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Abstract

Sensor networks are now enabling the monitoring of var-
ious environmental phenomena with more accuracy than the
previous labour intensive and less technological solutions.
This paper is concerned with the application of opportunis-
tic networking techniques to wildlife monitoring, where the
sensors are attached to animals moving in their habitat. We
present Seal-2-Seal, a novel protocol for logging of node
(i.e., animal) contacts in mobile networks and for dissemi-
nation of that information to sinks for further analysis. The
protocol utilises an efficient data summary mechanism to
reduce the amount of information that needs to be trans-
mitted, thus reducing energy consumption. To evaluate the
performance of the protocol, we implemented it for the Con-
tiki operating system on sensor devices and ran simulations
based on real-life mobility traces using the Cooja emulator.

1. Introduction

Recent developments in the area of mobile and sensor
networks have generated interest in the application of these
technologies to various domains. In particular, protocols
and applications for intermittently connected networks of-
fer interesting solutions to problems in wildlife monitoring.
In projects related to wildlife, researchers are interested in
knowing how animals interact with each other to gain a
better understanding of the behaviour of the species. This
information can also be used to address specific problems
such as how the behaviour of the animals might contribute
to the spreading of diseases or to track animal survival.

Our target scenario is to model the social contact patterns
of grey seal (Halichoerus grypus) pups in the UK within
their first year. There is an increasing awareness that the
social contact patterns within a population of animals have
an important bearing on the spread and fate of disease out-

breaks.The motivation behind this paper is to devise a sys-
tem that can collect and relay ashore contact pattern data
from a large sample of animals that would then allow us to
model the contact patterns of the population of animals. To
estimate population parameters with precision we need to
tag a large number of animals. Thus there is a requirement
for the tags to be cheap, as well as being small. Most pre-
vious marine mammal telemetry studies have collected data
about the movements and behaviour of individual animals
either through retrieval of tags (often impractical for many
species) or by transmitting the data directly ashore. The
later strategy may use Argos satellite modems [2] or GSM
modems [8]. However the costs of these systems are high
and this limits the number of animals that may be tagged.

We propose a cheap and light-weight solution, by using
nodes attached to animals to exchange data with each other.
This means that most of the animals can be tagged with
cheap and energy-efficient devices that are only capable of
local communication. Through this communication system,
data can then be delivered to sinks, which are points from
where the researchers can collect the data easily. A sink can
either be a fixed node somewhere in the environment, or one
of the animals that in addition to the local communication
interface also has some other long haul communication pos-
sibility (such as a satellite link). Since only a small fraction
of the animals need to be tagged with these more complex
and expensive nodes, it is possible to tag a larger sample of
animals.

In this paper, we present Seal-2-Seal (S2S), a protocol
for efficient logging and collection of encounters between
mobile nodes (i.e., the tagged animals). The protocol has
been devised with very specific application constraints in
mind and is specifically tuned to contact data dissemination
rather than other type of data, which allow a precise op-
timization of its performance. Seal-2-Seal allows contact
data to be disseminated to sinks over an intermittently con-
nected network (e.g., a network of animal contacts) in an en-
ergy efficient way. The protocol utilises a novel mechanism
to create efficient data summaries to reduce the amount of



data that has to be transmitted by the nodes. We evaluate
the protocol using mobility traces generated from real ob-
servations of animal mobility.

2. The Seal-2-Seal Protocol

In this section we describe the Seal-2-Seal (S2S) proto-
col. S2S is a protocol for logging contacts between mobile
nodes, and in a delay-tolerant manner transmitting informa-
tion about such contacts hop by hop to one of the sinks.
The protocol consists of two phases:

• In the contact detection phase, nodes periodically at-
tempt to detect the presence of other nodes within
transmission range and log such contacts.

• When a new contact is detected, the data dissemination
phase is initiated, in which neighbouring nodes ex-
change information about the currently stored contacts
and synchronise the contacts between the two nodes.
The data dissemination phase has two parts:

– First, data summaries are exchanged between the
two nodes. These allow the nodes to determine
which contacts are stored at the other node, and
thus, which contacts need to be transmitted. The
data summaries also contain information about
which contacts have been delivered to a sink and
acknowledged. This information can then be
used to purge acknowledged contacts from the
network to avoid unnecessary extra transmissions
of them.

– Finally, the actual data are exchanged between
the two nodes.

2.1. Contact Detection Phase

In the contact detection phase, a node needs to discover
other nodes within transmission range (here, we choose to
do it through local broadcasts of beacons, but other meth-
ods can be used if available). The beaconing interval needs
to be selected carefully, as too frequent beacons will lead
to many unnecessary transmissions which consume energy,
which often is a scarce resource. Too infrequent beaconing,
on the other hand, risks missing short contacts. The beacon-
ing interval should be set based on the expected duration of
contacts in the target environment, while also taking into
consideration the available energy and required lifetime of
the nodes.
Contact Logging

The basic unit of data stored in nodes is a contact entry,
consisting of the tuple (id1, id2, tstart, dur), where id1 and
id2 are node identifiers. The tuple indicates that id1 and id2

had a contact of duration dur that started at time tstart. Two
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Figure 1. Example of contact logging.

contact events (receiving a message from a certain node or
being notified by an underlying neighbour discovery ser-
vice) are considered to be part of the same contact if they
are less than 3·tbeaconinterval apart. Thus, if a contact event
occurs within this time period, no new entry is added to the
contact data base, but instead the duration of the last en-
try for that node pair is updated to reflect the new length of
the contact. Figure 1 illustrates how this works through an
example. A node is over time in contact with three other
nodes – A, B, and C. During the contacts with nodes A and
C, the presence of the node is detected more than one time
through the transmission of beacons, but only one entry for
each contact is stored. As the maximum time allowed be-
tween two contact events to still count them as being in the
same contact is greater than a single beacon interval, the
contact with A is logged as a single contact even though
one of the beacons is lost in transmission. The contact with
node B on the other hand illustrates the tradeoff involved in
choosing the beaconing interval. In this example, the bea-
coning interval was longer than the actual contact, and thus
the entire contact happened between two beacon transmis-
sion and could not be logged. Shorter beaconing intervals
reduce the risk of missing contacts, but will also increase
the amount of data that has to be sent, and thus the energy
consumption of the nodes.

2.2. Data Dissemination Phase

We now describe the two steps of the data dissemination:
the exchange of data summaries and the actual exchange of
data leading to data synchronization between the two nodes.
Data Summaries

When a node has detected another node, it needs to be
able to determine which data the other node has and what
needs to be sent. In protocols such as Epidemic Rout-
ing [13], such message synchronisation is achieved by ex-
changing lists of identifiers of all the messages carried by
the nodes. This allows a node to determine which messages
are not present in the buffer of the other node and send those
messages. The overhead of such a method is acceptable if
the size of the message identifiers is small in comparison



to the size of the data messages themselves. In a protocol
such as S2S on the other hand, each data entry is small,
and a unique identifier for such an entry would not be much
smaller than the data itself. Therefore it is not viable to
transmit a list of all entries stored, so the data must be sum-
marised using a more compact representation. Through our
knowledge of the type of data being stored, and by imposing
requirements on the way data is stored and transferred, we
can create a very compact summary of all contacts stored at
a node. The size of the summary does not depend on the
number of contacts stored, but only on the number of node
pairs for which contacts are stored. To enable this compact
representation of the data, we require that the data for each
node pair is stored and transmitted in chronological order.
Thus, a particular data entry is never sent to a node unless
that node already has all the earlier entries for that node pair
(or if all earlier entries are also included in the same packet
as this entry).

Since we now have some more knowledge about the data
stored at each node, it is sufficient to add to the data sum-
mary a tuple (id1, id2, firststart, lastend) for each node
pair. The value firststart is the start time of the earliest
contact for that node pair that is stored, and lastend is the
end time of the latest contact for that node pair that is stored.
Because we require nodes to exchange information about
contacts in a chronological order within each node pair, we
can guarantee that a node that transmits such a report not
only has the first and last contact as listed above, but also
has all contacts that have been logged in between them.

Upon reception of a data summary message (which
might have been spread over multiple network level pack-
ets; acknowledgements are sent to ensure reliable deliv-
ery of summaries), a node can now determine what data is
stored at the other node, and what data needs to be transmit-
ted. This node also creates a summary diff message, which
is constructed exactly like a data summary message, but to
reduce the amount of data that has to be transmitted, this
message only sends the differences between the data stored
in both nodes, which will result in a smaller message if large
parts of the stored data is the same at both nodes.
Data Exchange

After receiving a summary or summary diff messages,
the nodes now create one or more packets (depending on the
amount of data that has to be transmitted and the allowable
packet size on the underlying network) with the entries that
are not present at the other node. How to select which data
entries to include in packets can be chosen by the imple-
menter, as long as the requirement of chronological trans-
missions is followed (in the implementation used for the
evaluations in this paper, entries are selected sequentially).
A node must not send any other entry other than the one
with the lowest timestamp that the receiving node does not
already have. As this entry has been added to the packet, the

node may now add the next entry in sequence for that node
pair, or an entry from another node pair (for which the same
requirements of timestamp ordering applies). Data can now
be sent between the nodes. To ensure that data is not lost,
the protocol uses acknowledgements to be able to retransmit
lost packets. If both nodes have data to send, acknowledge-
ments can be piggybacked to data messages, but if one node
sends more packets, the other will have to generate separate
acknowledgement packets.
Acknowledgements and Data Purging

On small sensor devices, memory can be a limited re-
source. Therefore it is important to reduce the amount of
data that has be kept in the network as much as possible.
Storing less data also reduces the amount of data transmis-
sions needed, so data aggregation also implies energy sav-
ings. If nodes come in contact with sink nodes and delivers
the data, such data can be safely purged from the network.
Because of the way the data summaries are created, this is
easily achieved. As data are transferred to a sink and deleted
from the transmitting node, the data entries with the small-
est time stamps are the first to be deleted. Therefore, the
firststart part of that node pair’s entry in the data summary
will also be increased. When a data summary is received,
nodes can delete all entries with time prior to the first time
reported in the data summary. As the data is deleted on this
node, data summaries created by it will also be affected,
and thus, the acknowledgement will spread through the net-
work, purging all delivered data from nodes.

3. Evaluation

We have implemented Seal-2-Seal in the open source,
highly portable, multi-tasking operating system for
memory-constrained networked embedded systems, Con-
tiki [3]. Small-scale tests have been performed on the
Tmote Sky sensor platform [9] to verify that the protocol
works on real hardware, and larger scale deployments are
planned for the future. To evaluate the performance of S2S
in larger scenarios, we used the Cooja simulator [11] on
which we run the real Contiki code but with the benefit of
being able to perform larger-scale testing.

In order to emulate mobility of the sensors, we use a
mobility trace generator developed in the ZebraNet project,
that allows us to emulate zebra mobility [5]. We simulate
a 20 node network during a simulated time of around 31.5
hours. All nodes in the network run the S2S protocol, and
some nodes (a varying number) also act as data sinks (there
are no stationary sinks). For the mobile sinks (e.g., the an-
imals with a GSM link installed too), we assume that their
uplink is instantaneous so that data can be acknowledged
as soon as it has been sent to the mobile sinks. We study
the performance of the protocol for a number of different
beacon intervals and data sink ratios. The nodes that act as



sinks were selected randomly.
For comparison purposes, we have also included a sim-

ple Direct Transmit (DT) protocol and a ZebraNet protocol
in the evaluations. In Direct Transmit, nodes log contacts as
in S2S, but they never forward them to other nodes. Only
when a sink is met will the nodes offload all their contacts to
that sink. Such a protocol will have low overhead, as each
data item is only sent at most once, but is on the other hand
likely to suffer from worse performance with regard to other
metrics. The ZebraNet protocol is an epidemic dissemina-
tion protocol as used in the ZebraNet project and creates
data packets of contacts when needed and uses these as the
unit of synchronisation.

To determine the performance of the protocol, we study
the following metrics. We study the total contact time
logged as that shows how accurately the protocol is able
to detect contacts as the beacon interval varies. The per-
centage of contacts reported to a sink and delay to sink are
the main performance metrics, indicating how efficiently
the protocol can disseminate the data to the sink. As en-
ergy is a scarce resource in the target environment for S2S,
the power consumption should be kept low. Thus, it is of
interest to keep the amount of data transmitted as low as
possible. We measure the communication overhead as the
average number of bytes transmitted by the nodes during
the experiment. Finally, we look at the maximum buffer us-
age in the nodes, which allows us to evaluate the memory
requirements of the protocol, and also study how that is af-
fected by varying number of sinks available to acknowledge
the data.
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Figure 2. Total contact time logged by any
node for different beacon intervals.

3.1. Results

We start the evaluation of the protocol by looking at how
much of the contacts that are present in the system can be

successfully logged by the protocol, and how that is affected
by the different parameters.

This can be seen in Fig. 2, where the total contact time
logged by any node for different beacon intervals is shown.
As expected, a shorter beacon interval results in a larger
portion of the contacts being logged. For a beacon inter-
val of 120 seconds, almost all the contact time is detected,
but as the beacon interval increases, the logged contact time
drops.

In Fig. 3, we show how many of the logged contacts
make it to a sink. This is an encouraging result. Even if only
a very small part of the node population are sinks, Seal-2-
Seal is still able to deliver most of the logged contacts to a
sink where they can be used. Direct Transmission requires
more sinks to achieve a good delivery ratio, and never quite
reaches the same level as S2S. Not only is more of the data
disseminated to the sink by S2S as compared to DT, but is
also delivered in a more timely manner as shown in Fig.
4. S2S yield significant reductions in the average time it
takes a contact to be delivered to a sink as compared to only
making direct transmissions to the sink (the reason that the
delay for DT is very low with beacon intervals of 600 and
3600 seconds with just one sink is that only a small num-
ber of contacts are delivered to the sink, and many of these
are contacts between the mobile nodes and the sink, which
thus has zero delay, reducing the average delay). For both
of these metrics, the gains are extra evident when there are
only a small number of sinks in the system. This showcases
the benefit S2S has in reducing the required number of sinks
in the system to achieve the desired performance. Thus, the
cost of deployments is reduced and larger populations can
be studied. In terms of delivery and delay, ZebraNet ex-
hibits similar performance to S2S as it is an epidemic pro-
tocol, so good performance is to be expected as buffer and
bandwidth is not limiting here (due to the higher overhead,
the delay is also slightly higher as more data must be trans-
mitted).

In the simulations, nodes had infinite buffers for stor-
ing contacts, but in real deployments, a proper buffer size
must be selected. Figure 5 shows the maximum number
of contacts that was stored at a single node at any point of
the simulation. This indicate the smallest possible buffer
size that can be used without having to discard data entries.
This shows one of the aspects of the usefulness of the ac-
knowledgements from the sinks, as we can see that with
more sinks continuously acknowledging the data received,
and allowing it to be removed from the other nodes, the
buffer size requirements decrease. However, even with only
a few sinks, the buffer requirements are quite small, and in
this scenario, a buffer of 10 kB would be fully sufficient.
It is also good to see that the buffer requirements do not
vary that much depending on the beacon interval. For very
long beacon intervals, the buffer is naturally kept small as
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Figure 3. Percentage of the logged contacts that were reported back to a sink.
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Figure 4. Delay to sink. Average delay for a contact to be reported back to a sink.

only a small number of contacts is ever logged. For short to
intermediate beacon intervals, the buffer usage has less vari-
ance. While very short beacon intervals is likely to generate
more detected contacts, it also provides more communica-
tion opportunities for contacts to be sent to the sinks (and
thus acknowledged and removed from the buffer).

The benefit of the sinks’ ability to acknowledge data that
subsequently can be purged from the network, can be even
more clearly seen in Fig. 6, which shows the average num-
ber of bytes that each node sends during the entire exper-
iment. As more sinks are introduced into the system, the
amount of data to be sent between nodes drops quite rapidly.
This drop is most remarkable for short beacon intervals,
where the interactions are frequent and thus larger amounts
of data are sent, but it is also relevant when longer intervals
are used. The amount of data transmissions is the strong
point of DT, as each data entry is only sent at most once
(when meeting a sink), and the curves here show the low
levels of transmissions. As data is only sent when meeting

a sink, the data sent by DT increases as the number of sinks
increase. When looking at the data transferred, we can here
see that S2S is more efficient than ZebraNet as it sends less
data while achieving the same delivery rate at comparable
delays.

4. Related Work

Contact Logging
There has been a number of measurement experi-

ments performed in order to log mobility and contact pat-
terns between mobile nodes. While it is possible to use
infrastructure-based data to infer contacts between nodes,
such measurements will not be able to log contacts that
occur out of range of the infrastructure [1]. Thus, contact
gathering will be biased towards certain areas and not a bi-
ologically good sample in many cases. This is particularly
problematic in situations where the network is expected to
be sparse and dispersed over a large geographical area or in
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Figure 5. Maximum buffer usage by nodes.
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Figure 6. Communication overhead. Average amount of data transmitted per node.

harsh environments, such as in wildlife monitoring applica-
tions. Therefore, a number of measurement studies have
been conducted in which direct contacts between nodes
have been logged. The Haggle project has performed sev-
eral such data collection deployments in which iMotes were
given to university students or conference attendees [1, 6].
In the RealityMining project, smartphones logging informa-
tion about Bluetooth contacts were deployed to students and
staff at MIT during a nine month period [4].

The target of the protocol presented in this paper is sim-
ilar to that of the contact logging experiments described
above, but has some important differences that makes it
more flexible and efficient. A big problem with previous
deployments of mobile contact loggers has been the need
to collect all the nodes at the end of the experiment in or-
der to retrieve the data. In many cases, this is not possible.
If nodes are given to humans, nodes might be lost or fail
during the experiment, or the logging software might have
been installed on nodes that belong to the users (such as

mobile phones), which the user is not willing to give away
for data collection. This problem is even more prevalent
in wildlife monitoring applications. In such applications, it
can often be difficult or impossible to recapture the same
animals that have initially been tagged, and data loggers
might frequently be expected to fall off the animals after
a certain period of time, making it impossible to retrieve
those devices. Thus, there is a need for a mechanism for
detecting and logging node contacts that also transfer that
data between nodes to spread it through the network until it
reaches a sink where it can be retrieved by the user.

Opportunistic Data Dissemination

There have been many protocols proposed for data dis-
semination in intermittently connected network. Such pro-
tocols try to deliver application messages to their destina-
tions either by spreading them through the entire network
as in Epidemic Routing [13], or by using different methods
to reduce the overhead in the network while still delivering
the messages [7, 10].These protocols make no assumptions



about the data sent through the network. This means that
they can be used in most scenarios, but also that they are not
making use of knowledge that could make operation more
efficient.
Wildlife Monitoring

Related sensor networking techniques have been used for
wildlife monitoring in other projects. The projects that is
most closely related to ours are the ZebraNet [5] and wild-
CENSE [12] projects. In these projects, zebras and the In-
dian Nilgari antelope are tagged with GPS receivers to log
the position of the animals. The tags also contain com-
munication hardware that is then used to send all collected
data using standard epidemic forwarding protocols over the
wireless network to the researchers that study the animals.
While there are similarities between those projects, and the
anticipated use of Seal-2-Seal, there are also important dif-
ferences. Since S2S focuses on the logging of animal con-
tacts, and not of other data, we were able to perform op-
timizations in the way the data was aggregated and stored,
which have not been considered in the other projects. In-
stead, these projects, focusing on larger animals which may
carry bigger batteries, rely on more traditional data dissem-
ination protocols such as the ones outlined above, which
instead are optimized in terms of bulk data transfer. S2S
considers each node contact to be the smallest data unit, and
thus can do more efficient and flexible synchronizations be-
tween peering nodes. Moreover, by not incorporating GPS
receivers, nodes can be smaller and consume less energy,
properties that are especially beneficial when doing deploy-
ments on smaller animals. This also reduces the cost of
nodes, which makes larger deployments possible.

5. Conclusions and Future Work

We have presented Seal-2-Seal, a dissemination proto-
col for contact data gathering through sparse intermittently
connected networks. Our wildlife scenario of animal track-
ing and the peculiarity of the contact data to be collected
have influenced a number of protocol decisions and have
indicated a number of possible optimizations.

As the protocol is light-weight, has low requirements on
the system it is running on, and only needs long-haul com-
munication capabilities in a limited number of instances, it
enables deployments to a larger population than before at
the same cost.

We have described an implementation of the protocol
over sensor nodes and presented a large scale evaluation
over a simulator using real mobility traces.

In terms of future work, we want to combine the protocol
with some application aware duty cycling techniques and to
deploy the protocol on animals: this will allow the zoolo-
gists to gather the needed data and us to evaluate further the
capabilities of the protocol in real life.
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