible hosts, all of which have buffers
large enough to hold it. In CAR, we have chosen to oper-
ate under the most stringent conditions: there is only ever
a single copy of each message, which represents the worst
case for this protocol. Clearly, it would be possible to trade
off a small amount of intelligent replication (to improve the
delivery ratio) against an increase in overhead.

The dependency of the delivery ratios on the buffer size
is similar for all the protocols (see in Figure 1.b the results
for the 32 hosts scenario). Both of these demonstrate a sub-
stantial degradation of their performance as buffer size de-

creases; however, this phenomenon is more evident in the
epidemic approach as a result of the degree of replication of
messages.

Figure 1.c is interesting because there are two competing
effects at work for the epidemic protocol. When the buffer
size is small, there is a high probability that messages will
be eliminated due to overflow, as discussed above. Con-
sequently, the number of messages exchanged is also low.
At the other end of the scale, as the buffer size increases to
a point where it can accommodate all the messages in the
system, there is no repeated exchange of messages, so the
number is also low. In the middle of the range, however, the
buffer size is insufficient to hold all messages and there is a
cycle in which messages are eliminated by buffer overflow
and then reinstated by other nodes, resulting in very high
overhead. In the case of CAR, it is worth noting that the
overhead in terms of the number of messages exchanged is
more or less constant, regardless of buffer size, demonstrat-
ing itsscalability. CAR will always be the limiting case for
performance under this metric because it only creates a sin-
gle copy of each message. Thus, even at the point where
buffer size becomes effectively infinite, the epidemic pro-
tocol will necessarily exchange more messages than ours,
simply as a result of the replication.

Figure 1.d shows the distribution of the number of mes-
sages with respect to their delivery latency in the 32 hosts
scenario. It is possible to observe that a proportion of the
messages are delivered more or less immediately, since the
recipients are in the same cloud as the sender. This phe-
nomenon is more evident for the epidemic protocol since it
allows for a rapid dissemination of the information in con-
nected clouds.

5 Discussion and Concluding Remarks

A number of approaches have been proposed to enable
asynchronous communication in mobile ad hoc networks.
The epidemic routing protocol [13], described earlier, that
forms the basis for much of the work in this field, applied
this early approach to the field of asynchronous message
delivery, but in a rather naive fashion. Chen and Murphy
refined the epidemic model, presenting the so-called Dis-
connected Transitive Communication paradigm [3]. Their
approach is similar to ours, since it essentially argues for
the use of utility functions, but it provides a general frame-
work rather than a detailed instantiation, and so aspects re-
lated to the composition of calculated delivery probabilities
are almost entirely missing. In [8], Lindgren et al. propose a
probabilistic routing approach to enable asynchronous com-
munication among intermittently connected clouds of hosts.
Their approach is based on the fact that the exploited com-
munication model is typically transitive and, for this reason,
the probability of message delivery must be calculated ac-
cordingly. In [5], Fall proposes the Delay Tolerant Network
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Figure 1. Publish-subscribe model (32 hosts scenario): (a) Delivery ratio vs population density. (b)
Delivery ratio vs buffer size. (c) Number of messages vs buffer size. (d) Average delay vs population
density.

architecture to solve the internetworking issues in scenar-
ios where partitions are frequent and a connected path be-
tween message senders and receivers may be not present
(such as satellite and interplanetary communication sys-
tems). Zhao et al. in [15] discuss the so-called Message
Ferrying approach for message delivery in mobile ad hoc
networks. The authors propose a proactive solution based
on the exploitation of highly mobile nodes called ferries.
These nodes move according to pre-defined routes, carrying
messages between disconnected portions of the network.

With respect to the existing work in this research area,
we have introduced a general framework for the evolution
and the prediction of the mobile context to provide efficient
and effective communication mechanisms in mobile ad hoc
networks. Moreover, we believe that it is possible to inte-
grate our techniques with these approaches, since they ad-
dress orthogonal aspects of the problem. It is worth noting
that we used lightweight mechanisms, because we believe
that routing algorithms that are complex from a computa-
tional point of view are unsuitable for mobile devices, usu-
ally characterised by scarcity of resources. One example is
the use of Kalman filter techniques that do not necessitate
storing all the history of the evolution of the context infor-
mation.

To conclude, in this paper, we presented a novel ap-
proach to the challenge of asynchronous ad hoc routing.
Thus, we have designed a general and flexible framework
for the evaluation of context information using probabilis-
tic, statistical, autonomic and predictive techniques in order
to optimize the consumption of the scarce resources of mo-
bile devices whilst retaining good delivery performance. In
order to assess our algorithm, a new mobility model [9],
better reflecting the realities of human organization, was
developed and used in simulations that give a feel for the
relative performance of CAR relative to flooding and epi-
demic routing. The results demonstrated that, even without
message replication, CAR performs respectably in terms of
message delivery, with very much lower overheads than the
alternatives.
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