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Abstract

In recent years there has been an explosion in the availability of data sets about
colocation between individuals and connectivity with specific network infrastruc-
ture access points, from which user location can be inferred. These traces are
usually collected through mobile devices equipped with short-range radio inter-
faces, such as Bluetooth. Their potential is enormous as user movement data can
be mapped onto the geographical space and the social interactions of individuals
can be extrapolated from the colocation data. Quite interestingly, some of these
data sets also contain a description of user profiles, such asthe interests of the
person, his/her age and gender and so on.
In this paper we show that mobility and colocation information (i.e., social inter-
actions) can be used to infer user interests by applying standard machine learn-
ing techniques. We evaluate a supervised and a semi-supervised technique using
two different data sets containing information of interactions amongst people at
conferences. We assume different degrees of available information for the infer-
ence problem and show that we are able to predict people’s interests with good
accuracy also when only a small amount of information about user interests is
available. While correlation of user interests with movement and proximity has
already been investigated in social network research, thisis the first work that uses
machine learning to show this quantitatively.

1 Introduction

While social network studies have established the correlation between human movement and prox-
imity with human interests [17], no quantitative large studies have ever been attempted to consolidate
the credibility of this theory. With the soaring availability of data sets containing information about
people’s contacts and movements, empirical studies of human behaviour, social interaction and mo-
bility have become possible [5, 7]. The available data sets [13] contain traces of contacts between
mobile devices carried by humans, identifying the interactions between devices and the fixed in-
frastructure, thus giving the location of the individuals.Sometimes, these data sets also contain
information about the user interests, gender, membership,institutions and so on, allowing for an
analysis of the relationships between people social interactions and their (common) interests.

In this paper we investigate the problem of inferringuser interests from information about their ge-
ographical location and social interaction over time, by means of supervised and semi-supervised
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machine learning techniques. The goal of this work is not to propose new machine learning tech-
niques but to adapt existing ones to this novel application domain. First, we assume that full knowl-
edge about user interests is available and we apply thek nearest neighbours [8] classification al-
gorithm to infer them, proving that a priori knowledge aboutthe movements and the interests of a
population can be used to infer the interests of a generic user of that population given his/her move-
ment patterns. More specifically, our approach is based on the exploitation of a similarity graph
among the movement patterns of the individuals consideringdifferent representations based on fre-
quency and residence duration in a certain location (measured by means of proximity with base
stations) and close proximity (measured by means of short-radio technologies). Then, we assume
that partial knowledge on people’s interests is available and we apply a semi-supervised learning
solution based on Gaussian Fields and Harmonic Functions [19] for label propagation in graphs.
Both approaches are evaluated on two large data sets collected in two different conference environ-
ments (Infocom [18] and HOPE [2]) with the use of Bluetooth-equipped mobile devices and RFID
transponders respectively. The data sets also contain information about the users, which was col-
lected through questionnaires. The evaluation shows that we are able to predict people’s interests
with good accuracy also when only a small amount of information about user interests is available.
We show that we are able to achieve an average accuracy around74% and 80% respectively for
the two data sets using the supervised learning tecniques. With respect to semi-supervised case, we
demonstrate that 5 to 20% of information is sufficient to achieve results comparable to the supervised
learning case for these two data sets.

2 Description of the Inference Algorithms

In this section we describe the algorithms that we use to infer user interests from colocation traces.
We choose to use well established techniques and demonstrate how these can be employed in this
problem domain of inferring people interests given knowledge of their interactions and geographical
positions over time.

2.1 Similarity Graphs and Mobility Representations

As we mentioned, starting from data about the user location (e.g., its proximity to an access point)
and users interaction (e.g., through the detection of each other’s Bluetooth signals), our approach
aims at identifying similarity of users and predicting their interests.

We define a data setD = {(xi, yi) , i = 1, ..., m} with m equal to the number of users. We use
a multi-dimensional vector,x ∈ ℜd to describe a person’s mobility and interaction behaviour as
explained below.yi ∈ {+1,−1} indicates an interest label. The value ofyi is equal to+1 if a user
has expressed that interest,−1 otherwise. Using this model, we can construct anm-node similarity
graphG = (V, E). The weight associated to a generic edge between nodei and nodej is equal to
the similarity values between two data pointsxi, xj . The similarity is defined as the inverse of the
Euclidean distance between these two data points. More formally, considering two usersi andj we
define these quantities asdistancei,j = ‖xi − xj‖ andsimilarityi,j = 1/ (distancei,j + 1).

Hence, edges between points which are close to each other in the Euclidean space will be assigned
large weights in the graph. For our purposes, we define and experiment with three different simi-
larity graphs which correspond to three mobility representations extracted from different movement
measurements and depending on different constructions of the vectorx:

Frequency: The definition of thefrequency representation involves adding to each feature ofx a
value equal to the times a person has visited a specific location. The latter implies that the dimen-
sionality of a vector is equal to the number of existing locations. This information can be extracted
by means of fixed base stations.

Duration: Next, we build theduration representation where the frequency metric is replaced by the
total residence time an individual has spent in a location. Also this information can be extracted by
means of fixed base stations.

Colocation: Finally, we derive a third similarity metric, where each edge in the mobility graphG is
being weighted according to the total time two users were collocated during the period of the experi-
ment (i.e.,colocation). The latter captures a person’s close social interactions. This information can
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be extracted by means of short-range radio technologies such as Bluetooth (the transmission range
is under 10m).

2.2 Supervised Learning

Overview Supervised learning is a branch of Machine Learning that deals with the problem of
defining a predictor functionf that relates two different data spaces:X , which is defined as the
input space andY which is the output space. In general,X andY are presented in the form of the
training set of input and output pairsD = {(xi, yi) , i = 1, ..., m} with xi andyi being members of
X andY respectively.

The assessment of the solutionsf in supervised learning requires two additional definitions. For any
point xi the solution off predicts an answerf (xi). We are interested in how far this prediction is
from the actual output labelyi. This distance is expressed through the loss functionℓ(f (xi) , yi). In
the context of binary classification the loss function can take two values; 0 for correct prediction or 1
otherwise. The empirical error, which is the application ofthe loss function over the whole training
set, is then defined as follows:

Remp =
1

m

m
∑

i=1

ℓ(f(xi), yi)

In addition, we define the generalization error for pointsx which do not belong to the training setD
as a mean for assessing the quality of the solutionf for new inputs:Rgen(f(x)) = Ex,y[ℓ(f(x), y)],
whereEx,y[.] is the expectation with respect to pair(x, y). The generalization error is the principal
metric used to assess the performance of a supervised learning solution. In the next paragraph we
describe the predictor functionf and in Section 3 a method to estimate its generalization error.

k Nearest Neighbors Based Interest Inference The k nearest neighbors algorithm (k-NN ) [8]
is one of the simplest Machine Learning algorithms. The prediction functionf(xi) for a given data
pointxi is equal to the average of the labels of thek closest points toxi. We have implemented and
run the algorithm for the different values of the parameterk.

We conjecture that a good strategy for inferring people’s interests is to consider those that have
similar mobility behaviour (i.e., the nearest to them in terms of mobility patterns). In this work we
consider the prediction of each interest independent from each other, but the model can be extended
to include the other interests in the prediction model. Moreformally, we predict a generic interest
of useri as follows:

f (xi) =











+1, if 1
|N(i)|

∑

j∈N(i) yj ≥ 0

−1, otherwise.

whereyj is equal to+1, if userj is interested and−1 otherwise.N (i) is the set of thek closest
neighbours ofi.

2.3 Semi-supervised Learning

Overview In the semi-supervised learning scenario we investigate the case of predicting interest
preferences of individuals when only a subset of labels is available with respect to the population of
existing data points. This corresponds to the case where interest information is available only about
a (potentially small) portion of users.

Let us consider the data setD and suppose that we have a setL with l label points
(x1, y1) , ..., (xl, yl) and a setU with u unlabeled pointsxl+1, ..., xl+u. Moreover, let us suppose
that we have a graphG = (V, E) with nodesV including the set of allm data points (V = L + U).
The edgesE are weighted according to the similarity metrics defined in 2.1. The goal of a semi-
supervised learning algorithm is to exploit the connectivity of all nodes inG in order to predict the
labels of the unlabelled points inU.
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Figure 1: Performance of frequency representation over k neighbours and distribution of interests in
population.

Label Propagation for Interest Prediction with Partial Availability of Information To solve
the problem of predicting the labels of points inU, we consider a solution proposed in [19] which
defines a Gaussian Random field model on the graphG, where the mean of the field is characterised
using a harmonic functionf : V −→ ℜ. The intuition behind this approach is that the value
of neighbouring points in the graph have similar values. Theharmonic property of the function
f suggests that the predicted value of an unlabelled data point can be calculated considering the
average of the values of its neighbours:

f (xi) =
1

di

∑

i6=j

wijf (xj) , for i = l + 1, ..., l + u

wheredi is the total sum of the weighted edges of nodei in the graph, whilewij is equal to the
similarity value between nodesi and j. Since the definition of our problem falls into the binary
classification paradigm andf returns real values, we simply predict a label+1 (i.e., the person is
interested ) iff (xi) ≥ 0 or−1 otherwise.

3 Evaluation

3.1 Data Sets

The two data sets (AMD HOPE and Infocom 2006) were collected independently and from different
organizations. In both cases, experimenters used mobilitytracking technologies to monitor the pres-
ence of people in a conference environment. Hence, these traces contain time-stamped information
about the location of each user throughout the period of the conference. In addition to the mobility
information, participants at the conferences were asked torespond on questionnaires relevant to the
topic of the conference. In other words, these traces represent unique multi-dimensional data sets
for the evaluation of the proposed inference algorithms.

Infocom 2006 This data set was collected at the IEEE Infocom 2006 conference. The event lasted
4 days. Scott et al. [18] distributed a set of imote devices to70 students and researchers. Imotes
are Bluetooth capable devices, which are able to record the presence of other devices close to them.
Another set of long range static imotes were deployed at 17 key locations in the conference area.
As in the AMD HOPE data set, using data collected from the static imotes, user location is known
throughout the study. Additionally, a questionnaire (35 questions) was provided to the participants,
calling them to express interests with respect to their areaof expertise. As in the AMD HOPE data
set, only a subset of users filled the questionnaire. For thisdata set, however, we have a bigger
sample when compared to the total population (61 out of 70).

AMD HOPE AMD, or ”Attendee Meta-Data”, is a project that aims to explore potential uses of
RFID technology. The AMD Last HOPE ( Hackers On Planet Earth )conference [2] was an attempt
to show how RFID tags could be used within a conference environment to enhance the experience of
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Figure 2: Infocom data set interest prediction results for 1, 5 and 10 nearest neighbor cases.

Interest: ”Ad Hoc Nets” ”Multimedia” ”Sensor Nets” ”Security” ”Traffic Analysis” (mean)
Colocation 0.54 0.85 0.83 0.62 0.67 0.78
Frequency 0.62 0.85 0.83 0.70 0.60 0.78
Duration 0.72 0.86 0.85 0.70 0.63 0.79
Random 0.50 0.77 0.72 0.58 0.55 0.71

Table 1: Infocom5-NN prediction performance for 5 interest samples & overall mean.

the attendees. People wearing tags were tracked for the course of three days. Moreover, participants
were asked to express their interests on an online form. RFIDand expressed interests were used
by the organizers of the conference to help people in networking. RFID readers were deployed at
21 locations throughout the conference area for tracking the participants. The questionnaire form
contained a list of 21 interests and users were called to choose at most 5 among those. Despite the
fact that the overall number of users who have used RFID tags were 1281, only 410 of them decided
to fill the questionnaire. Hence, for the purposes of the present work, we have used only this subset
of users.

3.2 Experimental Results

We present our experimental results over the two data sets for the supervised and semi-supervised
learning techniques. We solve a multi-label classificationproblem: for both cases the number of
binary classification tasks is equal to the number of interests for each data set. That is 21 for AMD
HOPE and 35 for Infocom 2006.

Supervised Learning We estimate the generalization error of thek nearest neighbours algorithm
with the leave-one-out error technique comparing it to a random predictor (see also in [8]). The
technique is an unbiased estimator of the generalization error of the learning algorithm. As the
name implies, we calculate the error of the loss functionl corresponding to pointxi by training the
functionf for all input-output pairs but(xi, yi). More formally, the leave-one-out error is defined
as:

Rloo(f) =
1

m

m
∑

i=1

ℓ(f i(xi), yi)

wherem is the number of data points andf i suggests thatf was derived by excluding pair(xi, yi)
from the training set. We use the notion ofprobability of correct interest prediction which is com-
plementary to the leave-one-out error estimator.

We plot curves with results for the three representations that are used for the construction of the
mobility graphs:frequency, duration andcollocation. We compare the performance of those with a
random prediction case, in order to demonstrate how mobility information can be used to improve
the accuracy of the inference task. Therandom prediction is calculated using the following equation:
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Figure 3: AMD HOPE data set interest prediction results for 1, 5 and 10 nearest neighbor cases.

Interest: ”New Technology” ”Ethics” ”Privacy” ”Cryptography” ”Network Security” (mean)
Colocation 0.59 0.79 0.63 0.57 0.54 0.73
Frequency 0.49 0.83 0.61 0.61 0.58 0.74
Duration 0.53 0.84 0.65 0.65 0.52 0.74
Random 0.51 0.74 0.56 0.57 0.51 0.68

Table 2: AMD HOPE5-NN prediction performance for 5 interest samples & overall mean.

Prandom(i) =

(

t

n

)2

+

(

1 −
t

n

)2

with n number of users andt the number of times an interesti was selected. The random predictor is
built according to a probability distribution based on the prior knowledge of selection frequency of
each interest; interests with unbalanced distribution in the population can be predicted more easily.
In Figure 1(right) we plot the cumulative distribution of interest selection frequency in each data
set (i.e., how many times an interest was selected). We can observe that some very popular interests
are selected by almost half of the two populations and that a small set of interests concern only a
few participants.

The parameterk, defining the number of neighbours, plays a key role in the accuracy of the algo-
rithm. We experiment withk = 1, ..., 10. Figure 1(left) shows that the biggest improvement in
terms of prediction performance correspond to the valuesk equal to 3 and 5. There is no significant
increase in performance beyond5-NN for both data sets. An explanation of this behaviour is that
as we go beyond5-NN , although the information over the distribution of interests in a population
increases, we move away from a person’s social ties which areexpected to share similar interest
preferences.

By comparing results presented in Figures 2 and 3 for the cases of 1, 5 and 10 nearest neighbours,
we can observe that the accuracy increases as the number of neighbours increases. The predictor
based onk-NN outperforms the random one for values ofk bigger than 2 (withk equal to 1 and 2
we have an underfit). Another common observation for all graphs is that the three different mobility
representations offer very similar performance. This is probably due to the fact that nodes that
these three representations are highly correlated. The attendees mostly met inside the conference
venue. Therefore, there is a high proportion of the contactsdetected by means of the short-range
technologies (i.e, colocation information) that is also recorded by the access points (i.e., residence
interval duration information). Moreover, it is possible to observe a proportionality between the
duration of the contacts and their frequency. However, we observe small variations on a per interest
basis: in Tables 1 and 2 we provide a comparison of the three representations and the random
predictor for a subset of interests. An additional observedcharacteristic in Figures 2 and 3 is that the
curves related to the three mobility representations and tothe random predictor overlap in two cases.
First, as mentioned above there are a few interests with unbalanced distributions whose prediction is
easy even for the random predictor. For example in the Infocom dataset we have prediction accuracy
higher than 90% for 20% of the interests. The second scenariowhere random and mobility curves
overlap is related to a subset of interests that are very hardto predict as their choice of preference is
evenly distributed in the population and therefore the uncertainty associated with them is high.
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Figure 4: Semi-supervised Learning performance comparison for Infocom and AMD HOPE data
sets.

We also observe that we achieve better results for the Infocom 2006 traces. This is due to the fact
that the AMD HOPE data set is relatively sparse, since many users did not fill the questionnarie and
were removed from the data set.

Semi-supervised Learning As far as the semi-supervised learning algorithm is concerned, for
each run we calculate an evaluation score, which is equal to the number of unlabelled nodes that were
predicted correctly over the total number of unlabeled nodes. With respect to the semi-supervised
learning methodology we assume that only a portion of the interest labels are available in the data
set. The availability percentages we have experimented with range from 1% for AMD HOPE and
3% for Infocom to 90% of the two populations. For each run of the experiment, we randomly select
a subset of the nodes in our mobility graph and assign labels to them. We run the classification
task 50 times for each interest for the different levels of partial knowledge available. There are two
notable points with respect to the experimental results presented in Figure 4. First, even with small
number of labels available high performance can be achieved, which remain steady as we increase
the label availability ratio. That is 20% for the Infocom (12labels out of 61 users) and 5% of labels
for the AMD HOPE (20 labels out of 410 users) dataset. Second,the three mobility representations
offer almost identical performance, as observed for the supervised learning case.

4 Related Work

We view our work as part of the broader research areas of the analysis interconnections between
social and technological networks [12] and learning over graphs [4, 9, 19]. Data from technolog-
ical networks have been exploited to investigate small world phenomena in social networks [16],
influence of friends in purchase decisions [10,14] and dynamics of spread of information [1]. More
specifically, machine learning techniques have been successfully applied in a number of cases of
social network analysis solving problems on various aspects such as link prediction [15], group
problem solving [11] and evolution of communities [3]. Mostof these works focus on online social
networks. Recently, there has also been an increasing interest in the analysis of mobile networks.
The Reality Mining project [6] is a representative example:smart phones were given to staff and
students of the MIT Media Lab and Sloan Business School to loglocation and proximity data over
the course of 9 months. The authors use the information aboutuser movements to infer social
relationships and routines [5].

Our work investigates for the first time quantitatively the correlation between mobility and user
profiles: we have shown how machine learning techniques can be applied to extract not only infor-
mation about relationships among users but also about theirprofiles from social interactions detected
by means of short-range radio technologies.

5 Conclusions

We have presented an investigation about how machine learning techniques can be used to infer
user interests from mobility patterns in conference environments. Our approach is based on the
construction of similarity graphs of mobility patterns among the users. We have considered two
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different cases, characterised by different percentage ofavailable information as a priori knowledge
for the inference algorithms and we have applied ak nearest neighbours algorithm for the case of full
knowledge and a label propagation technique for the case of partial knowledge. We have evaluated
the techniques using two real-world data sets from two different conference environments. We
have shown that we can achieve an average accuracy around 74%and 80% respectively for the two
data sets using the supervised learning tecniques. With respect to semi-supervised case, we have
demonstrated that 5 to 20% of information is sufficient to achieve results close to the supervised
learning case for these two data sets.
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