
1

CARISMA: Context-Aware Reflective mIddleware
System for Mobile Applications

Licia Capra, Wolfgang Emmerich and Cecilia Mascolo

Abstract— Mobile devices, such as mobile phones and personal
digital assistants, have gained wide-spread popularity. These
devices will increasingly be networked, thus enabling the con-
struction of distributed applications that have to adapt to changes
in context, such as variations in network bandwidth, battery
power, connectivity, reachability of services and hosts, and so on.
In this paper we describe CARISMA, a mobile computing mid-
dleware which exploits the principle of reflection to enhance the
construction of adaptive and context-aware mobile applications.
The middleware provides software engineers with primitives to
describe how context changes should be handled using policies.
These policies may conflict. We classify the different types of
conflicts that may arise in mobile computing and argue that
conflicts cannot be resolved statically at the time applications are
designed, but, rather, need to be resolved at execution time. We
demonstrate a method by which policy conflicts can be handled;
this method uses a micro-economic approach that relies on a par-
ticular type of sealed-bid auction. We describe how this method
is implemented in the CARISMA middleware architecture, and
sketch a distributed context-aware application for mobile devices
to illustrate how the method works in practise. We show, by way
of a systematic performance evaluation, that conflict resolution
does not imply undue overheads, before comparing our research
to related work and concluding the paper.

Index Terms— Middleware, mobile computing, reflection,
context-awareness, conflict resolution, game theory, quality of
service.

I. INTRODUCTION

MOBILE computing devices, such as palmtop computers,
mobile phones, personal digital assistants (PDA) and

digital cameras have gained wide-spread popularity. These
devices will increasingly be networked and software devel-
opment kits are available that can be used by third parties to
develop applications [1].

Even though devices and networking capabilities are becom-
ing increasingly powerful, the design of mobile applications
will continue to be constrained by physical limitations. Mobile
devices will continue to be battery-dependent and users are
likely to be reluctant to carry heavy-weight devices. Wide-
area networking capabilities will continue to be based on
communication with basestations, with fluctuations in band-
width depending on physical location. In order to provide
acceptable quality of service to their users, and consequently
improve user satisfaction of the system, applications have to
be context-aware [2], and able to adapt to context changes,
such as variations in network bandwidth, exhaustion of battery
power or reachability of services on other devices. This would

L. Capra, W. Emmerich and C. Mascolo are with the Department
of Computer Science, University College London, London, UK. E-mail:
�l.capra�w.emmerich�c.mascolo�@cs.ucl.ac.uk.

require application engineers, for example, to periodically
query heterogeneous physical sensors, in order to get updated
context information, to detect context configurations of interest
to the application, and adapt accordingly; however, doing so
would be extremely tedious and error-prone.

In order to ease the development of context-aware applica-
tions, middleware layered between the network operating sys-
tem and the application have to provide application engineers
with powerful abstractions and mechanisms that relieve them
from dealing with low-level details. For example, applications
must be able to specify, in a uniform way, which resources they
are interested into, and which behaviours to adopt in particular
contexts. The middleware, then, maintains, on behalf of the
applications, updated context information, detects changes of
interest to the application, and reacts accordingly.

In the past decade, the development of distributed ap-
plications for wired systems has been greatly enhanced by
middleware systems that succeeded in facilitating the commu-
nication between distributed components. Traditional middle-
ware systems (e.g., CORBA, Java/RMI, MQSeries) provide
application engineers with communication abstractions that
relieve them from dealing with, for example, the location
of distributed components, network failures and hardware
heterogeneity (e.g., for marshaling/unmarshaling of parame-
ters). These middleware are based on the principle of trans-
parency [3][4]: implementation details are hidden from both
users and application designers and are encapsulated inside
the middleware itself, so that the distributed system appears
to application developers as a single integrated computing
facility.

Although having proved successful in supporting the con-
struction of traditional distributed systems, we argue that
transparency cannot be used as the guiding principle to develop
the new abstractions and mechanisms needed by mobile com-
puting middleware to foster the development of context-aware
applications. By providing transparency, middleware must take
decisions on behalf of the application; this is inevitably done
using built-in mechanisms and policies that cater for the
common case rather than the high levels of dynamicity and
heterogeneity intrinsic in mobile environments. Applications,
instead, may have valuable information that could enable the
middleware to execute more efficiently, in different contexts.

We argue that reflection [5] offers significant advantages for
building mobile computing middleware. A reflective system
may modify its own behaviour by means of inspection (i.e., the
internal behaviour of the system is exposed) and/or adaptation.
(i.e., the internal behaviour of a system can be dynamically
changed). For example, applications may dynamically alter the

2

set of resources that middleware monitors on their behalf,
the context configurations they are interested into, and the
behaviours they want to adhere to. However, while doing
so, applications may introduce ambiguities, contradictions,
and other logical inconsistencies. For example, contradictory
behaviours may be requested by the same application to react
to a particular context change, or cooperating applications may
not agree on a common behaviour to be applied. We refer to
these inconsistencies as conflicts.

The novel contribution of this paper is the design, formalisa-
tion and evaluation of new abstractions and mechanisms that,
embedded in a mobile computing middleware software layer,
facilitate the development of context-aware applications. In
particular, we exploit the principle of reflection to achieve dy-
namic adaptation to context changes: we offer applications an
abstraction of the middleware as a dynamically customisable
service provider, where customisation takes place by means
of metadata, which encode middleware behaviour to answer
application service requests in various contexts. Through re-
flection, the meta-information can be changed, and therefore
the middleware behaviour tuned, with the risk, however, of
incurring conflicts. We have designed a microeconomic ap-
proach to conflict resolution that relies on a particular type of
sealed-bid auction. Our approach treats a distributed mobile
system as an ‘economy’ where applications compete to have
the middleware deliver the quality-of-service they desire. The
mobile computing middleware plays the role of an auctioneer,
collecting bids from applications and delivering services with
the QoS requested by the successful one. We show why our
auctioning mechanism is particularly useful in a mobile setting
and that it achieves fair conflict resolution.

The remainder of the paper is structured as follows: Sec-
tion II describes our reflective middleware model; Section III
introduces the issue of conflicts in a mobile setting, provides
a classification of the types of conflicts we deal with, and
illustrates them using an example of context-aware application.
In Section IV we formalise the microeconomic mechanism we
propose to solve these conflicts, and illustrate a comprehensive
example, based on the application described before, to clarify
how the model works in practise. Section V evaluates our
model in terms of usability and performance; Section VI
compares our approach to related work, and finally Section VII
concludes the paper and identifies possible future work.

II. THE REFLECTIVE MODEL

Mobile applications execute in an extremely dynamic con-
text: location changes all the time while moving around
with our portable device, and so the services and devices
in reach; local resource availability varies quickly as well,
such as memory availability, bandwidth, and battery power. In
order to provide reasonable quality-of-service to their users,
applications have to be context-aware.

We argue that reflection [5] is a powerful means to build mo-
bile computing middleware that supports the development of
context-aware applications. The key to the approach is to make
some aspects of the internal representation of the middleware
explicit, and hence accessible from the application, through

Reflective API Application ProfileMeta−informationMeta−interfaceab
so

rb
ti

o
n

re
if

ic
at

io
n

Application

Middleware Middleware

Application

(b)(a)

Fig. 1. The Reflective Process.

a process called reification. Applications are then allowed to
dynamically inspect middleware behaviour (introspection), and
also to dynamically change it (adaptation), by means of a
meta-interface that enables run-time modification of the inter-
nal representation previously made explicit. The process where
some aspects of the system are altered or overridden is called
absorption. The whole process is depicted in Figure 1(a).

CARISMA, a project carried out at University College Lon-
don, is a middleware model that exploits reflection to enable
context-aware interactions between mobile applications. In
our model [6], the middleware is in charge of maintaining
a valid representation of the execution context, by directly
interacting with the underlying network operating system. By
context, we mean everything that can influence the behaviour
of an application, from resources within the device, such as
memory, battery power, screen size and processing power,
to resources outside the physical device, such as bandwidth,
network connection, location and other hosts within reach, to
application-defined resources, such as user activity and mood.

Applications may require some services to be delivered in
different ways (using different policies) when requested in
different context. For example, a messaging application may
wish to send messages in plain when bandwidth is high, while
exchanging compressed messages when bandwidth is low.

To enhance the development of context-aware applications,
CARISMA provides application engineers with an abstraction
of the middleware as a customisable service provider. In
particular, the behaviour of the middleware with respect to
a specific application is described as a set of associations
between the services that the middleware customises, the
policies that can be applied to deliver the services, and the
context configurations that must hold in order for a policy to
be applied. In the example above, an association is defined be-
tween the ‘messaging’ service, the ‘plain message’ policy, and
a context where the resource ‘bandwidth’ is high, and another
one between the same ‘messaging’ service, the ‘compressed
message’ policy, and a context where ‘bandwidth’ is low.
The behaviour of the middleware with respect to a particular
application is reified in what we call an application profile, as
shown in Figure 1(b)1. Figures 2 and 3 show respectively the
profile abstract syntax and an example of a customised service

1Our reflective middleware model assumes a single user for each mobile
device, though there may be many applications running simultaneously on that
device, hence, in our model, on the same middleware instance (this assumption
is reasonable for portable devices, such as PDAs and mobile phones).

3

����������� ��� ������� ����������� � 	

������� ��� �
��� ���������

��������� ��� ����� ��������� � �����

����� ���
��� ��
��������

��
�������� ��� ��
���� ��
�������� � ��
����

��
���� ��� ������������

������������ ��� �������� ������������ � 	

�������� ��� �
��� �
��� ���������

��������� ��� ����� ��������� � 	

Fig. 2. Application Profile Abstract Syntax. ����� � �, ����� � �,
����� � �, being ����� � ��, respectively, the sets of all valid
service/policy/resource names over our alphabet �. 	�
�� � �, being �
the set of all possible values of resources in � (e.g., IP addresses for hosts
in reach, etc.); ����� � �, being � the set of all valid operator names that
can be applied to values of monitorable resources (e.g., equals, lessThan).

messagingService
plainMsg

bandwidth > 40%
compressedMsg

bandwidth < 40%

Fig. 3. Customisation of the Messaging Service.

encoded using this syntax.
Profiles are passed down to the middleware; each time a

service is invoked, the middleware consults the profile of the
application that requests it, queries the status of the resources
of interest to the application itself, as declared in the profile,
and determines which policy can be applied in the current
context, thus relieving the application from performing these
steps. Our model assumes that the behaviour of the middleware
with respect to a particular service is determined, at any time,
by one and only one policy, that is, a service cannot be deliv-
ered using a combination of different policies. More policies
can logically be combined; for example, the messaging service
can be provided with a ‘compressed message’ policy, that is a
logical combination of two separate policies, ‘compress’ and
‘send’. However, we regard the combined policy as a new one,
and in the profile we will refer to this new policy, not to the
sequential execution of two distinct policies.

As both the user needs and the context change quite
frequently (e.g., due to movement of the device to a different
location), we cannot expect application designers to foresee
all possible configurations. Through a reflective API (Fig-
ure 1(b)), applications can dynamically inspect the content
of their profile (i.e., the current configuration), and alter it
by adding, deleting and updating the associations previously
encoded. As the behaviour of the middleware is dictated by
the associations encoded in the application profiles, changing
this information means dynamically affecting middleware be-
haviour (i.e., re-configuration of the system). If we consider
once again the messaging example, an application may add
an association to its profile requesting the execution of the
messaging service using an ‘encrypted message’ policy, in
order to achieve privacy of information, when both battery
and bandwidth availability are high.

End−user
preferences

Application
Profile

End−user

Application

Middleware

User

Reflective
API

interface

uses

uses

provides

provides

Fig. 4. Roles and Responsibilities in the Reflective Process.

A default profile exists for every application, where each
service that the middleware delivers (to that application) is
associated to exactly one policy, regardless of context. It is
up to the application to decide whether and when to exploit
the power of reflection to alter the information here encoded,
that is, to customise middleware behaviour in order to achieve
better quality of service.

So far we have focused our discussion on the interaction
between middleware and applications, leaving the end-users
of the system behind the scene. As Figure 4 illustrates, the
middleware provides applications a reflective API (i.e., meta-
interface) that they can exploit to inspect and alter middleware
behaviour, as encoded in application profiles. The target users
of our middleware model are therefore application developers.
In customising middleware behaviour, however, end-user re-
quirements and expectations must be taken into consideration.
We therefore expect applications built on top of CARISMA
to provide end-users with a user interface through which end-
user preferences can be captured, and used by applications to
encode profiles.

In this paper, we are mainly concerned with the interaction
between middleware and applications, thus leaving the issue
of gathering user preferences and synthesising them in appli-
cation profiles for future work; however, we will provide in
Section V-B some insights on the complexity of doing so, and
on the amount of work required from the user to teach the
system to behave according to his/her own expectations.

III. DEALING WITH CONFLICTS

The model presented above allows applications to control
the behaviour of the middleware based on current user needs
and context. This is achieved by means of application profiles
that can be dynamically changed through a reflective API.
Although a middleware based on this model supports the
development of context-aware applications, it also opens the
door to conflicts. In our model, a conflict exists when different
policies can be used in the same context to deliver a service, so
that the middleware does not know which one to apply (note
that we made the assumption that a service can be delivered
using only one policy at a time). Reflection gives applications
the ‘intelligence’ that transparency takes away in traditional
middleware systems. Applications, however, may not be smart
enough to cope with the new power, and may produce profiles
that lead to conflicts. In particular, when setting up application
profiles, the following two basic kinds of conflicts may be
created.

4

Intra-profile conflict: a conflict exists inside the profile of an
application running on a particular device. This class identifies
conflicts that are local to a middleware instance.
Inter-profile conflict: a conflict exists between the profiles
of applications running on different devices. This class iden-
tifies conflicts that are distributed among various middleware
instances. A particular case of inter-profile conflict happens
when applications run on the same device (i.e., on the same
middleware instance); we refer to this situation as an N-on-1
(i.e., � applications on � device) conflict.

In order to understand how these types of conflicts arise,
we sketch a conference application that is representative of
the class of context-aware mobile applications that would
benefit from our reflective middleware model; we then discuss
the requirements that a conflict resolution mechanism must
meet, before presenting the details of the mechanism we have
designed. At this stage, we are not interested in implemen-
tation details (in particular, in the language used to encode
profiles); we therefore use the abstract syntax illustrated before
to discuss the following examples.

A. Conference Application

Let us imagine a researcher Alice travelling to a conference
with her own PDA. When arriving at the conference location,
she is provided with a Conference Application to be installed
on her portable device that, based on a wireless network
infrastructure, allows attendees to access the proceedings elec-
tronically, browse through the technical programme, select the
talks they wish to attend and be alerted of the selected ones
�� minutes before they start, and exchange messages with
other attendees. These services may have to be delivered in
different ways when requested in different contexts, in order
to meet the user’s needs. Let us consider, in particular, the
talk reminder service and the messaging service; through our
reflective middleware model, Alice’s preferences can be taken
into account and used to generate the following associations.
Reminder of the next talk. The reminder functionality of the
system can capture user attention through one of the following
policies: soundAlert, particularly useful to capture user
attention in noisy and open air places; vibraAlert, to
capture user attention without disturbing anybody else (e.g.,
while attending a talk); and silentAlert, to remind the
user of the next talk through a blinking message, for example,
while the user is actively using the portable device. The
talkReminder is an example of local service, as it does
not require the cooperation of any other party. Let us consider,
for example, the encoding shown in Figure 5, and let us
assume that the service is requested when Alice is attending a

talkReminder
soundAlert

location = outdoor
vibraAlert

location = conferenceRoom
silentAlert

userFocus = on

Fig. 5. Example of Local (Intra-profile) Conflict.

talk (i.e., location = conferenceRoom), and using her
PDA to take notes at the same time (i.e., userFocus = on).
The middleware checks which policy should be applied and
determines that more than one policy suits the current context
(i.e., vibraAlert and silentAlert). As we made the
assumption that each service is delivered using one and only
one policy at a time, the middleware is unable to choose which
of the context-suitable policies to apply2. This is an example
of intra-profile conflict.
Exchange of messages. Attendees can exchange messages
using any of the following policies: charMsg, that delivers
one character at a time, plainMsg, to exchange messages in
plain, compressedMsg to exchange compressed messages,
and encryptedMsg to send encrypted messages.

The messagingService is an example of peer-to-peer
service, where any number of peers may participate in the
delivery of the service. In order for the service to be delivered,
all the communicating peers have to agree on a common policy
to be applied. Let us assume, for example, that Alice, Bob and
Claire are willing to exchange messages; let us also assume
that their profiles are the ones illustrated in Figure 6. Note
that no context information is associated to the plainMsg
policy of Bob’s profile: this means that this policy is always
enabled, regardless of current context. At any time, users
may change their preferences through the user interface that
the conference application provides; the application, in turn,
dynamically updates the meta-information encoded in their
profiles, in order to take the new preferences into account.

If the messagingService is requested when battery
availability is below 40% on Alice’s PDA, and Claire’s band-
width is greater than 50%, they all agree on the plainMsg
policy to be applied; but what if Alice’s battery is greater than
40%, or if Claire’s bandwidth is lower than 50%? This is an
example of inter-profile conflict.

% Alice % Claire
messagingService messagingService

plainMsg plainMsg
battery < 40% bandwidth > 50%

encryptedMsg compressedMsg
battery > 40% bandwidth < 50%

% Bob
messagingService

plainMsg

Fig. 6. Example of Distributed (Inter-profile) Conflict.

B. Requirements

Whenever a service that incorporates a conflict, either intra-
or inter- profile, is requested, a conflict resolution mechanism
has to be run to solve the conflict and find out which
policy to use to deliver the service, otherwise applications

2Note that, by removing this assumption, we do not avoid the issue of
conflicts, we just need to formulate it under different terms. In particular,
conflicts would appear as different sets of policies enabled at the same time;
in this case, we should consider whether the order in which policies appear
in a profile is relevant, or whether their execution is commutative.

5

cannot execute. In designing such mechanism, the following
requirements have to be considered.
Dynamicity. Neither intra- nor inter- profile conflicts can
be detected and resolved statically, that is, at the time the
profile is written by the application and passed down to the
middleware. In case of intra-profile conflict, a possible static
approach would require us to check whether there is any
intersection between the different contexts of the policies
associated to each service. Due to the complex nature of
context (the number of monitored resources may be large),
a static conflict analysis would produce an explosion in the
context information that must be checked, and would require
a consumption of resources (especially in terms of battery,
memory and processing power) that portable devices cannot
bear. Providing the conflict resolution as an external service on
a powerful machine that is contacted on-demand is not feasible
either, as this would require persistent connectivity that in
mobile settings cannot be taken for granted. As for inter-profile
conflicts, the situation is even worse; mobile devices connect
opportunistically and sporadically. We cannot foresee which
devices are going to be encountered and, even so, we cannot
assume that all of them will be connected and in reach at
the time a profile is modified; this means that the middle-
ware cannot statically check whether the new configuration is
conflict-free. Even assuming that this distributed check could
be statically performed, it would not be worth the effort, as
we would find many more potential conflicts than what we
would actually need, as conflicts manifest themselves only
with respect to the particular context in which the service
is requested, and the profiles of the participating peers. As a
consequence, a dynamic solution is needed: conflicts may exist
inside or among profiles, but both applications and middleware
can live with these conflicts until a service which incorporates
a conflict is invoked.
Simplicity. The conflict resolution mechanism must be simple
in the sense that it must not consume resources that are
already scarce on a mobile device. Only a low computation and
communication overhead should be imposed, even if this may
occasionally prevent from an optimal solution to the conflict
to be found.
Customisation. Middleware cannot choose how to solve
conflicts independently of the applications that requested the
conflicting service, as only the applications know how much
they value the execution of the various policies. On one
hand, we do not want applications to be questioned each
time a conflict is detected, that is, middleware should be in
charge of carrying out the conflict resolution process in an
automatic way as much as possible. On the other hand, it
must be possible for the applications to customise the conflict
resolution mechanism, thus influencing which policy is chosen
and applied, and which others are discarded.

In the following section, we formally describe a conflict
resolution mechanism that meets these requirements.

IV. MICROECONOMIC MECHANISM

When applications participating in the delivery of a service
cannot agree on which policy must be applied, a dynamic

conflict resolution scheme is necessary to resolve the dispute.
The conflict resolution mechanism we propose is based on
microeconomic techniques [7]. The motivating idea is that a
mobile distributed system can be seen as an economy, where
a set of consumers must make a collective choice over a set of
alternative goods. Goods represent the various policies that can
be used to deliver a service (not the resources needed to apply
a policy); for example, policies ‘plainMsg’, ‘encryptedMsg’
and ‘compressedMsg’ are the goods associated to service
‘messagingService’. Consumers are applications seeking to
achieve their own goals, that is, to have the middleware deliv-
ering a service using the policy that provides the best quality
of service, according to application-specific preferences.

Simple schemes include, for example, priority assignment
or per capita distribution. However, those do not suit situations
where participation in exchange of goods is voluntary on the
part of all parties (i.e., the applications), so that action requires
a consensus and mutual perception of benefit. A better scheme
would use an auction protocol. Auctions allow parties to make
decisions independently, on the basis of private state, revealing
only offers and acceptance of the offers made by others.
Applications may vary greatly in their preferences and decision
processes. An auction permits greater degrees of heterogeneity
than simpler schemes.

The question we have to answer next is which auction
protocol to use. This is known in microeconomic theory as
a mechanism design problem [8]. A protocol, or mechanism,
consists of a set of rules that govern interactions, by which
agents (i.e., our applications) will come to an agreement.
It constraints the deals that can be made, as well as the
offers that are allowed. We argue that the auction protocol
we have designed [9] can be successfully applied in a mobile
setting, where the requirements listed in Section III-B must be
satisfied.

A. The Protocol

The rules of our auction are very simple: given a setting
with � agents that must make a collective choice from a set
of � possible alternatives, each agent submits a single sealed
bid for each element in � . The auctioneer collects the bids and
selects the alternative in � that maximises social welfare, that
is, the alternative with the highest sum of bids received. Each
agent then pays the auctioneer an amount of money that is
proportional to the bid they placed on the winning alternative.

In our scenario, the role of the auctioneer is played by the
middleware, which we assume is a trusted entity whose code
and behaviour cannot be interfered with. Applications are the
agents, and the good they are competing for is the execution
of the policy they value most, among a set of alternatives that
correspond to the policies that can be applied in a particular
context to deliver a service. As previously said, the aim of the
middleware is not to select the policy that received the highest
bid (i.e., the one that maximises the selling price), but, rather,
the policy that satisfies the largest number of applications
involved in the conflict. In our scenarios, in fact, applications
are participating in the delivery of the same service, rather than
competing for it (i.e., the service will be delivered to all of

6

them, not only to one or some of them). In these collaborative,
or at least compromise, scenarios, a solution that satisfies the
total benefit of all the applications is preferred to one that
maximises the revenue of a single one.

Our auction has been inspired by traditional sealed bid
auctions (e.g., first-price and second-price sealed bid auc-
tion [10]). Unlike ascending bid auctions, such as the standard
English auction [11], where the auctioneer, adopting a possibly
long iterative process, continuously raises the price of the
good until only one bidder is willing to meet the price called,
sealed bid auctions consist of a one-step bid that cuts down
the computation and communication costs when the auction
is distributed over space and time, as in our mobile setting.
This meets our requirement of simplicity. We will show in
Section IV-B how customisation is met by our auctioning
mechanism.

In the following, we formalise the steps of our auctioning
mechanism. We do not discuss here how coordination among
different middleware instances takes place; details about the
algorithm that implements this coordination can be found
in Section V-A. To avoid confusion between an application
(which may exist on different devices) and an application
instance (which runs on a particular device), we will identify
an application instance and the device it is executing on as
a ‘peer’. Peers are partners in the communication process.
We call ���� the set of all possible peers. Under these
assumptions, the auctioning process can be formalised as
follows.
Initialisation. As part of an initialisation process, for every
peer ������ � � ��� � �, a utility function �� � � � �

� that
represents the user’s goals (e.g., minimisation of consumption
of resources, maximisation of quality of service, etc.) can be
determined. Peers use their utility function to specify how
much they value the use of a policy �� � � during an auction,
that is, ��	��
 � ���� . Each peer is also assigned a quota
	� by the middleware. The quota 	� represents the maximum
amount of money that ����� can bid during a bidding process,
that is, the bid placed by peer ����� on policy �� is a number

��� � ������� � 	��.
Service Request. Whenever an application requires the
middleware to execute a service, a command like the one
illustrated below is issued:

����� ��� ���� ��������

�������� ��� ���� �������� � ����

being ���� � � the name of the requested service, and
�������� the set of peers involved in the service execution.

Assuming that service ���� requires the cooperation of
� � � peers, each peer (or, better, the middleware instance
operating on the device of the peer) computes � � as the set
of policies that the above running application instance � �

has associated to service ���� in its profile, and that can
be applied in the current context (i.e., according to current
resource availability). More formally, � � can be defined as
follows:

�� � � ������	����� �����
������������

� being the semantic function defined in Figure 22 in the
Appendix; ���� � ������� ������� a function that, given
a service name and a peer, returns the corresponding service
specification, and 	�� � ����� � a function that computes
the current execution environment of a peer.
Computation of the Solution Set. Middleware instances then
cooperate to compute the solution set � �, that is, the set of
policies that all peers involved in the execution of the service
have agreed upon:

� � �
��������������			������

 being the semantic function described in Figure 23 in the
Appendix.

If the cardinality of � � is zero, that is, the solution set is
empty, a conflict exists that cannot be solved, as peers do not
agree on a common policy to be applied; the conflict resolution
process is terminated with a failure and peers are notified. If
the cardinality is exactly �, there is an agreement on the policy
to apply (i.e., there is no conflict). Finally, if the cardinality
is greater than �, there is a conflict that can be resolved using
one of the policies in � �. In this case, the auctioning process
proceeds as below, to decide which of these policies should
be applied.
Computation of Bids. For every peer ����� participating
in the communication process, and for every agreed policy
�� � � �, � � ����, a bid
��� is computed, based on
the peer utility function �� and quota 	�. Unlike ‘human’
auctions, we make the assumption that all peers participating
in a bidding process bid a price, that is, they cannot refuse to
bid. Middleware instances of bidding peers exchange the bids
they have received, ending up with a merged set of tuples � �

specifying how much each peer values the use of each agreed
policy:

�� � ������� � � � � �
����������			�������

� being the semantic function shown in Figure 24 in the
Appendix.
Election of the Winner. From the set ��, middleware
instances participating in the conflict resolution process select
the winning policy ��� as the one with the highest sum of the
bids placed:

��� �� ������

� being the semantic function defined in Figure 25 in the
Appendix; as shown there, each peer also pays an amount
of money that is proportional to the ‘added’ benefit obtained
by applying the winning policy over the other peers. To
understand how the payment is split, let us consider three
peers �, � and �, who bid
� �
 �
� respectively on a
winning policy �. Applying � gives an equal benefit of
� to
each peer; moreover, � and � share an added benefit of

�
over �, and � enjoys an extra benefit equal to
�
 over
both � and �. Our payment scheme demands that �, � and �
pay �, 	

�
��, and 	

�
���	
�

�� respectively.
Note that, if the winning policy is the one that has been
valued most by all peers (i.e.,
� � ����
���,
 � ����
��,

� � ����
���), then no payment is demanded, as there was
no real conflict to be solved. Note also that, in case of intra-
profile conflicts, the payment is always zero, as the winning

7

policy is never ‘imposed’ on anyone, that is, there is no added
benefit over anyone. The rationale for this payment scheme
is that applications are not paying for the resources they use
when applying a policy, but, rather, for the (added) quality-of-
service level they get from it. We assume that ties are broken
by selecting a policy randomly (i.e., a �-way tie is decided
by flipping a ‘�-sided coin’, where each policy is chosen with
probability ���).

If a service ���� is requested which requires the coop-
eration of a set of peer ��������, then the whole conflict
resolution mechanism can be summarised as follows:

� � ����� � �
������� ���������� �� �� � ��
������������������

������������ ��

A service request may then produce one the following two
results:

� ������� ���������� � ����: service ���� is deliv-
ered using policy ���� (either because all peers agreed
on the policy, or because ���� was the policy selected
during a conflict resolution process);

� ������� ���������� � �: the service request fails as no
policy can be found that is both agreed on by all peers
and valid in the current context.

The auctioning mechanism has been described in the general
situation where there are different applications running on
different hosts (inter-profile conflict). � -on-� conflicts are
detected and solved in the same way as inter-profile conflicts.
However, as the application instances involved are running on
the same host (i.e., in our model, on the same middleware
instance), no communication overhead is required, and the
solution set � � can be computed locally. Intra-profile conflicts
can be considered a degeneration of inter-profile conflicts,
where the number � of bidders is �, and the solution set
coincides with �� (i.e., the set of policies that can be applied in
the current execution context, according to ����� application
profile). The auction proceeds as described above, selecting the
policy that maximises ����� utility, without communication
costs.

Once a conflict has been detected and resolved using the
auctioning mechanism presented above, no further action is
taken. The conflict cannot be removed as it is usually not
local to a profile but distributed among the profiles of different
peers. If the peers involved change, or if the context changes,
there may be no conflict at all. Also, we assume that each
auction is carried out in isolation: we cannot assume that next
time the same conflict arises, the winning policy will be the
same one, as the result depends on current peer quotas, utility
functions and application profiles. Therefore, each conflict
resolution process stands alone.

There are few questions that need to be answered about the
process described above; in particular, how is an utility func-
tion defined, and how is the quota managed by middleware?
We answer these questions in the following sections.

B. Utility Function

Whenever a conflict is detected, either inside a profile
(intra-profile conflict) or among various profiles (inter-profile

���
����
 ��� ����
�����

����
����� ��� ����
� ����
����� � ����
�

����
� ��� ��
��� ������

Fig. 7. Utility Function Abstract Syntax.

conflict), user goals, such as privacy of information for the
messaging service, must be taken into account. In other words,
users should be allowed to influence the conflict resolution
process operated by the middleware as they are the only ones
who know what their goals are at the moment, and how
different outcomes are valued.

Utility functions serve this purpose. A utility function � �

translates user goals with respect to peer ����� into a value
���� , that represents the price the user is currently willing to
pay to have policy �� applied, that is, to see its goals fulfilled.
The following holds:

���� � �� �� � ��� ��� � � �����

As in ‘human’ auctions, values cannot be negative; a value
���� � � means that policy �� is not relevant to peer �����,
that is, applying �� does not give any benefit to ����� (this
is a plausible ‘machine’ representation of a ‘human’ refuse to
bid).

Utility functions vary dynamically to reflect changes in the
user goals; however, the value they return is computed over
static policy specifications which estimate the consumption
of resources that applying the policy entails, and the benefits
it gives in terms of quality of service. If � � �� defines
the set of resource names that the middleware monitors, and
� � �� the set of benefits achieved by applying policies in
�, then a policy specification can be described as a domain
set ����� � 	�� � �� � !���!
, being !���! ���
���� � � � ������� an estimate of resource consumption/benefit
achieved which the policy developers compute before deliver-
ing the policy.

The abstract syntax of a utility function is given in Fig-
ure 7, where �
 ��� � 	� � �
 is a name that uniquely
identifies a resource or benefit inside a policy specification,
and "��#$� ��� ���� � � � ������� is a factor that rep-
resents the importance the user associates to a particular
resource/benefit (the higher the weight, the more important the
resource/benefit). Although we consider the issue of generating
weights that represent user needs as faithfully as possible a
matter of future research, we will give a flavour of how these
numbers can be obtained from users and directly used in our
system in Section V-B.

Whenever a peer ����� is involved in a bidding process, its
utility function is retrieved and used to find the peer utility
value ���� for each conflicting policy �� . The semantics of a
utility function is presented in Figure 8. As shown, each value
is normalised to vary in a range ��� ��, so that different bids
can be compared effectively, and money fairly redistributed
(see Section IV-C).

As stated before, while policy specifications are fixed, utility
function specifications change over time, as they have to reflect

8

� � ���
����
 � ������ �
�

� ������
� ���������
��

� � ������
���
��

	 � �����������
��

� ����
��� ���������� �
�
�
�����
�����

��
� � �
�
�������

���� � � ��� � �����

Fig. 8. Semantics of Utility Function. � � �� � 	
 � ����� �
�	�

is a function that, given a resource/benefit name � ����, and a policy
specification ��, fetches the
�	�
 associated to � ���� in �� (if the
utility function tries to retrieve a value for a resource/benefit that does not
appear in the policy specification, the returned value is). ��� is a function
that given a literal in ����� � � � �������, returns the corresponding integer
value in �������; ���� 	 ���� 	 ����� is the maximum
bid an application can place, being ����� the maximum number of
resources/benefits of interest to an application.

current user needs. This implies that the reflective mechanism
of our middleware has to allow dynamic modification of utility
function specifications. This allows our conflict resolution
scheme to fulfil our second requirement, that is, customisation.

Note that, to avoid incompatibility among the prices bid
during a conflict resolution process, utility functions are locked
at the beginning of an auction, and cannot be modified until
the auction finishes. Thus, applications cannot ‘cheat’ and
associate high bids to the policies they value most, while
bidding zero for the others, to increase the chances to have the
policy they value most finally applied, as this would require
applications to change the weights of their utility functions
during the auction.

C. Quota Allocation

When describing the rules of our mechanism (see Sec-
tion IV-A), we specified that each peer ����� is allowed to
bid a value
��� for policy �� , given that this value is lower
than its current quota 	�. We now explain how this quota is
managed.

Whenever an application instance �� is started, an initial
quota 	� � 	���� is awarded. Each time �� participates to
an auction, its quota is decreased by an amount equal to
%� � ��� ��, as defined in Figure 25 in the Appendix. � �’s
underlying middleware instance collects �� payments and
stores them in a wallet 		�
. We assume that there is no flow
of money from one middleware instance to another (i.e., each
application instance pays its underlying middleware instance).
Moreover, we assume that there is no explicit utility transfer
among applications (e.g., no money can be transfered to a peer
to compensate for a disadvantageous agreement).

Every � time units, each middleware instance redistributes
the money it has collected in its wallets 		�
, � � ��� ��, to the
various application instances ��, � � ��� ��. The amount of
money each application instance gets back is in direct relation
to the number of interactions it has been involved during the
last � time units, and in inverse relation to the amount of money
it bid. We define an interaction as a service request which
incorporates an inter-profile conflict (intra-profile conflicts are
excluded from the quota recharging as no flow of money
occurs).

In particular, if we indicate with ��	�
 the number of
interactions in which application instance �� was involved in
the last � time units, then the recharging process is carried out
as described below:

	� � 	� �

�
		�

		�

��	�

�
� 		�
 �

		�

��	�

being 		�
 the money currently stored by the middleware in
the wallet associated to ��, and 	� �� current quota.

This quota redistribution scheme discourages dictatorial
interactions: if an application instance bids very high in a
few interactions, ‘imposing’ its preferred policy over the
others, then only a very low amount of money is returned
during a recharging process. The only way to get money back
from the middleware is to participate in other interactions
in a more cooperative fashion (i.e., by bidding lower and
interacting more). For example, let us assume that at time ��,
two application instances �� and �� are started and awarded
the same quota 	� � �, � � ��� ��. During the following �
time units, they are involved in a number of interactions that
cost them altogether the same amount of money; however,
while �� bid aggressively, paying a lot of money in few
interactions, �� was more cooperative, paying low amounts in
many interactions. As a result, our quota redistribution scheme
returns money to �� faster than to �� (see Figure 9).

Time / Action �� �
�� �� �
��

�� / Start 3 0 3 0
�� / Bid 2.1 0.9 2.7 0.3
�� / Bid 1.2 1.8 2.4 0.6
�� / Bid 2.1 0.9
�� / Bid 1.8 1.2
�� / Bid 1.5 1.5
�� / Bid 1.2 1.8

�	 / Redistribution 2.1 0.9 2.7 0.3

Fig. 9. Example of Quota Redistribution (with �	
 �� � �).

The approach to quota redistribution that we have described
could be defined as ‘conservative’: at any time, an application
instance �� has got the same amount of money, although split
differently between its current quota 	� and the corresponding
middleware wallet 		�
. In other words:

		�
 � 	� � 	
��

being 	
�� a fixed amount that is the same for any application.
At time �� when an application instance �� is started, different
choices of 	���� and 		�
 are possible. In particular, any
assignment that complies with the following equations is
acceptable:

�& � ��� ��

�
	���� � & � 	
��

		�
 � 	� &
 � 	
��

Setting & � � favours newly started application instances,
while setting & � � favours applications that have been
executing for a long while. The differences among these
possibilities disappear while time passes. It is beyond the scope
of this paper to investigate the optimal choice for 	 ����, 	
��,
� and &.

9

This concludes the discussion about our auctioning ap-
proach to the conflict resolution problem. In the following
section, we illustrate how this mechanism can be instantiated
and used to solve conflicts.

D. Conference Application

In this Section, we present examples of intra- and inter-
profile conflicts that may occur in the conference application,
and show how our auctioning mechanism is used to resolve
them.

Intra-profile conflict: Talk Reminder

Let us assume that the talk reminder service can be delivered
using one of the following policies: a soundAlert policy,
a vibraAlert policy, and a silentAlert policy. Each
of these policies requires different amounts of resources to be
used (in particular, battery), and achieves a different quality of
service (in terms of focusing and privacy). The corresponding
policy specifications are shown in Figure 10.

soundAlert:{(battery,6),(privacy,1),(focus,8)}
vibraAlert:{(battery,10),(privacy,7),(focus,8)}
silentAlert:{(battery,1),(privacy,10),

(focus,2)}

Fig. 10. Policy Specifications.

Whenever a talk reminder has to be delivered, the ap-
plication profile is consulted to find out which policy to
apply. Let us assume that the application profile is the one
illustrated in Figure 11(a), and that the talk reminder service
is invoked when the user is attending a talk (i.e., location
= indoor), and battery is lower than ���, so that both
vibraAlert and silentAlert are enabled (intra-profile
conflict). Note that, although it could be argued that such a
conflict would not exist if the profile were properly written
(i.e., if a line containing battery > 15% were added to
the context of the vibraAlert policy), avoiding context
overlaps is not so easy. When the number of resources asso-
ciated to a context increases, chances of making mistakes and
of writing profiles with context overlaps increase quickly. As
already argued, a static conflict analysis would be unmanage-
able on portable devices, and therefore a dynamic solution is
needed. We now illustrate how our dynamic conflict resolution
mechanism works effectively to solve this conflict, assuming
that the utility function is the one illustrated in Figure 11 (b).
Computation of the solution set. First, the solution set � �

is computed; as only one peer is involved, � � coincides with
��:

����������	
����������� � ����������� ����	�������

Computation of bids. High weights associated to resources
in utility function specifications mean that the user aims at
sparing resources; however, policy specifications estimate the
amount of resources consumed, not spared. In order to give
higher scores (i.e., higher bid prices) to the policies that reduce
resource consumption, we therefore need to compute the value:

talkReminder
soundAlert

location = outdoor battery 2
vibraAlert privacy 10

location = indoor focus 10
silentAlert

location = indoor
battery < 15%

(a) (b)

Fig. 11. (a) Application Profile. (b) Utility Function. ����� aims at maximis-
ing privacy and focusing, without too much interest in battery consumption.

���� expected consumption. For example, if we assume
���� � ��, ���� � ��, and ����� � � (i.e., battery,
bandwidth, focusing, availability and privacy), then:

������	���������
 �
	�� ��
 � � � � �� � ! � ��

�� � �� � �
� ���

Assuming that the peer quota 	����� ' � (i.e., the bid is not
constrained by current quota, as each bid
��� � ��� ��), we
obtain:

�������������� ����	���������������� �

�	���������� ������ ���
� 	����	������� ������ ��� "
�

Election of the winner. As only one peer is involved in an
intra-profile conflict, maximising social welfare coincides with
maximising individual utility. The winning policy is the one
that ����� valued most and no quota adjustment is needed.

� ���������������� ����	������������������ � ���������

Inter-profile conflict: Messaging

Peers can exchange messages using one of the following
policies: a charMsg policy, a plainMsg policy, a com-
pressedMsg policy, and an encryptedMsg policy. Again,
each of these policies requires different amounts of resources
(in particular, battery and bandwidth), and achieves a different
quality of service (in terms of availability and privacy of the
message). The corresponding policy specifications are shown
in Figure 12.

Let us suppose that three peers �����, �����, and ����� are
in reach of each other and want to start a chat. In order to do
so, they have to agree on a common policy to be applied to
exchange messages. During the lifetime of the chat, the policy
used may change to adapt to new context configurations where
the currently used policy is no longer suitable. However, when
this happens, all the chatting peers must agree on the new
policy to use.

charMsg: {(battery,4),(bandwidth,10),
(availability,10)}

plainMsg: {(battery,3),(bandwidth,6),
(availability,7)}

compressedMsg: {(battery,5),(bandwidth,4),
(availability,5)}

encryptedMsg: {(battery,6),(bandwidth,7),
(availability,4),(privacy,10)}

Fig. 12. Policy Specifications.

10

% peer 1 % peer 3
messagingService messagingService

charMsg plainMsg
bandwidth > 70%

plainMsg compressedMsg
bandwidth < 70% bandwidth < 40%

compressedMsg encryptedMsg
bandwidth < 35% battery > 60%

encryptedMsg
battery > 50%

% peer 2
messagingService

plainMsg
battery < 50%

compressedMsg
bandwidth < 40%

Fig. 13. Application Profiles.

% peer 1 % peer 2 % peer 3
battery 4 battery 7 privacy 10
bandwidth 3 bandwidth 9
availability 10

Fig. 14. Utility Functions. ����� aims at maximising availability without
wasting resources; ����� aims at minimising resource consumption, and
����� aims at maximising privacy.

The peers’ application profiles are represented in Figure 13.
Note that ����� leaves the plainMsg policy always enabled:
this is a good way to reduce the risk of ending a conflict
resolution process with a failure because no agreed policy
could be found. However, this increases the risk of conflicts
and, consequently, the time used to resolve them (which is
anyway rather low, as it will be shown in Section V-A). It is
up to the application to decide which strategy is best.

Assuming that the utility functions are the ones shown in
Figure 14, and that the current execution context enables the
following sets of policies:

�� � �����	���� ���������
���� �	������
����
�� � �����	���� ���������
����
�� � �����	���� ���������
���� �	������
����

for peers �����, ����� and ����� respectively, then the conflict
resolution process proceeds as described below.
Computation of the solution set. First, the solution set � �,
that is, the set of commonly agreed policies is computed:

���������	����������������������������� � �� � �� � ��

� �����	���� ���������
����

Computation of bids. Assuming, as before, ���� � ��,
���� � ��, ����� � �, and that each peer has a quota
	����� ' �, we obtain:

��������	���� ���������
������������������������� �

�	����	���� ������ ����
� 	���������
���� ������ ��� "
�

	����	���� ������ ���
� 	���������
���� ������ ��� !
�

	����	���� ������ �
� 	���������
���� ������ �
 �

Election of the winner. Bids received for each policy in the
solution set are added, and the policy that maximises the sum
(i.e., social welfare) is selected.

����	��� ���������
���

����� 0.22 + 0.176 +
����� 0.17 + 0.178 +
����� 0 0

0.39 0.354

� �� ��������	���� ���������
��������������������������� �

����	���

Finally, each peer quota is adjusted in the following way:

	� � 	�
�	����	�	

� �	�	��
� �

�
	� � 	�

�	�	��
� �

�
	� � 	�

�
�

V. EVALUATION

In this section, we evaluate our approach in terms of
performance and usability.

A. Performance

The performance of CARISMA have been measured based
on our current implementation: the middleware has been
implemented in Java using jdk 1.4.1, while application pro-
files and utility functions have been encoded using the
eXtensible Markup Language (XML) (their grammar has
been defined in two associated XML Schema available at
http://www.cs.ucl.ac.uk/staff/l.capra/schema). We chose to use
XML as we believe this language may enhance context-
aware and user-driven interactions between middleware and
applications, supporting a representation of information that
can be both easily manipulated by machines, and readily
understood by humans. Also, XML related technologies, in
particular, DOM and XPath, and available XML parsers have
considerably reduced the development time. Communication
takes place via a simple message passing mechanism that
we have implemented. The middleware platform currently
requires only 110Kb of persistent storage, and less than 800Kb
of memory (without considering the memory required by the
Java Virtual Machine and XML parser).

We performed tests on Dell Latitude laptops equipped
with 128MB RAM, Intel Pentium II processors rated at
300MHz, and connected in an ad-hoc network using Cisco
Aironet 340 10Mbps wireless cards. The operating system
used was Microsoft’s Windows2000 and the Java Virtual
Machine version was 1.4.1. We believe these machines are
well-suited to estimate the performance of our middleware, as
they do not outperform the currently available portable devices
(e.g., the Sony Ericsson P800 mobile phone is equipped with
12Mb internal storage, plus external memory stick, and ARM9
200MHz processor; the HP iPAQ Pocket PC h5450 is equipped
with 64Mb RAM and Intel 400MHz processor; COMPAQ
Tablet PC TC1000 is already extremely powerful, with 256MB
RAM minimum and 1GHz processor).

In order to estimate the scalability of CARISMA in terms
of the number of devices involved in the delivery of a service,

11

the number of (possibly conflicting) policies associated to
each service, the number of contexts for each policy, and the
number of resources in each context, we have implemented a
benchmark that allowed us to tune each of these parameters
independently. The charts shown in this section represent the
average of the results obtained over 20 service requests.

In the remainder of this section, we first consider a simple
local service, i.e., a service that involves a single device. In this
simple scenario, we illustrate the basic overheads introduced
by reflection, by context-awareness while varying number of
contexts and resources associated to each policy, and by the
conflict resolution mechanism. We then move to a distributed
setting and we analyse the performance of CARISMA while
varying the number of devices involved in a service request.

1) Impact of Reflection: Figure 15 illustrates the overhead
introduced by reflection over a basic mechanism where a
service is statically associated to a policy. This lower bound is
represented in the picture by the intersection of the curve with
the Y axis. As the picture shows, the overhead (in millisec-
onds) is more or less linear in the number of policies associated
to the service, and is kept below 1 second even when 10
policies are associated to the same service. This overhead
includes also the evaluation of a simple context configuration
made of one context with one resource associated to each
policy (these associations are necessary to avoid conflicts).

0

400

800

1200

1600

0 5 10 15 20

N. of Policies

m
s.

Fig. 15. Impact of Reflection.

2) Impact of Context-Awareness: fixing the maximum num-
ber of policies associated to a service to 10, Figure 16 shows
the impact of context-awareness on performance. We assume
here that, whenever a service is invoked, the current value
of each resource is already available (i.e., the middleware
is probing the physical sensors at regular intervals to keep
updated context information). The performance results we are
discussing do not consider the time necessary to initialise a
sensor and to process the information gathered through it; we
believe this approach is plausible, as sensors may greatly vary
in nature, and therefore may introduce overheads of different
orders of magnitude (e.g., knowing the amount of battery left
requires much less time than gathering and processing location
information).

As shown, managing profiles with ten or more policies,
each with five or more contexts associated, and ten or more
resources for each of these contexts, represents a scalability
limit in the performance of CARISMA. This is due to the fact
that the number of comparisons between the current context
and the associations encoded in the profile grows exponentially
with the number of contexts and resources. In our experience
with the conference application, however, this scalability limit

0

1000

2000

3000

4000

5000

0 2 4 6 8 10

N. of Policies

m
s.

1 context, 1 resource

3 contexts, 5 resources

5 contexts, 10 resources

Fig. 16. Impact of Context-awareness.

was never reached, as having five policies associated to three
contexts with five resources each, already represented the
maximum level of adaptation we needed (i.e., the worst-case
scenario); in this case, the average amount of time to request
a local service is still below one second.

3) Impact of Conflicts: as the following two figures show,
the conflict resolution process has a minor impact on the
performance of CARISMA. First (see Figure 17), the number
of utility function parameters does not influence the perfor-
mance of a service request at all. Also, this chart depicts
the performance of a local service request where no context
is associated to the policies (i.e., they are always enabled);
comparing this chart with the one shown in Figure 15, we
can conclude that the conflict resolution mechanism introduces
a much lower overhead than the simplest case of context-
awareness. In fact, it takes about 900ms. to determine which
policy to apply out of ten, in case a very simple, mutually
exclusive (i.e., no conflict) context is provided (one context
with one resource), while it takes less than 400ms. in case no
context is provided and the conflict resolution procedure has
to be executed.

0

100

200

300

400

500

0 5 10 15 20

Utility Function Parameters

m
s.

2 conflicting policies

5 conflicting policies

10 conflicting policies

Fig. 17. Impact of Utility Function Parameters.

0

500

1000

1500

2000

2500

0 5 10 15 20

N. of Policies

m
s. Without conflicts

With conflicts

Fig. 18. Impact of Conflict Resolution Mechanism.

12

Second, the conflict resolution mechanism adds a negligible
overhead over the standard mechanism (inclusive of context-
awareness), as depicted in Figure 18. In case each policy is
associated with the same number of contexts and resources,
the overhead introduced by the conflicts resolution mechanism
is almost constant and in the order of 200ms.

We can conclude that a good strategy in developing applica-
tions on top of CARISMA is to associate only minimal context
configurations to the policies, and have the auction mechanism
solve potential conflicts.

4) Impact of Distribution: the last chart shows the perfor-
mance of CARISMA in answering a service request for two
plausible profile configurations, while varying the number of
devices involved in the delivery of the service. These results
have been computed considering an implementation of the
auction protocol that is based on the 3-step communication
protocol shown in Figure 19.

Host nHost 2

Host n−1Host 3

Host 1

Step 1: service request

. . .

Step 2: communication of enabled policies

Step 3: communication of winning policy

Local evaluation of context

Fig. 19. Communication Protocol.

This protocol tries to maximise performance by parallelising
the context evaluation step among the � peers involved in a
service execution. Whenever an application running on Host
� needs a service that requires the cooperation of � �
other applications running on as many hosts, these steps are
followed.
Step 1: first, Host � sends out a service request message
to each of the � � peers involved in the service execution.
At this point, all the � peers evaluate their local context in
parallel, and find out the locally enabled policies (i.e., the sets
��, for � � ��� ��). Moreover, although no conflict has been
detected yet, they compute a bid for each of these policies.
Step 2: the � � peers communicate their own � � and
corresponding bids back to the requesting host, which now
computes the solution set � �. If no conflict is found, the pre-
computation of the bids was a waste of time and resources,
but if, on the contrary, a conflict is detected, two additional
communication steps are saved (i.e., to ask the � � peers to
bid for the policies in � �, and to communicate these bids back
to the requesting host). As the time taken by the computation
of the bids is negligible (i.e., few milliseconds), compared to
the time taken by two additional communication steps, the
pre-computation proves to be worthwhile.
Step 3: once the winning policy has been selected, and the
payments have been computed, the requesting host sends this
information to the � � participating peers, and the service
can be finally delivered.

Individual failures of participating peers, taking place during
the protocol execution, do not compromise its success, as long

0

1000

2000

3000

4000

5000

2 3 4 5 6 7

N. of Devices

m
s.

3 policies, 2
conflicts, 1
context, 1
resource

5 policies, 3
conflicts, 3
contexts, 5
resources

Fig. 20. Impact of Conflicts in a Distributed Setting.

as there are at least � � � � peers connected until the end
of the process (the minimum number of connected peers, , is
application dependent). However, if the requesting peer fails,
the entire service request is aborted.

As shown in Figure 20, the overhead tends to be con-
stant, and does not increase considerably while increasing
the number of devices involved. The results shown here do
not consider peer failures; in case failures are taken into
account, the overhead depends on the timeout values used
before acknowledging a peer is no more in reach.

B. Usability

To estimate the usability of our middleware, we have
assigned a student the task of implementing the conference
application on top of CARISMA. From the student’s report, it
emerged that the most difficult task was to decide which non-
functional parameters the user could tune, and how to map
them into application profiles, while using the abstractions and
mechanisms provided by CARISMA turned out to be rather
straightforward.

The student decided to allow the end-user of the system
to tune the importance he/she assigned to both non-functional
requirements (i.e., availability of information, accuracy and
privacy), and to local resources (i.e., memory, battery and
bandwidth), by means of the customisation windows illustrated
in Figure 21. The effort required from the end-user of the
system was rather limited: when his/her preferences were
changing, all he/she had to do was to input the new preferences
through these windows.

Fig. 21. Conference Application Customisation.

Based on these preferences, the student implemented a
synthesising algorithm to write both application profiles and

13

utility functions. Application profiles were encoding associa-
tions with 2/3 policies per service, each with 1/2 contexts made
of 2/3 resources. Utility functions simply listed the importance
users assigned to customisable parameters (e.g., in the picture
above, memory=4, battery=9, bandwidth=0, avail-
ability=8, accuracy=3, privacy=0).

Estimating the end-user efforts in teaching the system to
behave according to his/her own preferences, strongly depends
on the level of adaptation the application permits: the higher
the number of parameters that are subject to customisation, the
finer the level of adaptation the system may achieve. However,
this would have an impact on the amount of human effort
required, as well as on the complexity of the synthesising
algorithm that application engineers have to come up with.
Note that these issues are not intrinsic in our middleware
model, but apply, in general, to scenarios where adaptation
to changing context and user requirements is needed; in
developing context-aware applications, therefore, granularity
of adaptation has to be traded against human effort. Further
research is needed in this direction to estimate where the
equilibrium lies.

VI. RELATED WORK

Providing a detailed review of the state of the art in the
area of context-awareness, reflection, and mobile computing
is beyond the scope of this paper. A critical literature review
in the area of reflection and context-awareness (and, more
generally, in middleware for mobile computing), can be found
in [12]. In this paper, we compare our work with what various
research communities have done, as far as conflict resolution
is concerned.

The operating systems community has studied the issue of
conflicts in a distributed environment, where conflicts mani-
fest themselves as processes competing for shared resources.
Microeconomic techniques, and auctions in particular, have
been explored; in [13], a market-like bidding mechanism is
described which assigns tasks to processors that have given
the lowest estimated completion time; similar techniques have
been used to manage network traffic [14] and allocation of
storage space [15]. We have demonstrated that game theory
can also be successfully used to resolve QoS conflicts that
arise in the mobile setting; however, the nature of conflicts
is fundamentally different, thus requiring different conflict
resolution algorithms. In particular, resource conflicts hap-
pening at the operating system level represent competitive
situations where only one competitor obtains the resources,
leaving all the others without them. In our case, instead,
collaboration characterises the nature of the auction better:
peers participating in the delivery of a service will all get the
good (the delivery of the service), but with varying degrees
of satisfaction. Traditional auctions cannot be applied in this
setting, and we had to come up with a novel mechanism to
deal with these conflicts.

Despite the extensive research that has been carried out
within the mobile middleware community, the issue of QoS
conflicts has attracted little attention. On one hand, many
systems do not support dynamic adaptation of middleware

behaviour, and thus they avoid the problem of conflicts a
priori. On the other hand, systems which exploit reflection to
improve flexibility and allow dynamic reconfigurability of the
middleware [16][17] generally target a stationary distributed
environment, where context changes (and, consequently, adap-
tation of middleware behaviour) are much less frequent than
in a mobile setting, so that the problem of conflicts is less
pressing. Data conflicts have been investigated more exten-
sively instead: in order to maximise data availability in mobile
settings, where sudden disconnections may happen frequently,
even for long periods of time, systems such as Coda [18],
Bayou [19] and Xmiddle [20] give users access to replicas.
They differ in the way they ensure that replicas move towards
eventual consistency, that is, in the mechanisms they provide
to detect and remove conflicts that naturally arise in mobile
systems. Data conflicts, however, are fundamentally different
from the QoS conflicts we treat, and therefore these solutions
can hardly be applied; in particular, inter-profile conflicts are
not intrinsic in any profile, but manifest themselves only in
relation to (some) other profiles, and in particular contexts, and
therefore cannot be removed, but only dynamically solved.

The software engineering community has investigated
the issue of conflicts too. Software development environ-
ments [21][22] have devised mechanisms for specifying con-
sistency constraints between artifacts. They are able to detect
static violations of these constraints and resolve them automat-
ically (e.g., by propagating changes to dependent documents).
Inconsistencies are often found in requirements documents, in-
dicating conflicts between the different stakeholders involved.
Requirements management methods and tools therefore in-
clude inconsistency detection and resolution mechanisms. The
KAOS method [23] uses a goal-oriented approach to de-
compose requirements and formalises them using a temporal
logic. Conflicts are detected by reasoning about the temporal
logic formulae and conflict resolution strategies [24] can be
applied so that requirement conflicts are not come down to
design. Other requirements engineering approaches [25] leave
inconsistencies in specifications and use an appropriate logic to
continue reasoning, even in the presence of an inconsistency.
These approaches, however, are of limited use in a mobile
setting where the nature of conflicts is such that they cannot
be detected statically at the time an application is designed but,
instead, they can only be detected and resolved at run-time.
Also, they must be resolved, otherwise applications cannot
execute.

Our work is more closely related to approaches that monitor
requirements and assumptions during the execution of systems.
Fickas and Feather’s approach towards requirements monitor-
ing [26] uses a Formal Language for Expressing Assumptions
(FLEA). FLEA is supported by a CLISP-based run-time en-
vironment, which can alert requirement violations to the user.
For mobile systems, however, this is insufficient and a more
proactive approach to resolving conflicts is required. Robinson
and Pawlowski [27] have developed a so-called “requirements
dialog meta-model”, which supports not only the definition and
monitoring of goals, but also the re-establishment of a dialog
goal in case of a goal failure. Goal monitoring is performed
actively, so that violations are detected immediately; however,

14

this requires a consumption of resources that hand-held devices
cannot bear.

In the Distributed Artificial Intelligence (DAI) community,
game theory [7] has been extensively applied to treat nego-
tiation issues. Negotiation mechanisms have been used both
to assign tasks to agents, to allocate resources, and to decide
which problem solving tasks to undertake (e.g., [28] [29]).
These scenarios typically involve a group of agents operating
in a shared environment. Each agent has its own private goal;
a negotiation process is put in place that, through a sequence
of offers and counter-offers, explores the chance for agents of
achieving their (possibly conflicting) goals, at the lowest cost.
Despite similarities with our scenario, there are a number of
assumptions that differentiate our work from previous results
obtained in the DAI community. In particular, in DAI the
quality of the result is valued much more than the cost of
achieving it; as a consequence, negotiation mechanisms are
usually iterative processes which carry on until an (optimal)
agreement is reached. In a mobile setting, instead, resource
constraints call for simple conflict resolution mechanisms that
do not waste (scarce) resources. Moreover, the nature of goals
is fundamentally different. In DAI, a goal can be seen as a task
composed of atomic operations that the negotiation mechanism
is able to assign to different agents; in our setting, goals are
rather indivisible units that suggest the quality of service levels
that applications are wishing to achieve to the middleware.

Also relevant to our work is the research on quality of
service provision in a mobile computing environment [30].
QoS requirements are defined by all applications and a ne-
gotiation mechanism is put in place to reach an agreement
between all parties; as a result of context changes, a dynamic
renegotiation of the contract may be necessary. The approaches
we have analysed usually target a specific domain (e.g., multi-
media applications over broadband cellular networks), mainly
focusing on bandwidth allocation [31]. Moreover, applications
have a rather limited way of influencing the policies that are
chosen to meet QoS requirements. Our middleware aims at
being general and uses reflection to give applications the power
to influence the way adaptation is achieved. This may lead
to disagreements among applications to reach the quality-of-
service level they wish.

VII. CONCLUSION AND FUTURE WORK

The increasing popularity of portable devices and recent
advances in wireless networking technologies are facilitating
the engineering of new classes of applications, which present
challenging problems to designers. To accommodate the new
requirements of mobility, and, in particular, the need for
context-awareness and adaptation, middleware platforms for
mobile computing must be capable of both deployment-time
configurability and run-time reconfigurability.

In this paper we have described CARISMA, a mobile
computing middleware that exploits reflective techniques to
enable mobile application designers to address these re-
quirements. Besides enabling dynamic adaptation to context,
reflection may also cause conflicts. We have demonstrated
how CARISMA uses micro-economic techniques effectively

in order to solve conflicts that arise in the mobile setting. In
particular, we have modelled a mobile distributed system as an
economy, where applications compete to have a common ser-
vice delivered according to their preferred quality-of-service
level; in this economy, the middleware plays the role of an
auctioneer, collecting bids from applications and selecting the
policy that maximises social welfare. This approach is partic-
ularly suited in the mobile setting as it meets the requirements
of dynamicity, simplicity and customisability that are typical
of this environment.

Future improvements and extensions of CARISMA span
towards different directions. Despite being a very powerful
means, reflection enables adaptability and flexibility only in
those contexts that middleware designers have considered
likely to be unstable at design time. However, in a mobile
ad-hoc setting, mobile hosts cannot forecast all the possible
contexts they are going to encounter, and therefore which pro-
tocols (i.e., behaviours) they are going to need; new behaviours
may be delivered from time to time to cope with unforeseen
context configurations and new application needs. Moreover,
only a minimum set of behaviours can be stored on a device, so
to avoid wasting memory. A future direction of research is to
combine reflection with mobile code techniques to overcome
this limitation, thus allowing applications to download new
protocols either from a service provider or from other peers
in reach only when needed [32].

To accommodate dynamicity requirements, services and
policies are installed and uninstalled on the fly; moreover,
different application needs result in different system configu-
rations, that vary over time. The changing interactions among
distributed services and policies may alter the semantics of
the applications built on top of our reflective middleware.
The development of safe customisable middleware becomes,
therefore, an issue. A first step towards the definition of
a formal semantics for specifying and reasoning about the
properties of, and interactions among, middleware components
can be found in [33]. These principles have been used, for
example, in [34] to manage changes in large-scale distributed
systems while ensuring application QoS requirements. The
principles they use are based on a two-level architecture where
the application, at the base level, interacts with the middleware,
at the meta-level, via middleware-defined core services that
are then used to initiate other activities. The similarity of this
approach with our architecture makes us think that similar
principles could be investigated to develop a formal semantics
of composition within our reflective middleware framework.

Another direction of research that is worth mentioning
is service discovery. Traditional naming and trading service
discovery techniques developed for fixed distributed systems
cannot be successfully applied in mobile settings, where
intermittent rather than continuous network connection is the
norm. However, service discovery for mobile settings has not
yet gained significant attention. Two notable exceptions are
the Jini specification [35] and the work by Handorean and
Roman [36]. A disadvantage common to both approaches is
that they do not take quality of service requirements into
account when deciding which service to use. We believe
that QoS-aware service discovery would fit naturally in our

15

framework, where application needs are made explicit and
used to decide how a service should be delivered in current
context. Currently, these needs are taken into account only
locally; a future direction of research would be to make use
of this information to discover services available in an entire
ad-hoc network that would deliver the user the best QoS,
according to current user-specific requirements.

Last but not least, a study that puts together middleware
practitioners, HCI experts and requirement elicitation experts
is necessary to estimate the amount of work required from
application engineers to develop context-aware applications,
and from end-users to learn how to use these systems.

ACKNOWLEDGEMENTS

The authors would like to thank Zuhlke Engineering Ltd. for
supporting Licia Capra; Luca Zanolin, Ken Binmore and Pedro
Rey-Biel for their cooperation and insights into the microeco-
nomic aspects of the paper; finally, we thank the anonymous
TSE reviewers for their detailed and helpful comments on
previous versions of this article.

REFERENCES

[1] Sun Microsystem, Inc., “CLDC and the K Virtual Machine (KVM),”
http://java.sun.com/products/cldc/, 2000.

[2] B. Schilit, N. Adams, and R. Want, “Context-Aware Computing
Applications,” in Proc. of the Workshop on Mobile Computing Systems
and Applications, Santa Cruz, CA, Dec. 1994, pp. 85–90.

[3] ISO 10746-1, “Open Distributed Processing – Reference model,” Tech.
Rep., International Standardization Organization, 1998.

[4] W. Emmerich, Engineering Distributed Objects, John Wiley & Sons,
Apr. 2000.

[5] B.C. Smith, “Reflection and Semantics in a Procedural Programming
Language,” PhD thesis, MIT, Jan. 1982.

[6] L. Capra, W. Emmerich, and C. Mascolo, “Reflective Middleware
Solutions for Context-Aware Applications,” in Proc. of REFLECTION
2001. The Third International Conference on Metalevel Architectures
and Separation of Crosscutting Concerns, Kyoto, Japan, Sept. 2001,
vol. 2192 of LNCS, pp. 126–133.

[7] K. Binmore, Fun and Games: a text on game theory, Lexington: D.C.
Heath, 1992.

[8] A. Mas-Colell, M. D. Whinston, and J. R. Green, Microeconomic
Theory, Oxford University Press, 1995.

[9] L. Capra, W. Emmerich, and C. Mascolo, “A Micro-Economic Approach
to Conflict Resolution in Mobile Computing,” in Proceedings of the 10th
International Symposium on the Foundations of Software Engineering
(FSE-10), Charleston, South Carolina, USA, Nov. 2002, pp. 31–40,
ACM Press.

[10] William Vickrey, “Counterspeculation, auctions and competitive sealed
tenders,” Journal of Finance, vol. 16, no. 1, pp. 8–37, 1961.

[11] Paul Milgrom, “Auctions and Bidding: A Primer,” Journal of Economic
Perspectives, vol. 3, no. 3, pp. 3–22, 1989.

[12] Cecilia Mascolo, Licia Capra, and Wolfgang Emmerich, “Middleware
for Mobile Computing (A Survey) ,” in Networking 2002 Tutorial
Papers. 2002, vol. 2497 of LNCS, pp. 20–58, Springer.

[13] T. W. Malone, Richard E. Fikes, K. R. Grant, and M. T. Howard,
“Enterprise: A market-like task scheduler for distributed computing
environments,” in The Ecology of Computation, Bernardo A. Huberman,
Ed., pp. 177–205. North-Holland, Amsterdam, 1988.

[14] J. Sairamesh, D. Ferguson, and Y. Yemini, “An Approach to Pricing,
Optimal Allocation and Quality of Service Provisioning in High-speed
Packet Networks,” in Proc. of Conference on Computer Communica-
tions, Boston, Massachusetts, Apr. 1995.

[15] D. Ferguson, C. Nikolaou, and Y. Yemini, “An Economy for Managing
Replicated Data in Autonomous Decentralised Systems,” in Proc. of
International Symposium on Autonomous and Decentralised Systems,
Los Alamitos, CA, 1993, pp. 367–375, IEEE Computer Society Press.

[16] T. Ledoux, “OpenCorba: a Reflective Open Broker,” in Reflection’99,
Saint-Malo, France, 1999, vol. 1616 of LNCS, pp. 197–214, Springer.

[17] G.S. Blair, G. Coulson, P. Robin, and M. Papathomas, “An Architecture
for Next Generation Middleware,” in Proc. of Middleware ’98. Sept.
1998, LNCS, pp. 191–206, Springer Verlag.

[18] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E. Siegel, and
D. Steere, “Coda: A Highly Available File System for a Distributed
Workstation Environment,” IEEE Transactions on Computers, vol. 39,
no. 4, pp. 447–459, Apr. 1990.

[19] D.B. Terry, M.M. Theimer, K. Petersen, A.J. Demers, M.J. Spreitzer,
and C.H. Hauser, “Managing Update Conflicts in Bayou, a Weakly
Connected Replicated Storage System,” in Proceedings of the 15th
ACM Symposium on Operating Systems Principles (SOSP-15), Cooper
Mountain, Colorado, Aug. 1995, pp. 172–183.

[20] C. Mascolo, L. Capra, S. Zachariadis, and W. Emmerich, “XMIDDLE:
A Data-Sharing Middleware for Mobile Computing,” Int. Journal on
Personal and Wireless Communications, vol. 21, no. 1, pp. 77–103, April
2002.

[21] G. Engels, C. Lewerentz, M. Nagl, W. Schäfer, and A. Schürr, “Building
Integrated Software Development Environments — Part 1: Tool Speci-
fication,” ACM Trans. on Software Engineering and Methodology, vol.
1, no. 2, pp. 135–167, 1992.

[22] W. Emmerich, “Tool Specification with GTSL,” in Proc. of the ���

Int. Workshop on Software Specification and Design, Schloss Velen,
Germany. 1996, pp. 26–35, IEEE Computer Society Press.

[23] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-Directed
Requirements Acquisition,” Science of Computer Programming, vol.
20, pp. 3–50, 1993.

[24] A. van Lamsweerde, R. Darimont, and E. Letier, “Managing Conflicts
in Goal-Driven Requirements Engineering,” IEEE Transactions on
Software Engineering, vol. 24, no. 11, pp. 908–926, Nov. 1998.

[25] Anthony Hunter and Bashar Nuseibeh, “Managing Inconsistent Speci-
fications: Reasoning, Analysis, and Action,” ACM Trans. on Software
Engineering and Methodology, vol. 7, no. 4, pp. 335–367, Oct. 1998.

[26] S. Fickas and M. Feather, “Requirements Monitoring in Dynamic Envi-
ronments,” in Proc. of the ��� IEEE Int. Symposium on Requirements
Engineering, York. 1995, pp. 140–147, IEEE Computer Society Press.

[27] William N. Robinson and Suzanne D. Pawlowski, “Managing re-
quirements inconsistency with development goal monitors,” IEEE
Transactions on Software Engineering, vol. 25, no. 6, pp. 816–835, 1999.

[28] G. Zlotkin and J. S. Rosenschein, “Mechanisms for Automated Nego-
tiation in State Oriented Domains,” Journal of Artificial Intelligence
Research, vol. 5, pp. 163–238, Oct. 1996.

[29] G. Zlotkin and J. S. Rosenschein, “A Domain Theory for Task Oriented
negotiation,” in Proceedings of the Thirteenth International Joint
Conference on Artificial Intelligence, Chambery, France, Aug. 1993, pp.
416–422.

[30] Dan Chalmers and Morris Sloman, “A Survey of Quality of Service in
Mobile Computing Environments,” IEEE Communications Surveys, vol.
2, no. 2, 1999.

[31] A. Campbell, “Mobiware: Qos-aware middleware for mobile multimedia
communications,” in 7th IFIP International Conference on High
Performance Networking, White Plains, NY, Apr. 1997.

[32] S. Zachariadis, C. Mascolo, and W. Emmerich, “Exploiting Logical
Mobility in Mobile Computing Middleware,” in Proceedings of IEEE
Workshop on Mobile Team Work. Co-located with ICDCS02. , July 2002.

[33] N. Venkatasubramanian and C. Talcott, “Meta-architectures for resource
management in open distributed systems,” in Proceedings of the ACM
Symposium on Principles of Distributed Computing, Ottawa, Ontario,
Canada, Aug. 1995, pp. 144–153, ACM Press.

[34] N. Venkatasubramanian, M. Deshpande, S. Mahopatra, S. Gutierrez-
Nolasco, and J. Wickramasuriya, “Design and implementation of a
Composable Reflective Middleware Framework,” in Proceedings of the
IEEE International Conference on Distributed Computer Systems, Mesa,
AZ, Apr. 2001, pp. 644–653, IEEE Computer Society Press.

[35] K. Arnold, B. O’Sullivan, R. W. Scheifler, J. Waldo, and A. Wollrath,
The Jini[tm] Specification, Addison-Wesley, 1999.

[36] R. Handorean and G.-C. Roman, “Service Provision in Ad Hoc
Networks,” in Coordination 2002. Apr. 2002, Springer.

APPENDIX

SEMANTICS

16

� � ������� � �� �
��

� ���
 ������
�

� � ��������
�

� ������� ������
�

� � ���������
�
� � ��������

�

� ��
 �������� � �
	 �� ��������������� �

� �� ��������������� � �

����� � ����� � �� ����

���������
���� �������
�

� ���������
������
�
 ��������������

�

���������
������
�

� ��������������
�

��������������� �������
�

� �����������������
�
� ��������������

�

��������
 �
 �������
�

� ����

�
 �
 ������ ��

�������	��
�

�

Fig. 22. Computation of Locally Enabled Policies. Given a service specifi-
cation ���	��, the semantic function � evaluates, in current context � � �,
the set of locally enabled policies. � � ��� � �
 represents the set of all
possible execution contexts (e.g, ��������� �
� ��������� �
�); �	�
 is a
boolean function that returns ���� if the value of resource �� in the execution
context � is among the values obtained by applying the operator �� to 	����
(e.g., �	�
��������� ���������� ��� ��
� ��������� �
�
 �).

� � ! � �
������ �
��

����
������� �	
��� � ����
�������� � ����
����	
���
����
�������� � � ������
�
 ���������
�����

Fig. 23. Computation of the Solution Set. Given a service name ��, the
semantic function � computes the set of policies that all peers involved in the
service delivery agree.

� � �
��� �
����� � �
�� ����� ���

����� " " " �	������� �	
��� � ����� " " " �	�������� �

����� " " " �	����	
���

����� " " " �	�������� �

��

���
 ���

���#���� ������	�	

����	����	
��� � �
 ��	 �� �������

��������	
��� � � �� ��������

Fig. 24. Computation of Bids. Given the set of agreed policies, and the list
of participating peers, the semantic function � associates a bid to each couple
���
��� ����
.

Licia Capra received the “Laurea” cum laude de-
gree (i.e., the equivalent of an MSc) in Computer
Science from the University of Bologna,Italy (2000).
During the summer 2000, she has been working as
a research assistant at the Department of Computer
Science, University College London, researching
on the integrity of distributed documents. Since
September 2000 she is a PhD student in the same de-
partment. Her research focuses on mobile distributed
systems, with a special emphasis on reflective mid-
dleware and game theory techniques to support

context-aware applications. More details on her profile and publications at
http://www.cs.ucl.ac.uk/staff/l.capra/

� � �
�� ����� �
�� � �

����
 ���
 �
��

�� � ��
� $ � �� ��	��
�

� � � � �%�
 ���
 �
��

�� � ��
� $ � �� ��	

�

��

�� %�
� ���
 �
��� �

��������

��

�� %�
 ���
 �
��

� ��
#��
�� �
 #
� �� � ��
�

����
 ��	�� � �� �������

������ � & �� ��������

�
 �

������������
�����������

� �� �' � ��
�
%�
� ���� ����� � �������� %�
 ���� ����

�
������������������	������
�����
���
������������������� �������������������

�������������������� ����������������������������� ��������

��
��� � ����
�� � � ��
�	 ���������

Fig. 25. Election of the Winning Policy. �
���� ��� � � � � ��
 � �
 projects
a tuple onto the ��� value; ���� � ��� � � � � ��� � � computes the cardinality
of a set; �����
 retrieves the quota of the middleware on top of which
peer ����
 is executing; ������� �� ��
 � ��� � �� ��
 �
 both increases
the middleware quota ��, and decreases the peer quota �� , of the specified
amount �.

Wolfgang Emmerich received the Doctor of Sci-
ence degree in Computer Science from University
of Paderborn, Germany in 1995 and the Diploma
in Informatics from the University of Dortmund,
Germany. He was subsequently a visiting scholar at
the SVRC at University of Queensland in Brisbane,
Australia and a Lecturer at City University in Lon-
don, UK. In 1997, he joined the Dept. of Computer
Science at University College London, UK, where he
is a Reader in Distributed Software Engineering and
Head of the Software Systems Engineering Research

Group. Wolfgang is a Chartered Engineer, a Member of the IEE, the ACM
and the IEEE Computer Society. Wolfgang was co-chair of the 17th IEEE
Conference on Automated Software Engineering. His research interests are
in developing software engineering principles, methods and tools for the
systematic construction of distributed and mobile systems.

Cecilia Mascolo is a Lecturer in the Department
of Computer Science at University College London.
She holds the equivalent of an MSc in Computer
Science and a PhD also in Computer Science from
University of Bologna (Italy). During her PhD, she
spent one year as a visiting academic at Washington
University in St. Louis (MO, USA) working on fine-
grained mobile systems research. She has published
extensively in the areas of software engineering,
code mobility, mobile computing, and middleware.
Cecilia is currently working on projects related to

software architectures for ad-hoc networks, reflection based middleware for
context-awareness, language engineering for programmable networks, and
mobile peer-to-peer networks. Cecilia is Investigator of a project on the
use of mobile code for mobile computing middleware, and in a project
on language engineering for programmable networks. She is also Principal
Investigator of a Teaching Company Scheme project on mobile computing
middleware for health care. Cecilia is a member of the ACM and of the
IEEE Computer Society. More details on her profile and publications at
http://www.cs.ucl.ac.uk/staff/c.mascolo/

