
Performance Analysis and Prediction of
Physically Mobile Systems

Antinisca Di Marco
Dipartimento di Informatica

Universitá dell’Aquila
via Vetoio 1, L’Aquila, ITALY

adimarco@di.univaq.it

Cecilia Mascolo
Computer Science Department

University College London
Gower Street, London, U.K.

c.mascolo@cs.ucl.ac.uk

ABSTRACT
The market of portable computational devices is expanding
more and more rapidly. The systems created by the inter-
actions of these devices among themselves and with the sur-
rounding infrastructure result in being quite different from
existing traditional systems in terms of connectivity, dynam-
icity and resource availability. As a consequence, existing
performance evaluation and prediction techniques appear to
be inadequate to the application to mobile systems. While
some adaptations have been proposed for systems present-
ing some logical mobility (i.e., software mobility), very little
has been attempted to provide useful performance predic-
tion methodologies for physically mobile systems.

In this paper we present a methodology for modeling per-
formance of physically mobile systems: our aim is to provide
guidelines for the designer of the system on how particu-
lar physical mobility patterns affect the system performance
and on how these measures can be taken into account in the
early stages of development of the system.

Categories and Subject Descriptors: B.8.2 [HARD-
WARE]: Performance Analysis and Design Aids; C.4 [PER-
FORMANCE OF SYSTEMS]: Modeling techniques; D.2 [Soft-
ware]: Software Engineering

General Terms: Performance, Design.

Keywords: Software Performance, Mobile Systems, Mod-
eling.

1. INTRODUCTION
Mobile devices we carry with us during the daily activities

now come in all sorts of shapes and provide all sorts of func-
tionality. The networks that these devices create by inter-
acting both among themselves (e.g., in peer to peer mode,
for instance through Bluetooth) and with the fixed back-
bone network (e.g., through the cellular connection) may be
very dynamic. The resources which these devices have are
usually quite limited (e.g., little memory and, often, limited
energy). Even the connectivity which is provided to these

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOSP’07,February 5–8, 2007, Buenos Aires, Argentina.
Copyright 2007 ACM 1-59593-297-6/07/0002 ...$5.00.

devices may be quite intermittent and often quite low.
Software engineering techniques for the analysis and de-

sign of distributed systems seem therefore quite inadequate
to deal with these very different characteristics offered by
mobile systems. However, given how challenging the devel-
opment of mobile systems is, due to all the parameters and
dynamicity involved, tools for the support of the design and
development of mobile application are greatly needed. In
particular tools for the design-time assessment and predic-
tion of performance of these systems would be very useful,
for example, to predict situation of possible network conges-
tion, to devise a profitable (possibly dynamic) deployment
of software system over the hardware platform which guar-
antees high system QoS by carefully exploiting the available
hardware resources.

This paper presents a methodology for modeling perfor-
mance of physically mobile systems. It concentrates on
component-based software systems and evaluates figures of
merit by generating an Layered Queuing Network (LQN)
performance model starting from the description of the Soft-
ware Architecture (SA) of the application, of the considered
user mobility patterns, and of the context (hardware plus
software) the application meets during the user mobility.

The proposed approach offers metrics to the users to al-
low them to judge how the performance of the system would
be in the various mobility contexts. Moreover, it provides
a support for the designer in the predictive evaluation of
the impact that the identified mobility patterns have on the
system performance. Such analysis helps designers in dif-
ferent ways: to design a suitable software deployment with
good performance in presence of user mobility conform to
the identified patterns; it indicates which physical mobility
behavior should be avoided/minimized in order to guarantee
certain performance under specific conditions.

Attempts which keep mobility into account in the assess-
ment of performance have been presented in [1, 2, 3], where
software mobility was considered. In these approaches, soft-
ware mobility was not only the assessed factor but also a
means to improve performance (as software could be moved
from one location to the other). Moreover, some of these
approaches have considered physical mobility in the model-
ing. Among them, the closest work to ours is probably [1],
where an integrated approach to modeling and performance
evaluation of mobile systems at the architectural level based
on simulation is devised. Both physical mobility and code
mobility are considered. Differently from our approach, this
work does not define metrics that characterize the physi-
cal mobility patterns of the system users, vital for mobile

1

system analysis, and use a different (non analytical) perfor-
mance model.

2. OUTLINE OF THE APPROACH
The predictive performance analysis of mobile software

system we propose deals with component-based software
systems and uses, as target performance model, an LQN
model. It concentrates on the physical mobility and omits
the treatment of the logical mobility.

Physical mobility is a requirement which developers have
not yet considered with the due care despite it having a huge
impact on the performance of the system. It is applied at
the SA level.

We assume that the SA and the Physical Mobility (PhM)
are described by means of UML 2.0 diagrams annotated
with additional information related to performance aspects
needed to carry out the analysis. Such additional informa-
tion is provided on the diagrams by means of stereotypes and
tags defined by the UML Profile for Schedulability, Perfor-
mance and Time (SPT) [5].

The approach generates LQN models from the SA and the
mobility behavior of users and evaluates the obtained mod-
els in order to predict the performance indices of interests.
Indeed, the LQN generation algorithm derives a set of LQN
models, one for each system configuration identified in the
PhM description, and calculates a performance metrics that
estimates the performance of the software system when a
user/device has one of the PhM behaviors described.

The main steps of the methodology are:

1. Modeling of the application: the software system
and the user (physical) mobility patterns are modeled
by means of UML 2.0 diagrams;

2. LQN generation and performance analysis:
(a) Meta-LQN generation: this step starts from the
SA description and generates a partial LQN, called
meta-LQN. This models the software system statics
and dynamics. This step is performed once at the
beginning of the generation process, since we assume
that the SA description remains unchanged despite the
physical mobility.
(b) LQN models generation: this step generates a
set of LQNs, one for each deployment diagrams de-
fined, and evaluates them to obtain values/functions
for the performance indices of interests.
(c) PhM pattern characterization: this step ag-
gregates the obtained performance indices to provide
a metrics for the PhM patterns, indicating how these
influence the performance of the system.

3. Results interpretation: from the performance in-
dices and the PhM metrics obtained from the perfor-
mance analysis step, indications to both designers and
final users are formulated.

2.1 Modeling of the Application
Interesting features and aspects of the system are mod-

eled by means of UML 2.0 diagrams. We use Use Case dia-
grams to identify the system services and the system users.
We model the SA behavior through Sequence Diagrams that
describe the evolution of the scenarios which are critical for
the performance. The structure of the software system is de-
scribed by a Component Diagram emphasizing the interfaces

provided and required by the software components and how
these combine to provide services. The information related
to the PhM is modeled by State Diagrams and Deployment
diagrams. The state diagrams describe the PhM patterns
of specific user types, where the states represent the system
configurations (hardware plus software) the user/device in-
teracts with during his/its moves. Such contexts, or system
configurations, are described by deployment diagrams. One
deployment diagram is associated to each different physical
context. The association of a state in the state diagram
with the corresponding system configuration is specified by
introducing a reference to the deployment diagram in the
state.

The information used to enrich the diagrams needed to
analyze the performance of the system is annotated with
SPT Profile stereotypes used as notes in the diagrams.

Use Case Diagram - Through a use case diagram, the
critical system use cases for which the performance analy-
sis is needed are described. Hence the diagram used in the
approach can be smaller than the one produced in the soft-
ware modeling phase. We call such diagram Performance
Use Case Diagram. The associations between the actors
and the use cases has information on the operational pro-
file of the mobile system. From the operational profile the
approach infers the system workload for each system use
case. The workload intensity, provided to the system by
a customer class, is specified through the <<PAopenLoad>>

or <<PAclosedLoad>> stereotypes. We extend the usage of
such stereotypes to annotate the workload information in
the Performance Use Case Diagram. The rational of such
decision is that in our approach each system use case rep-
resents a different request type entering the system, hence
in the approach this request type is mapped as a customer
class of the LQN.

Component Diagram - The component diagram con-
sidered in the approach is a portion of that built during
the software life cycle. It only contains the software com-
ponents involved in the selected critical performance We
use the <<PAhost>> stereotype (PAschdPolicy tag value)
to annotate each component with the scheduling policy of
its waiting queue. We annotate each component interface
with the execution time required by a software component
to perform the corresponding operations. This information
is specified by either PAdemand or PAdelay tag values of the
<<PAstep>> stereotype. The PAdelay tag is used when the
corresponding operation is not shared among multiple (con-
current) accesses. To simplify the annotation of the compo-
nent operations, we assume that each interface contains just
one operation from which it inherits the name.

Sequence Diagrams - The behavior of the mobile ap-
plication is modeled by means of Sequence Diagrams, where
the lifelines model component instances and the arrows rep-
resent the interaction among them. The information about
the time needed to execute such interactions is annotated in
the component diagram. The sequence diagram is annotated
only with information related to the fragment operators and
the network usage in remote method invocation. For all of
them we use the <<PAstep>> stereotype.

Physical Mobility Description
To describe the PhM patterns we use UML State Diagrams
where each node represents a context and the arrows among
states represent the probability that the user will be moving

2

Software Architecture Description

Operational Profile
Loop repetition, option/

alternatives probabilities,...
Scheduling Policy, service

demand, abstract service rate

Reference tasks

USE CASE Diagrams

+

Component Diagram

+

Comp2

i4i3

Comp3

i6i5

Comp4
i9

i11
i10

Comp5

i7

i8

Comp1

i1
i2

 LQN tasks LQN tasks topology

+

Sequence Diagrams

use case 1

use case 2

actor

use case 1

use case 2

actor

use case 1

use case 2

actor

Customer
CustomerProcess CartServer

op1

In_gate

SD scenario

op2

BrowseCart

ref

Output

Out_gate

Ack

Customer
CustomerProcess CartServer

op1

In_gate

SD scenario

op2

BrowseCart

ref

Output

Out_gate

Ack

Customer
CustomerProcess CartServer

op1

In_gate

SD scenario

op2

BrowseCart

ref

Output

Out_gate

Ack

Meta-LQN Modeling

Figure 1: Meta-LQN Model Generation.

from the starting context to the destination one.
Each state is annotated with: (i) the name of the deploy-

ment diagram describing the context (software and hard-
ware) represented by the state, and (ii) the estimated total
time the device/user spends in this context during the obser-
vation interval. To this aim we introduced a new stereotype
<<PHcontext>> with two tag values: PHdeploymentRef and
PHTOTresTime. This information is used to combine the ho-
mogeneous performance indices evaluated for each system
configurations in the state diagram, in order to provide a
performance measure for each physical mobility pattern.

Deployment diagrams are used to represent the portion of
the system accessible to the user, after one of her trans-
fers. We call such portion of the system a visible con-
figuration and we annotate it with additional information
about hardware devices and available connectivity. We use
<<PAhost>> stereotype with PArate and the PAschdPolicy

tag values to annotate each node that represents a CPU
with its processing rate and scheduling policy. Whereas, we
use the <<PAresource>> stereotype with PArespTime and
PAschdPolicy tag values to annotate nodes representing (server)
communication networks. The tag values contain the la-
tency of the network to transmit a packet and the scheduling
policy of the network, respectively.

2.2 Meta-LQN Generation
Figure 1 sketches the step of the generation of Meta-LQN.

It starts from the SA description and produces a partial
LQN, called meta-LQN. The meta-LQN models the software
system statics and dynamics: however it does not consider
the PhM patterns and the set of contexts the system has
to adapt to during mobility. The meta-LQN generation is a
preliminary step performed once at the beginning of the gen-
eration process. The meta-LQN remains unchanged despite
the physical mobility. The meta-LQN contains:

• reference tasks, one for each use case in the use case
diagrams, that generate the different request types;

• LQN tasks, one for each component in the component
diagram. The LQN tasks have as many entries as the
provided interfaces of the software components;

• a set of interconnections among tasks that are created
by traversing the sequence diagrams. The technique
used in this step is very similar to the one defined

by Petriu et al. in [6] or can be extracted from the
technique described by Woodside et al. [4].

• an additional task for each resource type that executes
external operations localized in the sequence diagrams
by the previous step. Such task is reached by a con-
nection starting from the entry that invokes the (entry
corresponding to the) component interaction in the se-
quence diagram annotated by <<PAextOP>> stereotype.

The parametrization of the LQN tasks and reference tasks
is done by extracting the relevant information from the an-
notations in the UML diagrams. In particular:

• the operational profile of the system is extracted by the
annotation of the use case diagrams. Such information
is used to parameterize the LQN reference tasks and
allows the definition of the arrival processes (one for
each use case) in the performance model;

• the scheduling policy of software components, and the
service demand of the provided interfaces are retrieved
from the annotations in the component diagram. Such
information is needed to parameterize the LQN tasks;

• the loop repetition factors and behavioral alternative
probabilities are extracted from the annotations in the
sequence diagram. These annotations represent i) the
number of visits an LQN job makes to the involved
LQN tasks when a repeated behavior is modeled in
the sequence diagram; ii) the routing probabilities of a
job type when the sequence diagram models behavioral
alternatives;

• the host demand that each task entry requires to the
device hosting the relative task, is extracted from the
annotation associated to the interfaces in the compo-
nent diagram.

2.3 LQN Models Generation
This step generates a set of LQN models associated to

the defined deployment diagrams and calculates the relative
performance metrics. This step is reiterated as many times
as the number of system configurations identified. Figure 2
outlines this step for N system configurations or contexts.

For each PhM pattern, the required modeling comprises:
the description of the possible physical contexts of the de-
vice and the specification of the mobility behavior, i.e., the
way the device moves among the contexts. The former de-
scribes the overall system in terms of hardware and software
components available after a movement and is described by
means of deployment diagrams. The latter, instead, is mod-
eled by a UML state diagram where each state points to
a deployment diagram describing the system configuration
visible (or reachable) from that location.

For each deployment diagram the approach generates an
LQN model as follow:

• it identifies the hardware components in the deploy-
ment diagram and instantiates an LQN devices for
each of them;

• it adapts the meta-LQN model according to the soft-
ware components reachable/visible in the location.

3

PIPIPIPIiPIPIPIPIiPIPIPIPIi

Physical Mobility

LQN Modeling

Performance Results

<<Deplo
y>>

<<Deplo
y>>

<<Deplo
y>>

Deployment Diagrams

<<Deplo
y>>

<<Deplo
y>>

<<Deplo
y>>

<<Deplo
y>>

<<Deplo
y>>

<<Deplo
y>>

<<Deploy>>

<<Deploy>>

<<Deploy>>

Scheduling Policy, service rates,...
+

Additional LQN tasks and
LQN devices description

Additional LQN tasks and
LQN devices description

Additional LQN tasks and
LQN devices description

Additional LQN tasks and
LQN devices description

1..N

1..N

S1

SN

. . .

Total Permanence time in
each State (T1,…,TN)

+

1..N

Meta-LQN Model

 LQN Model LQN Model LQN Model LQNc

Sc

PIPIPIPIc

1..N
PIc = performance indices
 for context c=1..N

State Diagram of PhM Pattern M

Figure 2: LQN Model Generation and Performance
Indices.

• it adds LQN tasks to LQN device interconnections ac-
cording to the Deploy association in the deployment
diagram.

• it adds additional LQN tasks to LQN device intercon-
nections according to the resource name executing the
external operation the additional task represents.

The LQN devices are hence parameterized by means of
information annotated in the deployment diagram. Annota-
tions in such diagrams refer to hardware component features
and specify the scheduling policy of the hardware compo-
nents (i.e. the strategy used by the component to extract
job from its waiting queue), the service rates of each hard-
ware component, in case the component is an active resource
(e.g., a CPU) or the latency introduced by the component
in case it is a passive resource (e.g. network).

2.4 PhM Patterns Characterization
Referring to Figure 3, the PhM pattern M describes N

different physical contexts. The previous generation step
devised N different LQN models starting from the meta-
LQN and the N deployment diagrams modeling the system
configurations. Then it evaluated the performance indices

Since a mobility pattern is a combination of the system
configurations representing the contexts the device/user in-
teracts with while roaming, as final step, the methodology
aggregates the performance indices evaluated in each physi-
cal context. The aggregated value represents figures of merit
of the mobility pattern itself.

2.5 Analysis Scope and Results Interpretation
Predictive performance analysis becomes of primary im-

portance in the context of mobile applications, given the
dynamicity of these systems and the often scarce resources
involved.

The performance indices of interests in mobile applica-
tions are mainly service response time and device utiliza-
tion. The utilization of devices, in particular of the band-
width in wireless networks, can be extremely useful for the
identification of the hardware performance bottlenecks and

PIPIPIPIiPIPIPIPIiPIPIPIPIi

Physical Mobility

PhM Pattern
Characterization

<<Deplo
y>>

<<Deplo
y>>

<<Deplo
y>>

Deployment Diagrams

<<Deplo
y>>

<<Deplo
y>>

<<Deplo
y>>

<<Deplo
y>>

<<Deplo
y>>

<<Deplo
y>>

<<Deploy>>

<<Deploy>>

<<Deploy>>

Scheduling Policy, service rates,...
+

1..N

S1

SN

. . .

Total Permanence time in
each State (T1,…,TN)

+
Sc

PIPIPIPIc

1..N

PIc = performance indices
 for context c=1..N

State Diagram of PhM Pattern M

 Σc=1..N PIc *Tc IM = performance index of the

 PM pattern M Σc=1..N Tc
IM =

Figure 3: PhM pattern characterization.

to evaluate potential alternatives, including the strengthen-
ing of the hardware, its better positioning/allocation in the
physical contexts, or a better deployment of the software
components over the available hardware platforms.

The service response time, instead, is the primary element
for the metrics related to the mobility pattern. The idea
here is to calculate the response time of a given service in
all the identified system configurations and then to combine
these values on the basis of the mobility patterns considered
through a function that we call aggregation function. In this
way we can devise a metric that is associated to the mobility
patterns. The metric will represent the system response time
for a given service if the user follows the mobility pattern.

When the performance indices and the mobility pattern
metrics are calculated, such results have to be interpreted
to gathered useful advises to both the designer and the user
of the mobile application.
Acknowledgments: This work has been supported by the
IST EU projects PLASTIC, RUNES and SEGRAVIS.

3. REFERENCES
[1] S. Balsamo and M. Marzolla. Towards Performance

Evaluation of Mobile Systems in UML. In Proc. of
ESMc’03 Conference, pages 61–68, Naples, Italy, Oct.
27–29 2003.

[2] V. Grassi and R. Mirandola. PRIMAmob-UML: A
Methodology for Performance Analysis of Mobile
Software Architectures. In Proc. of WOSP’02, pages
262–274, Rome, Italy, July 2002.

[3] V. Grassi, R. Mirandola, and A. Sabetta. A UML
Profile to Model Mobile Systems. In Proc. of UML
Conference 2004, pages 128–142, October, 2004.

[4] T. A. Israr, D. H. Lau, G. Franks, and C. M.
Woodside. Automatic Generation of Layered Queuing
Software Performance Models from Commonly
Available Traces. In WOSP, pages 147–158, July 2005.

[5] OMG. UML Profile, for Schedulability, Performance,
and Time. OMG document ptc/2002-03-02,
http://www.omg.org/cgi-bin/doc?ptc/2002-03-02.

[6] D. C. Petriu and X. Wang. From UML Descriptions of
High-Level Software Architectures to LQN Performance
Models. In Proc. of AGTIVE’99. Springer-Verlag,
pages 47–62, 1999.

4

